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ABSTRACT

The lack of carbonyl groups and the presence of ether bonds give the lipid interphase 

a different water organization around the phosphate groups that affects the 

compressibility and electrical properties of lipid membranes. Generalized 

polarization of 14:0 Diether PC in correlation with FTIR analysis indicates a higher 

level of polarizability of water molecules in the membrane phase around the 

phosphate groups both below and above Tm. This reorganization of water promotes 

a different response in compressibility and dipole moment of the interphase which is 

related to different H-bonding of water molecules with PO and CO groups.

Keyword: tetradecyl PC; DMPC; Laurdan; Generalized polarization; compressibility, 

FTIR, dipole potential.Highlights: 
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Absence of carbonyl group:

Increases the packing of water molecules around phosphate groups. 

Promotes loose water in a second hydration shell in the interphase.

Eliminates coexistence of liquid condensed and liquid expanded phases.

Abbreviations: DMPC: 1,2-dimiristoyl-sn-glycero-3-phosphocholine; 14:0 Diether 

PC: 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine; Laurdan: 6-dodecanoyl-2-

dimethyl aminonaphthalene; Tm: Transition temperature; GP: Generalized 

Polarization; g: Center of mass; LC: Liquid Crystalline state; FWHM: full width at 

half-maximum.
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INTRODUCTION 

The hydration of lipid membranes has been a matter of discussion and analysis since 

its behavior determines critical properties of biological functions.1–4 Several studies 

have paid attention to the contribution of water to determine thickness and area of 
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3

lipid membranes,5,6 membrane structure and stability,7 and its influence on 

permeability properties.8,9

In addition, attempts to explain the response of the lipid interphase to bio effectors 

has considered the thermodynamic properties of water organized around the 

lipids.2,10–12 Water has been described to be organized in hydration sites such as the 

PO and the CO residues of the phospholipids and in between the hydrocarbon 

chains. Different kinds of water, in terms of energy and structure, have been 

identified: one strongly bound to the phosphates, one  more weakly bound to the CO 

and another clustering around the choline groups and hydrocarbon chains.12–17

Recently, the hydration states of the interfacial region of lipid bilayers were 

investigated on the basis of the time resolved emission spectra (TRES) analysis of 

6-lauroyl-2-dimethylamino naphthalene (Laurdan).18 The number of water molecules 

per lipid was calculated and found to be comparable to those reported previously. In 

terms of bound water, the polar head groups of the lipids may include a clustered 

state of the water molecules.15,19

In this regard, previous reports have also proposed the classification of water 

molecules that hydrate the lipid bilayer in roughly two groups. One directly bound to 

the lipid molecules, known as the primary hydration shell, constituted by water 

molecules forming additional hydrogen bonds with other water molecules and with 

different hydration sites such as phosphates (PO) and carbonyl groups (CO).15,20–22

A second hydration shell that can be easily displaced by biomolecules, enzymes, 

different aminoacids and chemical compounds has also been described. This water 

population is affected relatively easily by surface pressure and explains the insertion 
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4

of amino acids and proteins. Therefore, the importance of the contribution of water 

activity at the membrane surface on biological processes has been considered on 

thermodynamic backgrounds.11,16 This implies that the energetic of the water  

interaction is different for each site of hydration.

For example, phosphate groups are strong hydration site and its hydration is 

correlated with the hydration of the acyl chains according to chain length, phase 

state and the presence or absence of carbonyl groups.14

In particular, the carbonyl groups are located in a plane running along the glycerol 

backbone and, in consequence, they appear to have a special influence on the 

interfacial properties since its affinity for water can be modified by curvature, phase 

state and other topological features.17,23,24 In addition, these groups have been 

described to participate in the formation of defects upon deformation of the bilayer  

giving place to spontaneous or induced curvatures.17 FTIR data report that in each 

of the sn1 and sn2 chains, the carbonyl groups (CO) present hydrated and non-

hydrated distributions, as a consequence of fluctuations in CO orientation.17,25 As 

reported before its presence may modulate the relative hydration of phosphate and 

acyl chains.14 On this base, the comparison of ester lipids with ether lipids becomes 

of interest. Although ether lipids are present in bacteria, eukarya and in humans its 

real biological function is still not clear.26–32 It is claimed that lipid raft formation is 

related to this kind of lipids.33 Simulation of lipid bilayers composed of Ester and 

