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Disjoint Logics

Abstract. We will present all the mixed and impure disjoint three-valued
logics based on the Strong Kleene schema. Some, but not all of them, are
(inferentially) empty logics, while one of them is trivial. We will compare
them regarding their relative strength. We will also provide a recipe for
building philosophical interpretations for each of these logics, and show why
the kind of permeability that characterises them is not such a bad feature.
Finally, we will present a three-side sequent system for most of these logics.
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1. Introduction

A logic is usually defined as a language plus a consequence relation. And
what has came to be known as “the Tarskian paradigm” provides a clear
answer to the question of what a consequence relation is. Nevertheless,
the Tarskian paradigm has been challenged in different ways. Here, we
will concentrate on one particular reform of it, that generates what we
call disjoint logics. But to fully understand what it takes for a logic to
be disjoint, it will be convenient to start by defining what “the Tarskian
paradigm” is.

For the sake of simplicity, we will focus on propositional logics. For L
a propositional language and Var a countably infinite set of propositional
variables, we denote by FOR(L) the absolutely free algebra of formulae
of L, whose universe is FOR(L). In what follows, the propositional
language will be fixed to be the set {¬, ∧, ∨}.
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A Tarskian consequence relation over a propositional language L is a
relation � ⊆ ℘(FOR(L)) × FOR(L) obeying the following conditions for
all A ∈ FOR(L) and for all Γ, ∆ ⊆ FOR(L):1

1. Γ � ∆ if there is an A ∈ ∆ such that A ∈ Γ (reflexivity)
2. If Γ � ∆ and Γ ⊆ Γ ′, ∆ ⊆ ∆′, then Γ ′

� ∆′ (monotonicity)
3. If Γ � ∆, A and Γ ′, A � ∆′, then Γ, Γ ′

� ∆, ∆′ (cut)

Additionally, a (Tarskian) consequence relation � is substitution-
invariant whenever if Γ � ∆, and σ is a substitution on FOR(L), then
{σ(A) : A ∈ Γ} � {σ(B) : B ∈ ∆}. A Tarskian logic over a propositional

language L is an ordered pair (FOR(L),�), where � is a substitution-
invariant Tarskian consequence.

Many scholars have argued that the Tarskian conception of logic (i.e.,
that a logic is just a Tarskian logic) is actually quite narrow. For exam-
ple, Avron [1] and Gabbay [15] believe that the condition of monotonicity
should be relaxed; whereas Malinowski [24] and Frankowski [13] argue
for a liberalization of it that allows logics to drop reflexivity and/or cut.
The former are known as non-reflexive logics, while the latter are referred
to as non-transitive proposals.2 But there are many other options in the
menu. There are also logics that give up Weakening, or even Exchange.3

In this paper we will be presenting a variety of, for all we know, new
logics. Most of them will also qualify as “substructural”.4 We will call
them disjoint logics. In a nutshell, what is peculiar of disjoint logics is
that the standard for premises does not share any truth-value with the
standard for conclusions.5 At this point, an obvious question arises: why

1 Though a Tarskian consequence relation is usually understood as single-
conclusioned, as we will be working in a multi-conclusion framework, we prefer this
more general definition  which actually should be more accurately called “Scottian”
than “Tarskian”, due to the multi-conclusion schema.

2 Non-transitive approaches to logical consequence were discussed, previously, in
many works  to which the authors refer in their papers. Some of these are due to
Strawson (as referred in [7, 8, 9, 13, 16, 17, 27, 29, 32, 33, 34, 35]. Non-reflexive logics
are discussed, for example, in [7, 14, 25, 30].

3 Non-monotonic logics are presented in many places. For example, in [4, 18, 21,
23]. Theories without Exchange are more unusual. An example of them can be found
in [3, 19].

4 Below, we will show why most of these logics are non-reflexive, and why some
of them are non-transitive.

5 As we will explain below, a standard is just a set of truth-values. In Section 3
we will explain in detail how these logics work.
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would anyone care about a logic with a disjoint consequence relation?
Here is a quick answer to such a question.6

It is common  and reasonable  to think that, in a valid inference 
or at least in sound ones  premises provide reasons to accept the conclu-
sions. Or, to put it more clearly, that to accept the premises provide rea-
sons for accepting the conclusions. Nevertheless, this way to understand
things does not represent the only kind of epistemic-support scenario
that is faced in everyday  or in philosophical  life.

For example, sometimes the rejection of certain sentences provide
good reasons to accept others. Or the fact that one do not accept nor

reject some set of sentences provide reasons to either accept or reject some
conclusion. These situations cannot be straightforwardly represented
by valid or sound inferences in logics that aim to correspond to truth-
preservation facts, in one way or another. Nevertheless, they can be
represented by valid inferences in other logics. And some of them can
be captured by valid inferences in disjoint logics.7

The structure of this article is as follows. Section 2 is devoted to a
characterization of mixed, impure and disjoint logics, while a detailed
presentation of the so-called strong-Kleene disjoint logics is given in Sec-
tion 3. We show that almost every single one of them makes reflexivity
invalid, and, if certain conditions are met, they also invalidate cut. This
justifies calling them substructural. In Section 4 we provide a philosoph-
ical interpretation for these logics, while in Section 5 we evaluate some
potential objections against this project. In Section 6 we present a sound
and complete proof-theory for many of the strong-Kleene disjoint logics
that have been previously introduced. Finally, in Section 7, we present
some concluding remarks.

