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Abstract: A simple method for the identification of brush-border membrane α-glucosidases is 

described. The proteins were first solubilized and separated in a gel under native, non-denaturing, 

conditions. The gel was then incubated in substrate solutions (maltose or sucrose), and the product 

(glucose) exposed in situ by the oxidation of o-dianisidine, which yields a brown-orange color. 

Nano-liquid chromatography coupled to mass spectrometry analyses of proteins (nano LC-MS/MS) 

present in the colored bands excised from the gels, was used to confirm the presence of the enzymes. 

The stain is inexpensive and the procedure permits testing several substrates in the same gel. Once 

enzymes are identified, their abundance, relative to that of other proteins in the brush border, can 

be semi-quantified using nano LC-MS/MS.  

Keywords: α-glucosidase; polyacrylamide gels; detection; proteomics; activity 

 

1. Introduction 

It is a common goal in physiology to assess the function of enzymes as well as to identify effector 

proteins in subcellular compartments. Numerous methods have been proposed based on split assays, 

one to measure the function of the enzyme and another to identify the protein that catalyzes the 

reaction. The latter step often requires an additional sample (not the one in which function was 

measured), and relies on the use of antibodies. However, antibodies typically are species-specific and 

do not cross-react when studying non-traditional model animals, or are not specific enough to 

distinguish between closely related enzymes. Specific antibodies can require time to be produced. 

We describe a method with the following two advantages: 1) It can perform both steps on the same 

sample, and 2) the enzyme identification is fast and accurate. We used the method to reveal the 

hydrolytic activity of α-glucosidases in brush border membrane (bbm) of intestinal epithelial cells 

(enterocytes), and their identification, by combining a gel electrophoresis for sample protein 

separation, a colored reaction to reveal the enzyme activity on the substrate, i.e., zymography [1], and 
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a proteomic method, for enzyme identification-nano-liquid chromatography coupled to mass 

spectrometry (nano LC-MS/MS ) of the solubilized stained bands of the gels. If the method is followed 

by nano LC-MS/MS on the proteins from the bbm, the method also allows quantifying the relative 

abundance of the enzymes identified. 

Our demonstration target enzymes hydrolyze the final products of the degradation of starch and 

glycogen (e.g., maltose and maltoligosaccharides) and disaccharides (e.g., maltose, sucrose, 

isomaltose). In mammals, the intestinal α-glucosidases are the complexes sucrase-isomaltase (SI) and 

maltase-glucoamylase (MGAM) of the bbm of enterocytes. SI and MGAM are orthologs that derive 

from an ancient duplication and are similar in structure and composition, sharing a 60% homology 

between complexes [2,3]. Both enzyme complexes include two subunits, an N-terminal subunit (Nt-

MGAM and Nt-SI) and a C-terminal subunit (Ct-MGAM and Ct-SI) [4,5]. According to the 

classification system of the carbohydrate-active enzymes (CAZy, [6]), all of the subunits belong to the 

glycoside hydrolase 31 family (GH31) subgroup 1, characterized by the WIDMNE sequence in their 

catalytic centers [7]. All these similarities make it time consuming and costly to distinguish the 

different complexes. Moreover, because some of the subunits share substrate hydrolytic specificity 

[8,9], and in the reaction assay the activity gives similar colored products, distinguishing between the 

enzymes poses an even greater challenge. Therefore, we adapted a method using zymography to 

separate and detect activities plus nano LC-MS/MS to recognize the proteins in the gels slices where 

the reaction was apparent. We used a preparation of bbm of the small intestine of laboratory mice 

and two substrates hydrolyzed by the complexes, maltose and sucrose. According to the specificities 

of these enzymes, the proteomic analyses of the gel slices should reveal the presence of both proteins. 

2. Material and Methods 

2.1. Brush Border Membrane Preparation and Zymography 

Dr. Sarah Newman from the University of Wisconsin - Madison Research Animal Resource 

Center (RARC) provided the study animals. The gastrointestinal tracts of two Swiss-Webster mice 

anesthetized with isoflurane were removed. The small intestine from the pyloric valve to the ileocecal 

junction was excised and placed in ice cold PBS solution for enterocyte isolation. Immediately after, 

animals were euthanized by anesthesia overdose. The isolation of enterocytes and bbm were 

performed according to protocols described by Mac Donal, et al. [10] and McConnell, et al. [11].  