Ether PCs revealed that the Ester PC membrane is more compressible than that for 

Ether PC. This behavior was attributed to different water order and dynamics around 

the head group region in the Ether PC membrane.34 

Page 4 of 47

ACS Paragon Plus Environment

Langmuir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

It has been reported that nanoconfined water shows a strong anisotropy35,36 and its 

dielectric constant is surprisingly low (c.a. 10).37,38 Therefore, the changes in water 

distribution due to the absence or presence of CO groups would affect the dielectric 

properties of the lipid bilayer with probable effect on its response to the penetration 

and stabilization of oligo peptides or aminoacids. In the region at which water may 

reach the ester carbonyl plane different populations of water clusters are present.15,39 

Laurdan locates in the hydrophobic/hydrophilic interfacial region near the carbonyl 

group of the phospholipid and therefore it has been extensively used to get 

information about the polarity of the environment near to it and in consequence to 

derive hydration states.18,40,41 However, a difficulty to accurately estimate the number 

of water molecules by Laurdan fluorescence is that it cannot detect molecules farther 

away from the probe position. This may be ascribed to the vertical position and how 

deep the probe can be intercalated according to lipid composition and phase state.18 

Parasassi et al proposed that fluorescence shift with temperature of Laurdan bands 

is caused by the presence of water molecules in the bilayer region where Laurdan 

locates which seems to be congruent with NMR techniques.42 The hypothesis of the 

influence of water on Laurdan fluorescence is consistent with recent studies 

comparing the shift in lipid - cholesterol membranes with Laurdan in octanol phase 

doped with different amounts of water. This is taken as a clear indication that 

Laurdan is directly affected by water around it.41

The spectral shift cannot be explained by changes in the “static” dielectric constant 

of the phospholipid phase, due to increased water penetration. The relaxation 

process in the liquid crystalline phase has been  ascribed to water molecules with 
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restricted mobility with respect to bulk water.43 Therefore, it is of interest to analyze 

comparatively the hydration properties of membranes composed either by ester or 

ether PCs merging from Laurdan fluorescence and FTIR and to correlate them with 

the electric and compressibility properties of the lipid interphase.

In this work, monolayers and bilayers composed by DMPC and 14:0 Diether PC were 

studied by steady state fluorescence spectroscopy, FTIR spectroscopy, and surface 

pressure isotherms. It is expected that the comparison of ester and ether linked 

phosphatidylcholines may provide an insight on the hydration properties at lipid 

interphases and its consequences on mechanical, electrical and phase properties. 

This may be of importance to understand the biophysical properties of these 

membranous systems and its relevance for their biological function.

MATERIALS AND METHODS

Chemicals

1,2-dimiristoyl-sn-glycero-3-phosphocholine (DMPC); 1,2-di-O-tetradecyl-sn-

glycero-3-phosphocholine (14:0 Diether PC) and 1,2-dipalmitoyl-sn-glycero-3-

phosphocholine (DPPC) were purchased from Avanti Polar Lipids Inc. (Alabaster, 

AL). Purity of lipids were higher than >99% as checked by FTIR, UV spectroscopies 

and thin-layer chromatography. Stocks of phospholipid solutions in chloroform were 

quantified by determining inorganic phosphorus. Laurdan (6-dodecanoyl-2-dimethyl 

aminonaphthalene) was obtained from Molecular Probes and used without further 

purification. The concentration of Laurdan stock solutions in chloroform was 

determined by absorption spectrophotometry at 364 nm considering an absorptivity 
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7

coefficient of 20.000 M−1cm−1.41 All other chemicals were of analytical grade. 

Solutions of 1 mM KCl (pH 5) were prepared with ultrapure water (conductivity = 

0.002–0.010 mS cm−1) obtained from an OSMOION 10.2 water purification system 

(APEMA, Buenos Aires, Argentina).

Fluorescence spectroscopy measurements

Multilamellar liposomes (MLV´s) containing Laurdan in a 1:500 Laurdan/ lipid 

mol/mol ratio, were obtained by hydrating the dried lipid films with Milli-Q water or 1 

mM KCl solutions above the transition temperature (Tm). The suspensions were 

subjected to 10 minutes vortex cycles. After this procedure, MLV´s were extruded 

20 times above Tm through a polycarbonate filter (pore diameter 100 nm) to prepare 

large unilamellar vesicle suspensions (LUV´s). The particle size of LUV´s 

suspension was measured by dynamic light scattering (DLS- Horiba nano particle 

analyzer SZ-100). The LUV population having a diameter of 100 nm with an 

accuracy ± 2% at 25°C was around 99%.

Steady-state emission spectra were obtained in a SLM 4800 spectrofluorometer 

using a 1.0 cm quartz thermostatized cell within ± 0.5ºC. The excitation wavelength 

was 370 nm with a slit of 2 nm. Emission was collected in suspensions with an optical 

density smaller than 0.05 in the range from 220 to 700 nm. Consequently, no 

correction for inner filter effects was needed. Emission spectra of the samples were 

collected between 10 to 50ºC ± 0.1ºC.