6 The details of how disjoint logics can be applied to this task will be defer to
Section 4, after we have have presented the logics we will be exploring.

7 Though not all of these constraints are apt to be recovered by disjoint logics.
For example, sometimes accepting some set of sentences obliged one to either accept or
reject some other set of sentences. This kind of situations would be suitably captured
by a logic that, for reasons that will become obvious later, might be called s–n. But
this is not a disjoint logic.

An anonymous referee has pointed to us that what would be interesting is to
explore a logic that preserves value 1

2
. Intuitively, this logic tells you that if you doubt

some premises, you also have to doubt the conclusion, and this provides a criterion
of rationality for the attitude of doubt. We think that this is a very interesting logic
indeed. Nevertheless, this is not a disjoint logic, but a pure one. Therefore, it falls
outside the scope of this paper.
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2. Mixed, impure and disjoint consequence relations

In [6] Chemlá et al. present the notion of mixed consequence relation.
Below, a standard is a set of truth values. A consequence relation |= (for
a propositional language L) is mixed if and only if there are standards
D+, D− such that for all sets Γ , ∆ we have:8

Γ |= ∆ iff for any valuation v, if for any γ ∈ Γ we have v(γ) ∈ D+,

then there is a δ ∈ ∆ such that v(δ) ∈ D−.

Another way to understand the standards for premises and conclusion
is as specifying which are the values each formula in a sound argument or
inference can adopt. If D+ 6= D−, then the mixed consequence relation
is impure. Finally, if D+ and D− does not have any elements in common,
then we will say that the mixed consequence relation is disjoint (this last
distinction is ours).

For matters of simplicity, we will work with a propositional language
with the usual truth-functional connectives with standard three-valued
strong-Kleene interpretation.

¬

1 0
1
2

1
2

1 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

Moreover, the functions → and ↔ are definable via the usual definitions.
Two of the most well known mixed logics are ST and TS. In the first

we have D+
ST = {1} and D−

ST = {1, 1
2 }, while in the second case we have

D+
TS = {1, 1

2} and D−

TS = {1}. In both of these cases, the S stands for
strict, while the T stands for tolerant. The logic ST is non-transitive, TS
is non-reflexive  and, in fact, empty, at least if the language contains
neither ⊤ nor ⊥ as a 1 and 0 constants, respectively.9 But despite

8 As an anonymous referee has reminded us, this way of understanding a con-
sequence relation can be (and has been) paraphrased as “if each member of Γ is
designated, then some member of ∆ is anti-designated”. Notice that it is not assumed
that the set of anti-designated values is the complement of the designated ones.

9 ST and TS are labelled as substructural because at least one structural feature
of a Tarskian consequence relation is given up by them. As we mentioned, ST aban-
dons cut, while TS drops reflexivity. The logic ST can be portrayed as a p-logic, as
devised by Frankowski in [13] as a means to characterize logical systems where valid
derivations are such that the degree of strength of the conclusions can be smaller
than that of the premises. For an extensive presentation of ST, see also [7, 8, 27].
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being both mixed and impure, they are, in fact, non-disjoint, because
the value 1 belongs to D+

ST and D−

ST, as well as to D+
TS and D−

TS. What
we will explore here are logics that do not share such a feature with ST
and TS.

There are twenty seven different non-empty three-valued logics based
on the strong-Kleene scheme. In the sequel, we will characterize and
provide some interesting results involving them.

3. Disjoint logics

3.1. The non-reflexivity (and non-transitivity) of disjoint logics

Before characterizing each of these logics, let us mention two general facts
about disjoint logics (that does not even depend on the number of truth-
values in the valuations or models used to characterize them): reflexivity
is invalid in every disjoint logic meeting one important constraint that
will be make explicit below, and cut is invalid in a significant subclass
of them.

Fact 3.1. (i) Reflexivity is invalid in any disjoint logic in which D+ 6=
∅ 6= D−.10

Another interesting generalization of Tarskian consequence relations is the notion of
q-consequence relation, due to [24]. TS is the 3-valued q-matrix logics associated to
the 3-element Kleene algebra. TS is discussed by, e.g., Cobreros et al. in [7], and
Chemlá et al. in [6] in the context of the more general discussion of what represents a
“proper” consequence relation between formulae. Moreover, it was also discussed by
Malinowski in [25] as a tool to model empirical inference with the aid of the 3-valued
Kleene algebra, and more recently was stressed by French in [14], in connection with
the paradoxes of self-reference.