Proteins from the bbm preparations were solubilized in loading buffer (60 mM Tris-HCl pH 6.8, 

20% Glycerol, 1% Triton X 100 and 0.01% Bromophenol blue) and then incubated 10 min at 40 °C in a 

water bath, vortexed, and 10 µg of total protein was loaded per gel well. For each mouse, three gels 

were run; one to reveal maltose hydrolytic activity (identified as I in Table 1), one for sucrose activity 

(identified as II in Table 1), and the remaining gel was used to visualize the proteins by Coomassie Blue 

staining following Simpson [12]. All the gels were run with PageRuler Plus Prestained Protein ladder 

(ThermoFisher Scientific catalog number 26619, Waltham, MA, USA) as a molecular marker. Gels I and 

II were run at room temperature in 4–12% Tris-Glycine Mini polyacrylamide gel (NovexTM TermoFisher 

Scientific) at 100 V constant and ~350 mA using Tris-glycine pH 8.3 as running buffer (Table 1). 

Coomassie blue gel running time was 2 h. Gels for disaccharidase activity were run for a total of 3 h to 

have better separation between these enzymes that have similar molecular weight and overlapping 

activity [8,9,13–15]. The two gels for disaccharidase activity were immersed in either maltose or sucrose 

56 mM in maleate-OH buffer for 1 hour at 37 °C (Table 1). The buffered substrate solution was removed. 

Then the gels were soaked in assay reagent solution of the Glucose (GO) Assay Kit (Sigma-Aldrich 

GAGO20, Saint Louis, MO, USA) at 37 °C; for 1 h for the gel previously soaked in maltose, and for 5 h 

for the gel previously soaked in sucrose (Table 1, Figure 1). The reaction is based on the promotion of 

the oxidation of glucose produced by the hydrolytic enzymes tested by glucose oxidase and formation 

of H2O2 by a peroxidase, which in turn oxidizes the colorless-reduced o-dianisidine forming an orangish 

compound according to the manufacturer (Glucose (GO) Assay Kit, Sigma-Aldrich GAGO20). The 

reaction was stopped by rinsing the gel with deionized (DI) water 3 times. Finally, the bands were cut 

and submerged in DI water and stored at 4 °C for further analysis.  
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Figure 1. Bands developed indicating α-glucosidase activity by zymography. The polyacrylamide 

gels were incubated with either maltose (A) or sucrose (B) solution or Coomassie blue solution (C). 

Then for A and B only, the gel was immersed in assay reagent solution until a well-defined band 

appeared, as shown. Asterisk (*) on Figure 1C shows proteins that did not run through the gel. 

2.2. Enzymatic “In Gel” Digestion  

Stained gel slices from the native gel were excised based on the activity staining. Slices were 

placed for 5 min in MeOH/H2O/NH4HCO3 [50%:50%:25 mM], and the proteins entrapped in the gel 

were denatured for 10 min in SDS/DTT/Tris-HCl solution [2%/1 mM/50 mM pH 7] with subsequent 

2 × 5 min washes in MeOH/H2O/NH4HCO3 [50%:50%:25 mM]. Gel fragments were washed twice for 
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5 min in MeOH/H2O/NH4HCO3 [50%:50%:100 mM], dehydrated for 5 min in acetonitrile 

(ACN)/H2O/NH4HCO3 [50%:50%:25 mM] then once more for 1 min in 100% ACN, dried in a vacuum 

concentrator (Speed-Vac, ThermoFisher Scientific) for 2 min, reduced in 25 mM DTT (dithiotreitol in 

25 mM NH4HCO3) for 30 min at 52 °C, alkylated with 55 mM IAA (iodoacetamide in 25 mM 

NH4HCO3) in darkness at room temperature for 30 min, washed twice in H2O for 30 s equilibrated in 

25 mM NH4HCO3 for 1 min, dehydrated for 5 min in ACN/H2O/NH4HCO3 [50%:50%:25mM] then 

once more for 30 s in 100% ACN, dried again and rehydrated with 20 µL of trypsin solution [10 ng/µL 

trypsin (Promega, Madison, WI, USA) in 25 mM NH4HCO3/0.01% Protease MAX w/v (Promega)]. An 

additional 30 µL of digestion solution (25 mM NH4HCO3/0.01% Protease MAX w/v) was added to 

facilitate complete rehydration. The digestion was conducted for 3 h at 42 °C. The supernatant was 

removed, and gel pieces were extracted for peptides with 2 × gel volume of ACN/H2O/TFA solution 

[70/30/0.75%]. Extracted peptides were combined with the supernatant. Degraded Protease MAX was 

removed via centrifugation [max speed 16,000 g, 10 min] and the peptides solid phase extracted 

(ZipTipC18pipette tips Millipore, Burlington, VT, USA). The extracted peptides were subsequently 

submitted for nano-LC-MS/MS analysis. This protocol can be found at: 

https://www.biotech.wisc.edu/services/massspec/protocols/ingel. 