The Excitation Generalized Polarization (GPex) function was calculated from the 

emission intensities using Eq. (1): 
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Eq. (1)𝑮𝑷𝒆𝒙 =
𝑰𝟒𝟒𝟎 ― 𝑰𝟒𝟖𝟎

𝑰𝟒𝟒𝟎 + 𝑰𝟒𝟖𝟎

where I440 and I480 correspond to the emission maximum in the gel and the liquid 

crystalline state respectively.44–47

Spectral Center of Mass

The spectral centre of mass was calculated by Eq. (2):

          Eq. (2)𝝂𝒈 =
∑𝝂𝒊𝑭𝒊

∑𝑭𝒊

where Fi is the emission intensity at each wavenumber (i in cm-1). The summations 

were carried over all wavenumbers where Fi > 0 .48

Wavelength number of emissions can be related with the energy content per mole 

(E) of the substance responsible for the emission, according to

 Eq. (3)𝑬 =  𝑵𝑨 𝒉𝒄𝒈

where h is Planck’s constant (6.62×10−34 J.s), v is frequency, c is the speed of light 

in the medium in which the waves propagate (2.997×108 m s-1 in vacuum), g the 

wavenumber and NA = Avogadro’s number = 6.022×1023 mol-1.

Spectra decomposition procedure

The emission spectra of Laurdan in the LUV’s were fitted with a superposition of two 

LN functions using the nonlinear fiting tools of the Origin 8.5 software package as 

reported by Bacalum et al.49 With this procedure the components of the emission 

bands of Laurdan in the different conditions were evaluated. On the base of the two 
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9

states assumed in the GPex calculation, it provides a comparative relation with 

relaxed and non-relaxed states.  

Time-resolved fluorescence measurements.

The Time-resolved fluorescence measures were carried out following the protocol 

published by Bagatolli et al.50 

ATR-FTIR Spectroscopy

All FTIR spectra were obtained in a Thermo Scientific 6700 spectrometer assembled 

with an ATR accessory with controlled humidity and temperature, and with a DTGS 

KBr detector, connected to a system of circulation of dry air to avoid the interference 

of water vapor and carbon dioxide from the environment. Lipid films prepared as 

described above were resuspended, above the transition temperature (Tm), in a 

minimum volume of KCl solution to reach a 20 mM lipid suspension. Droplets (2 μL) 

of each suspension were placed on the diamond crystal (45° incident angle). Spectra 

of fully hydrated samples were taken at 18°C and 30°C ± 0.1 ºC during the 

dehydration process. Spectra were obtained at intervals of three minutes in order to 

control the water content evolution following the water band intensity, the symmetric 

and asymmetric -PO2
- stretching band and the asymmetric stretching vibration of the 

methylene groups. Water content defined as IνH2O/IνCH2 was chosen as a 

parameter to follow the hydration states of all studied lipids including those lacking 

CO groups. Wavenumber position of the lipid νasCH2 or νsPO2
- stretching bands was 

plotted as a function of IνH2O/IνCH2. Previous works showed that the measurement 
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10

for water content also takes into account other vibrational modes such as water 

scissoring band and the lipid ester band.51 

Data were obtained after 64 scans per sample corresponding to the average of three 

independent assays. Spectra were analyzed with Omnic Software (version 9.1.24) 

and Microcal Origin program (version 8.5). These softwares mathematically process 

the spectra and the peak maxima were determined by the Omnic find peak function 

routine resulting in an accuracy of 0.1 cm-1 which gives statistically reliable data.51,52

Surface pressure and dipole potential measurements 

The surface pressure () and dipole potential () compression isotherms were 

carried out simultaneously in a KSV NIMA LB trough (surface area = 240.00 cm2). 

The system was equipped with an electrobalance and a platinum Wilhelmy plate 

(39.24 mm2) as surface pressure sensor. Dipole potential was measured using a 

KSV SPOT with a vibrating plate electrode and a steel counter electrode immersed 

in the subphase.53,54 The distance between the monolayer and the electrode was 

carefully adjusted to minimize the noise according instrument instructions (Input 

range: ±-5V; sensitivity: ± 1mV; height dependency: 10 mV/mm; response time: 

proportional to distance but less than 1s when positioned 1 mm above monolayer). 

The platinum-Wilhelmy plate was cleaned by rinsing with ultra-purified water and 

ethanol, and was flamed in a butane torch until glowed red-hot before each assay. 

The trough was filled with 120 mL of 1 mM KCl solution (pH 5) which remains 

constant along all the assay. Previous to each assay several sweeps when done on 

the water surface to avoid impurities and until the borders of the meniscus were even 

in the whole perimeter. Accurate volumes of 5 mM lipid solution in chloroform were 
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11

spread on the surface, using a Hamilton micro syringe. Monolayers were stabilized 

during 15 min before each measurement at 15°C and 30°C ± 0.1 °C. Compression 

curves were carried out at a constant speed of 2 mm/min to allow stabilization of the 

system at each point. Data correspond to an average of at least three independent 

measurements with aliquots of the same stock solutions for each lipid. 

The whole equipment was enclosed in an acrylic box of controlled atmosphere to 

minimize water evaporation and to avoid contaminations from the environment 

during the study. One special point is that the close compartment avoids the CO2 

contamination that may eventually change pH by CO2 absorption at the water -air 

interface.

Compressibility measures

To visualize the phase properties of 14:0 Diether PC and DMPC systems, the 

compressibility module was calculated using Eq. (4)

 Eq. (4)𝑪 ―𝟏 = ―𝑨(𝒅𝝅
𝒅𝑨)

𝑻

The compressibility modulus vs area/molecule is defined as a quantitative measure 

of the monolayer state that indicates the change in the physical state, such as the 

coexistence of expanded-condensed phases in the film.55–57

Dipole potential 

The dipole potential is the change in surface potential relative to the absence of lipids 

and is given by Eq. 5
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                    Eq. (5)𝜟𝑽 =  𝟑𝟕.𝟕𝟎 𝝁/𝑨

Where ΔV is the dipole potential expressed in V, A is the area per molecule in 

Å2/molecule and  in Debye (D) is the molecular dipole moment perpendicular to 𝜇

the lipid-water interface.58,59 The components of  is subdivided into the 𝜇

contributions of lipid-reoriented water molecules (μw), lipid polar head groups (μco), 

and the chain terminal dipole (μhc).60,61 

RESULTS

Analysis of fluorescence data

A decrease of Laurdan GPex from positive to negative values is clearly observed at 

the phase transition temperature for DMPC and 14:0 Diether PC (Figure 1a). Similar 

to previously reported, the transition temperature is around to 2 ºC higher in the 

absence of the carbonyl groups.50 This denotes that the presence of an ether bond 

affects in a similar way the properties of the membrane phase independent of the 

chain length. 

The displacement of the GPex curve for 14:0 Diether PC to lower values at all 

temperatures is indicative that the polarity of the environment surrounding the probe 

in this kind of lipids is higher than in the ester one. GPex values are evaluated 

selecting a fixed wavelength in the gel and another in the liquid crystalline state of 

both lipids, and calculating the relative changes in intensity at these values along the 

temperature according to Eq. (1).44–47 However, the Spectral Centre of Mass (νg) 

calculated according to the definition in Eq. 2 in M&M, displaces with temperature. 
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13

This is a direct measure of the energy required at each temperature for the dipolar 

arrangements. The values of νg can be expressed in terms of energy (Eq. 3- Figure 

1b). Thus, it is interesting to analyse the information that this shift may provide from 

below to above the phase transitions. 

Data in Figure 1b denotes that less energy is required for 14:0 Diether PC than for 

DMPC indicating that the dipole environment is less rigid or has more mobility in the 

14:0 Diether PC.

Fig. 1: Effect of temperature on GPex (a) and on Energy (b) of Laurdan in DMPC 

(black dots) and 14:0 Diether PC (red dots) LUV´s.

As shown in Figure 2a, the area under the curves of the Energy derivatives increase 

from DMPC (9.64 kJ/mol) to 14:0 Diether PC (10.06 kJ/mol) and DPPC (13.80 

kJ/mol) and follows the increase of the total enthalpic change at the phase transition 

as measured by DSC (Fig 2b). 
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Fig. 2: (a) First derivative of Energy values as a function of temperature for DMPC 

(black line), 14:0 Diether PC (red line) and DPPC (Blue dotted line); (b) Correlation 

of the areas under the curves in Part (a) expressed in kJ/mol with the total enthalpic 

change at the phase transition measured by DSC .62

As described by Watanabe et al. the band obtained at 445 nm for DMPC in the gel 

state can be decomposed in at least two different contributions: one centered at 444 

nm and another at 470 nm (Fig 3a).18,49 When the temperature is increased and 

lipids go to the liquid crystalline state the band at 483 nm is significantly more intense 

than that appearing at 444 nm (Fig 3c).

A similar picture is obtained when, at a constant temperature below Tm, ester and 

ether lipids are compared. It is clearly shown in Figure 3b that the band at high 

wavelength corresponding to relaxable populations increases in comparison to that 

for DMPC. Above the Tm, the non- relaxable populations nearly disappear in 14:0 

Diether PC in comparison to that in DMPC.
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The deconvolution applied to emission spectrum for DMPC and 14:0 DietherPC 

suggests that two water populations coexists at the gel and in the liquid crystalline 

states of both lipids although in different ratios.