2.3. Nano LC-MS/MS 

Peptides were analyzed by nano LC-MS/MS using the Agilent 1100 nanoflow system (Agilent 

Technologies, Santa Clara, CA, USA) connected to a hybrid linear ion trap-Orbitrap mass 

spectrometer (LTQ-Orbitrap Elite™, ThermoFisher Scientific) equipped with an EASY-Spray™ 

electrospray source. Chromatography of peptides prior to mass spectral analysis was accomplished 

using capillary column with integrated emitter (PepMap® C18, 3 µM, 100 A, 150 × 0.075 mm, 

ThermoFisher Scientific) onto which 3 µL of extracted peptides was automatically loaded. The 

nanoHPLC system delivered solvents A: 0.1% (v/v) formic acid, and B: 99.9% (v/v) acetonitrile, 0.1% 

(v/v) formic acid at 0.50 µL/min to load the peptides (over a 30 min period) and 0.3 µL/min to elute 

peptides directly into the electrospray source using a gradual gradient from 3% (v/v) B to 30% (v/v) B 

over 77 min and concluded with 5 min fast gradient from 30% (v/v) B to 50% (v/v) B at which time a 

5 min flush-out from 50–95% (v/v) B took place. As peptides eluted from the HPLC-

column/electrospray source survey, MS1 scans were acquired in the Orbitrap over the mass range 

300 to 2000 m/z at resolving power of 120,000 followed by MS2 fragmentation in the linear ion trap of 

the 20 most intense peptides detected in the MS1 scan. Precursor redundancy was limited by dynamic 

exclusion. 

3. Data Analysis and Protein Identification 

Raw MS/MS data were converted to mgf file format using MSConvert (ProteoWizard: Open 

Source Software for Rapid Proteomics Tools Development). The resulting mgf files were used to search 

against the M. musculus (87,156 entries) Uniprot amino acid sequence database which also contained a 

list of common protein contaminants, plus sequence-reversed decoy entries to establish false discovery 

rates using the University of Wisconsin’s Mass Spectrometry and Proteomics Facility’s Mascot search 

engine 2.2.07 (Matrix Science) with variable methionine oxidation, variable asparagine and glutamine 

deamidation, plus fixed cysteine carbamidomethylation. Peptide precursor mass tolerance was set at 

15 ppm and fragment mass tolerance at 0.6 Da. Protein annotations, significance of identification and 

spectral counting based quantification were done using the Scaffold software package (version 4.3.2, 

Proteome Software Inc., Portland, OR, USA). Protein identifications were accepted if they could be 

established at greater than 99.0% probability within 1% false discovery rate and contained at least 5 

identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm [16]. Proteins 

that contained similar peptides and could not be differentiated based on MS/MS analysis alone were 

grouped to satisfy the principles of parsimony. 
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Table 1. Summary of parameters used with each substrate tested in the zymography.  

Electrophoresis 

Gel I II 

Constituents 1 4–12% mini polyacrylamide gel1 

Temperature of the run room temperature 

Total protein loaded per well 10 µg 

Running buffer Tris-glycine pH 8.3 

Electric field applied 100 V constant and ~350 mA 

Run time 3 h 

Hydrolytic activity assay 

Substrate solution and concentration Maltose 56 mM  Sucrose 56 mM  

Incubation time 1 h 1 h 

Incubation temperature 37 °C 

Assay reagent 2  

Incubation time (reaction temperature) 

1 h 

(37 °C) 

5 h 

(37 °C) 

Rinse the gel with deionized water 3 × 

Gel storage for further analysis 4 °C 

References: 1 NovexTM 4–12% Tris-glycine mini polyacrylamide gel; 2 Glucose (GO) Assay 

Kit (Sigma GAGO-20). 

4. Results and Discussion 

Orange-colored stains were apparent in the native gels where the reaction with either substrate, i.e., 

maltose (Figure 1A) or sucrose (Figure 1B), took place. The intensity of the bands could be increased by 

extending incubation times in the assay reagent. Maltase activity was apparently greater because the 

develop reagent required less time to be visualized for the staining than for sucrase (Table 1). The 

locations of the orange-colored stains on the sucrose and maltose gels are above the molecular mass 

(Mr) marker 460, which is also the case for the two most intense bands of proteins that ran through 

the Coomassie blue stained gel (intense bands marked with arrows in Figure 1C). Considering this 

proximity, and that α-glucosidases are the two most abundant proteins in the orange colored bands 

(see below), we suspect that the bands indicated by the arrows on the Coomassie blue stained gel 

correspond to SI and MGAM, but additional tests (e.g., Western blots) would be necessary to confirm 

this. Because electrophoretic mobility of native proteins results from size and charge as well as the 

overall bulk or cross-sectional area of the protein, Mr markers do not allow the exact determination 

of the Mr of test proteins [17]. Additionally, the differences in migration over the polyacrylamide gel 

between the weight marker and the band that contains the α-glucosidases might also be due to the 

level of glycosylation of these two proteins [4,18].  