The same results and conclusions may be derived from the measures of excited 

state lifetimes. In the gel state the lifetime for DMPC is 6.49 ns while for 14:0 Diether 

PC it amounts 5.04 ns denoting a less rigid environment. In liquid crystalline state, 

both values decrease (4.29 ns for DMPC and 3.68 ns for 14:0 Diether PC). As 

observed in this state, the value for the ether lipid is lower than that for the ester one.
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Fig. 3: Deconvolution of emission spectra for DMPC and 14:0 Diether PC. Upper 

panels correspond to a) DMPC and b) 14:0 Diether PC at 15 ºC; lower panels 

correspond to c) DMPC and d) 14:0 Diether PC at 45ºC.

Laurdan relaxation takes place according to the water molecules that surround it, i.e. 

the components of the bands at 440 and 470 nm can be taken as an indirect measure 

of water with different properties to relax (non-relaxable and relaxable populations). 

The comparison of GPex values and energy values (Fig 1a and 1b) on one hand and 

the deconvolution of fluorescence bands on the other, indicates the coexistence of 

environments of different polarity which may be related to differences in the 

distribution of water dipoles of different energy of interaction by H bonds between 

them and with the lipid groups such as PO and CO, in accordance to Alarcon et al.15 

In order to get a molecular insight of the mesoscopic description obtained by 

fluorescence and ascribed to water environments in ether and ester PC bilayers, 

FTIR analysis were done analyzing the frequencies of the phosphate groups below 

and above the phase transition temperature for both lipids. This is presented in the 

next section.

FTIR analysis

The FTIR analysis is based on the fact that the frequency of vibration ( ) of a given 𝜈

bond is expressed by the equation

Eq (6)𝝂 =
𝟏
𝟐𝝅

𝒌
𝝁
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Where k is the force constant of the bond and µ the reduced mass of the two atoms 

forming the bond. The frequency decrease is then a direct measure of the bond 

weakening. When a group concerts a hydrogen bond with an adjacent molecule, the 

frequency of the bond decreases. The decrease in the frequency of the phosphate 

stretching vibrations with water content is an indication of the amount and the energy 

of the hydrogen bonds that the phosphate groups may form.14,51 Thus, FTIR analysis 

provides a microscopic picture of that derived from mesoscopic description done 

with Laurdan fluorescence described in the previous section. 

Figure 4 shows that the phosphate frequencies are lower for 14:0 Diether PC than 

for DMPC both below (18°C) and above (35°C) the phase transition temperature. In 

Fig. 4a it is observed a decrease for the 14:0 Diether PC PO2
- symmetric frequencies 

in comparison with DMPC. In Figure 4b the frequency vibration of asymmetric PO2
- 

is also analyzed giving the same results as observed for the symmetric one.14 The 

lower frequencies in 14:0 Diether PC in comparison to DMPC can be ascribed to a 

stronger H bond interaction of PO2
- groups with water molecules at the interphase. 
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Fig. 4: Comparison of symmetric a) and asymmetric b) phosphate vibration 

frequencies for fully hydrated 14:0 Diether PC (red) and DMPC (black) at 18 ºC and 

35 ºC. The error bars represent the standard deviation of three measurements. 

The results of FTIR indicating that water molecules are strongly bound to the 

phosphate group in the absence of CO are congruent with the increase in more 

polarizable water observed with Laurdan. 

Monolayer properties

The change in hydration state described in the previous section may have 

consequences on the physical properties of lipid interphase. Thus, the influence of 

the carbonyl group on the compressibility and the dipole moment of lipid monolayers 

was analyzed.

Compressibility properties.

The compressibility modulus (C-1) vs area of DMPC and 14:0 Diether PC are 

compared at 15ºC and 30ºC (Fig. 5a). C-1 was calculated from the data in Figure S1 

using equation 3. In both cases, a jump in C-1 is observed between 110 and 120 Å2 

for 14:0 Diether PC at 15°C and 30°C, being both values higher than those observed 

for DMPC at similar temperatures. 

The compressibility vs. surface pressure curve in Fig. 5b shows that, at low 

pressures, the behavior of the ester and ether lipids are similar. However, a 

noticeable difference is observed at 20 mN/m in which DMPC shows a broad peak 

between 20 and 29 mN/m while ether lipid shows a continuous increase up to 31 
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mN/m. Data of lipids above the transition temperature are shown in supplementary 

material (S2).

Fig. 5: Compressibility modulus vs. area per molecule (a) and Compressibility 

modulus vs Surface Pressure (b) for DMPC (black lines) and 14:0 Diether PC (red 

lines) at 15 °C. 

Dipole potential and Molecular dipole moment (µ):

In Figure 6a, it is observed that dipole potential per unit area of DMPC and of 14:0 

Diether PC increases with surface pressure. In Figure 6b, the values of molecular 

dipole moment (µ) defined in M & M, are plotted as a function of the surface 

pressure. It is observed that the curve corresponding to 14:0 Diether PC (red line) 

falls below that of DMPC (black line) congruent with the lack of a population of 

dipoles (CO groups). When plotted in a normalized way (inset Fig. 6b) it is observed 

that both curves overlap until a pressure of 20 mN/m, at which the dipole moment 
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reaches a constant limit value of around 0.3 - 0.4 D (Fig. 6b), coincident with the 

peak of compressibility observed for DMPC in Fig. 5b.

In contrast, dipole moment still decreases at higher pressures in 14:0 Diether PC 

suggesting the loss of dipoles or a further rearrangement of dipoles at the interphase. 

Fig. 6: Dipole potential per unit area (a) and Molecular dipole moment (b) vs Surface 

Pressure (mN/m) for DMPC (black line), 14:0 Diether PC (red line). Inset: molecular 

dipole moment normal to the membrane plane vs Surface pressure for DMPC (black 

line), 14:0 Diether PC (red line) at 15°C.

DISCUSSION

The displacement of the transition to higher temperatures accounts for a higher 

requirement of energy of ether PC than for DMPC. This energy increase could be 

due to stronger interactions between the lipids when the carbonyl group is absent. A 

possible explanation is that the lack of carbonyl group has a similar effect than an 

increase in the chain length. This is sustained by the observation that the transition 
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temperatures follow the trend 14:0 PC - 14:0 di ether PC - 15:0 PC - 16:0 PC - 16:0 

Di ether PC.50,62

The enthalpy transition follows the same trend denoting an increase from 23 kJ/mol 

to 26 kJ/mol to 33 kJ/mol (Figure 2b). Estimates of Cp ( heat capacity) revealed that 

a significant amount of water may be present in the hydrocarbon region.12,63

Thus, the total enthalpy change (ΔHt) measured by calorimetry would be given by 

the energy corresponding to the fusion of lipid lattice reticule (ΔHl) and that related 

to the hydration of the lipids (ΔHh) 

(7)Δ𝐻𝑡 = Δ𝐻𝑙 + Δ𝐻ℎ

According to Epand et al., each CH2 in each acyl chain contributes to the enthalpic 

change (ΔHCH2) with 2-3 kJ/mol.64 If it is considered that the first 6CH2 do not 

contribute to the enthalpy change,65 the total enthalpy (ΔHt) for DMPC can be 

calculated by

(8)Δ𝐻𝑡 = 2(𝑛 ― 𝑛𝑐)Δ𝐻𝐶𝐻2 + Δ𝐻𝑊

where ΔHt = 23 kJ/mol, n= 14 for DMPC, nc= 6 and ΔHCH2= 2 kJ/mol.  The 

contribution of water (ΔHw) as calculated from equation (8), is approx. 9 kJ/mol. 

Similarly, considering that in the case of 14:0 Diether PC the chain is one CH2 longer 

due to the absence of the ester union, Hw is equal to 10 kJ/mol. In both case the 

values are comparable to the area value obtained under the curve of Figure 2. As 

the Energy values (Figure 1b) account for changes in the water environment, the 
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changes in the area under curves of Figure 2a would correspond to the contributions 

of the water molecules to the transition of the different lipids. 

1.-Relaxable and non relaxable populations as measured by FTIR and Laurdan 

fluorescence.

The bands obtained by deconvolution in Figure 3 can be ascribed to Laurdan 

molecules which experiment different degree of dipole relaxation in relation to the 

surrounding water. Thus, it can be taken as an indirect indication of water molecules 

organized in populations having low and high restricted mobility identified as 

relaxable and non relaxable respectively. 

The population of water dipoles with more propensity to relax increases in 14:0 

Diether PC in comparison to DMPC at the same temperature, suggesting that the 

water shell is less tightly bound for 14:0 Diether PC than in DMPC or at least it has 

more mobility as inferred from the decrease in relaxation times. A higher level of 

polarizable water molecules around the probe (relaxable population) cannot be 

necessarily interpreted as free water, but as water that has less restriction to rotate. 