Mass spectrometry results from the excised orange stained bands revealed the presence of 32 

proteins (Table 2; all proteins detected are listed in Supplementary Table S1), which was <5% of 650 

proteins that were identified in crude bbm without electrophoresis (unpublished data). Of the 32 

proteins, 51 ± 2% (S.D.; n = 2 mice) of those were hydrolases of which 75 ± 1% were SI and MGAM (Table 

2). SI and MGAM overlap in their hydrolysis activity for some substrates, while for others they are 

unique. For instance, α-1,4 bonds characteristic of the disaccharide maltose are hydrolyzed by both 

subunits, Nt and Ct, of SI and Nt-MGAM [8,9]. Thus, the orange spot on the gel incubated with sucrose 

accounts for the activity of the α-1, 2 action of Ct-SI (Figure 1B) [8,9]. Alternatively, the band that is 

developed in the gel incubated with maltose accounts for the summed hydrolysis of both enzyme 

complexes, retrieving the total maltase activity for that given sample (Figure 1A). The fact that we do 

not see two bands for both complexes is because we maximized the color reaction to develop all the 

potential glucose formed in the gel. Early in the time course of the color reaction development for 

glucose, we observed the apparent two incipient bands until they merged (not shown). 

Our method description here relied on technical replicates of proteins run on gels (e.g., gels I 

and II) that were derived from bbm of two mice (two biological replicates). We had similar success 
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applying the method to laboratory rats, chickens, and three species of wild birds (n = 2 

individuals/species) [19], so we have become confident in the method’s applicability and replicability. 

The method can identify the activity of α-glucosidases, but we consider that it can be broadly applied 

to any enzyme that releases D-glucose or even other products of breakdown that can be identified in 

gel runs. Furthermore, an indication of the relative ratios of activity can be obtained by comparing 

the relative staining intensities. After identifying the proteins and assessing their function, their 

relative abundance relative to other proteins in the bbm components (Table 2) can be semi-quantified 

using nano LC-MS/MS loading equal amounts of total protein per sample. 
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Table 2. Hydrolases identified by nano-liquid chromatography coupled to mass spectrometry in the slices cut from gels incubated with maltose and sucrose. 

Quantitative value and coverage of enzymes in the analyzed sample was determined using Scaffold software package (version 4.3.2, Proteome Software Inc., 

Portland, OR, USA). The % coverage refers to the percentage of the protein sequence covered by identified peptides. Protein identifications were accepted if they 

could be established at greater than 99.0% probability with a 1% false discovery rate and containing at least 5 identified peptides. 

Enzyme 

Uniprot 

Accesion 

Number 

Molecular 

Mass 

(kDa) 

Maltose Substrate Sucrose Substrate 

Mouse 1 Mouse 2 Mouse 1 Mouse 2 

Quantitative 

Value 

(Normalized 

Total Spectra) 

Coverage 

% 

Quantitative 

Value 

(Normalized 

Total Spectra) 

Coverage 

% 

Quantitative 

Value 

(Normalized 

Total Spectra) 

Coverage 

% 

Quantitative 

Value 

(Normalized 

Total Spectra) 

Coverage 

% 

SI (sucrase-

isomaltase) 
F8VQM5 209 104 23 42 3 100 35 81 6 

MGAM (maltase-

glucoamylase) 
B5THE2 209 56 15 94 6 83 31 38 4 

ANPEP 

(aminopeptidase-

N) 

P97449 110 25 11 42 2 49 39 49 5 

ENPEP (Glutamyl 

Aminopeptidase) 
P16406 108 9 8 - - 12 21 - - 

DPP4 (Dipeptidyl 

peptidase 4) 
P28843 87 3 4 - - 7 16 - - 

MEP1B (Meprin A 

Subunit Beta) 
Q61847 80 3 10 - - 5 12 - - 

All other non-hydrolase proteins 

(details in Supplementary Table S1) 
194  147  210  211  

Hydrolases as % of total proteins 51% 55% 55% 44% 

α-glucosidases as % of total hydrolases 80% 76% 71% 71% 
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Proteins identified by 

nano-liquid chromatography coupled to mass spectrometry in the slices cut from gels incubated with maltose and sucrose. 
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