Hence, the contribution to the Cp will be higher, congruent with the enthalpic change 

shown above. The fluorescent results with Laurdan are compatible with those 

reported with other probes in the sense that solvent reorientation in ester PC 

membranes is slow compared to the ether lipid, due to the water bound to the 

carbonyl groups by H bonds.66 

This behavior can be further sustained considering the changes in PO2
- symmetric 

and asymmetric frequencies. It is well known that DMPC has two hydration sites in 
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the headgroup region (PO2
- and CO) and 14:0 Diether PC only one (PO2

-).16 Results 

in Figure 4, showing an increase the PO stretching frequency, indicate that the 

strength of the water-phosphate H-bond is higher in 14:0 Diether PC. Thus, in the 

absence of carbonyl group, a stronger association of water with the phosphate 

groups is present. This experimental evidence can be explained considering that in 

DMPC, water molecules could bind simultaneously to PO2
- and CO by H bonds, in 

the same lipid molecule forming a water bridge as proposed by Ohto et al.67 

Complementary simulation studies using different force fields and water models 

have also indicated that the chemical nature of lipid chains affects the dynamics of 

the bilayer lipid water interface. They provide evidences that different relaxation rate 

populations in the water molecules are relevant in understanding the structural or 

orientational heterogeneity of interface water near DMPC above the phase transition 

temperature. Although no analysis in the gel state or in ether lipid are available, those 

data together with the present ones are key elements to understand the 

thermodynamic of lipid interphases in terms of dynamic properties since them 

appear correlated with the phase states of the bilayers. A slow relaxation of 

interfacial water is attributed to the presence of a strong interaction at a location 

close to carbonyl groups as seen in time-resolved fluorescence study.

Chemically confined water molecules near lipid membranes are governed by 

dynamical heterogeneities originated from different kinds of hydrogen bonds 

Different kinds of confined water may coexist near membranes at room temperature 

relevant to the phase transitions of lipid bilayers as deduced from the GP data. 

Different water populations may reside within a layer of 0.3 to 0.8 nm along the 
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bilayer normal. The oxygen-oxygen and oxygen–hydrogen angles deviate from 

tetrahedral array found in bulk water which may produce an free energy excess 

(surface tension) In 14:0 Diether PC, these water molecules would be linked only to 

the PO2
- group making the H -bond stronger but having the possibility to rotate 

around the H-bond, as graphically represented in the next scheme 1:

Scheme 1: The left hand (a) scheme represents the DMPC molecule showing the 

formation of an intramolecular water bridge between a PO and a CO group. In the 

central scheme (b), the water bridge is broken due to the absence of CO group. The 

water bound to the PO can rotate around the H-bond given as a result a reorientation 

of the water dipole of 90º with respect to the membrane plane (right-handed scheme-

c).
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The increase in rotational degrees of freedom of water molecules hydrating the PO 

group in 14:0 Diether PC would explain the increase in polarizability observed by 

fluorescence and the ΔH values.

The combination of FTIR and fluorescence values indicates that there are two water 

arrangements in the lipid interphase which is changed whether carbonyl is present 

or not.

According to Eq. 1, GPex can be written as:

𝑮𝑷𝒆𝒙 = (𝑰𝟒𝟒𝟎
𝑰𝑻) ― (𝑰𝟒𝟖𝟎

𝑰𝑻) = 𝑿𝒈𝒆𝒍 ― 𝑿𝒍𝒄

with IT = I440 + I490.

Then, the terms Xgel and Xlc denote the fractions that relax at 440nm and 480nm 

respectively. The inspection of Figure 1a indicates that these two fractions do not 

take a value equal to one, which would denote that 100% of the population relax at 

440 nm (xgel =1; xlc =0) or at 480 nm (xgel =0; xlc = 1). The values different from 1 

above and below Tm denotes that a mixture of the two populations coexists in both 

phase states. 

The comparison of the values of Xgel and Xlc between DMPC and 14:0 Diether PC 

indicates that below Tm 40% of the population relax at high energy in DMPC and 

only 20% in the 14:0 Diether PC. Above Tm the values are 40% and 50% 

respectively. 

A more consistent information is obtained from g that is calculated considering the 

whole band of emission at different temperatures and that can be expressed in terms 
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of energy and therefore it may be correlated with calorimetric values. According to 

the description in the scheme, water molecules acquire additional rotational degrees 

of freedom in the absence of CO that contribute to the transition.

2.-Compressibility and dipole moment properties. 

Based on the scheme given above, it is possible to rationalize the compressibility 

and dipole moment data described in Fig. 5 and 6. The small increase of the 

transition temperature observed for 14:0 Diether PC in comparison to DMPC, can 

be explained considering that in this last case, the presence of carbonyl groups 

would be a steric hindrance for lipid packing. Also, the scheme denotes the 

possibility of forming intermolecular water bridges between CO and PO groups.

In the absence of CO, hydrocarbon chains are slightly longer and hence there would 

be an increase of the dispersion forces between them explaining the increasing in 

Tm. This is manifested in the calculation of ΔHl in which considering ether PC with 

an additional CH2, and nc = 6 a consistent value of ΔHw, in equation 7 is obtained. 

Data in Figure 5a demonstrate that DMPC is more compressible than ether lipid. 

This behavior has been also observed by MD simulations comparing DPPC with 

16:0 Diether PC (DHPC).18 In Fig. 5b DMPC profile of C-1 curves vs. surface pressure 

is strongly altered in the absence of the CO groups. It presents a peak centered at 

20 mN/m that according to Yu et al involves two different contributions in the lipid 

headgroup region.70 The maximum for DMPC corresponds to the coexistence of the 

LE and LC phase of the surface pressure vs area per lipid isotherm (Figure S1). In 

contrast, in the same range of surface pressure, 14:0 Diether PC shows a continue 
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increase in C-1 that might be due to a rearrangement of the water molecules with 

pressure with the possibility to rotate.

So, how is this lower compressibility in the ether lipid compatible with a tighter 

hydration in the phosphate group and more less-bounded water around it? As 

reported before, water can penetrate up to the carbonyl region.39,71 In its absence, 

chains are more packed as inferred from the slight increase in Tm in the direction of 

a chain length increase (Figure 2b). An interpretation is that, in the absence of CO, 

water “sees” a more hydrophobic wall that imposes an increased order that would 

favor the hydrophobic interaction between adjacent chains, expelling water which, 

according to FTIR data, is relocalized around the phosphate groups. The new water 

atmosphere around these groups seems to be more polarizable according to the 

decrease in GPex and ascribed to water that has gained rotational degree of freedom 

(see scheme above). The rotation of these water dipoles could account for the 

increase in polarization. The parameters that, in principle, would reflect these 

orientational changes are dipole potential per unit area and dipole moment, analyzed 

in Figure 6a and b. According to the scheme above, the orientation of the water 

molecule bound to the phosphate can rotate changing drastically the orientation of 

the dipole. In DMPC in which the water is fixed to PO and CO sites, the surface 

pressure would reduce the number of dipoles per unit area until a critical area is 

reached. At this point, DMPC cannot be further compressed and therefore reaches 

a constant dipole moment value coincident when the lipids enter in the liquid 

condensed state. However, in 14:0 Diether PC compression above 20mN/m can still 

produce a reorientation of the dipole giving a continuous decrease in dipole moment. 
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This population of water dipoles would be that showing an increased mobility and 

polarizability as inferred from Laurdan fluorescence measures given above. This 

difference has been shown to be a contribution of water dipole orientation,54 and 

hence an increase in water order due to compression.

As reported by MD analysis, water in the DPPC headgroup is less ordered than 

16:0Diether PC until approximately 13 Å from the centre of the bilayer. Water near 

the ether PC headgroups appears to be less mobile than water near the headgroups 

of DPPC.34 This is apparently in contrast with the present results and analysis. 

However, as shown by FTIR, in the absence of CO groups water in the headgroup 

region seems to better associated with phosphate, which would be in agreement 

with the MD results. However, although this increase would reduce lateral diffusion 

it would  increase rotational water orientation.34

In terms of comparing phase states in monolayers and bilayers, it should be 

considered that the surface pressure in bilayers has been calculated to be around 

30-35 mN/m.72At this surface pressure, according to Figure S1, both lipids are 

entering at the solid phase (see arrow). However, the area per lipid is higher for the 

ether PC in comparison to the ester lipid. Thus, in ether PC combines the highly 

order state in the acyl chain region (compatible with the gel phase) with a high degree 

of hydration in the phosphate region (compatible with the liquid crystalline state). 

This combination has also been described in interdigitated phases.73,74
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CONCLUSIONS

The lack of carbonyl groups gives the ether lipids different surface physical chemical 

properties when compared with the diacyl/ester PC. The main differences are: 

.- a change in the hydration state visualized as a stronger interaction  of water with 

the  phosphates together with an increase of more polarizable water.

.- an increase in the cohesion between lipids indicating more propensity to form 

condensed phase at lower pressures; 

.- Water with different relaxation properties around the head groups can be 

modulated by the presence of carbonyl groups with consequences on dipole surface 

potential and compressibility properties.

.- Confined water molecules in membrane interphase could play a key role in the 

structure, function and dynamics of many biological systems. The different 

coexistence of relaxable and non relaxable water molecules may have important 

consequences on the polarizability and dielectric properties of the lipid interphase 

which greatly affect the binding of ions and charge solutes. With this in mind, it can 

be speculated that the variation of the different exposure of CO groups at the 

interphase would affect the surface charge potential (zeta potential) affecting 

electrostatic forces driving the lipids protein interaction. Further experiments should 

be design in order to test this hypothesis
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