10 One could question the claim that the fail of reflexivity does not depend on
the number of truth-values in the valuations or models used to characterize them. In
particular, take a three-valued semantics with truth, falsity, and both truth and falsity
as distinct values, a consequence relation such that if all the premise are both true
and false, then at least one of the conclusions is true, but if we recast the semantics
relationally, then reflexivity holds, since if all premise are related to both true and
false, then at least one is related to true. Thus, whether reflexivity fails depends after
all on the models used to characterize them.

Nevertheless, if we recast the semantics in this way, but we keep our definition
of a disjoint logic as a mixed logic with no truth-values belonging to both D

+ and
D

−, then this is not a disjoint logic after all, because the truth-value true belongs to
both sets. Of course, it is possible to claim that being true and false is a truth-value
different from both true and false. But the best way to make sense of this claim is
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(ii) Cut is invalid in any at least three-valued disjoint logic in which

D+ 6= ∅ 6= D− and there is a value i such that i /∈ D+ ∪ D−.

Proof. For any disjoint logic we have D+ ∩ D− = ∅.
(i) Consider an instance of reflexivity with p. We use a valuation

such that v(p) ∈ D+ but v(p) /∈ D−.
(ii) Consider an instance of cut: p � q, q � r ≫ p � r. Let v be such

that v(p) ∈ D+, v(p) /∈ D−, v(q) ∈ D−, v(q) /∈ D+, v(r) /∈ D+ ∪ D−.

Thus, most disjoint logics we will be talking about are non-reflexive,
and the first six of the list that we will present are non-transitive.

In what follows, we will focus on the inferential consequence relations
of some disjoint logics, and leave aside for the moment every reference to
their metainferential properties  besides those we have already mention,
namely that each of them are non-reflexive, and many of them are non-
transitive.11

3.2. Strong-Kleene disjoint logics

As we have already mentioned, we will be exploring three-valued disjoint
logics. There are twenty of them that are based on the strong-Kleene
scheme. Thus, we can call them strong-Kleene disjoint logics.

In order to improve readability and keep track of which logic is be-
ing discussed, we will rename the standards we will be taking about 
and therefore the logics they determine. We will keep the substructural
terminology, and use s and t for {1} and {1, 1

2 }, respectively. We will
use n for {1

2 } and the sign ø for the empty set ∅. Finally, we will use an
operation x, that provides the complement of x from {s, t, n, ø}. Here is
a list of the new vocabulary introduced: s := {1}, s := {1

2 , 0}, n := {1
2 },

n := {1, 0}, t := {1, 1
2}, t := {0}, ø := ∅, and ø := {1, 1

2 , 0}. Using
these new abbreviations, we will now present a list of all strong-Kleene
disjoint logics. While the first sign stands for the D+ of a given logic,
the second represents its D−:

by characterizing the semantics in a non-relational way. But if you do that, then
reflexivity turns out to be invalid after all. I would like to thank the anonymous
referee for a discussion on this matter.

11 This does not mean that we think that metainferences, or metainferential
properties, are not important, but developing a complete picture of the metainferential
behaviour of these logics deserves a whole independent piece of work.
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(1) sn
(2) ns
(3) tn
(4) nt
(5) st
(6) ts

(7) ss
(8) ss
(9) nn
(10) nn
(11) tt
(12) tt

(13) øø
(14) øø
(15) øt
(16) øn
(17) øs
(18) øs

(19) øn
(20) øt
(21) tø
(22) nø
(23) sø
(24) sø

(25) nø
(26) tø
(27) øø

We will not present or comment on all these logics, but just on a few
of them that either are representative of some subset of the rest of all
strong-Kleene disjoint logics, or are somehow philosophically intriguing.
The first logic we will present is sn. An inference Γ � ∆ is valid in sn
if and only if for any valuation v, if v(γ) = 1 for any γ ∈ Γ , there is a
δ ∈ ∆ such that v(δ) = 1

2 .

The logic sn is not empty (at the inferential level)  i.e., it has at
least one valid inference. For instance, any inference with a classical
contradiction as a premise will be valid  e.g., p ∧ ¬p � q. In fact, the
same happens in any disjoint three-valued logic with s as the standard
for premises.

When given a philosophical interpretation of these logics, we will
concentrate both on sn and ns. Thus, it will be convenient to explicitly
introduce this logic. An inference Γ � ∆ is valid in ns if and only if for
any valuation v, if v(γ) = 1

2 for any γ ∈ Γ , then v(δ) = 1 for some δ ∈ ∆.

If ⊤ or ⊥ belong to the language, then ns is not an empty logic either.
In particular, any inference with ⊥ as a premise will be valid. But in
their absence, the valuation v that gives value 1

2 to any propositional
letter will invalidate any inference (and sentence).

How serious is that? At least, ns’s situation seems not worst than,
for example, TS’s, the well-known logic in the field of substructural so-
lutions to semantic paradoxes. TS is an empty logic, but also a well
established one.

The logic tt is representative of another group of logics. For it any
truth-value either belongs to D+ or D−. An inference Γ � ∆ is valid in
tt if and only if for any valuation v, if v(γ) = 0 for any γ ∈ Γ , there is a
δ ∈ ∆ such that v(δ) ∈ t.

The logic tt is not empty. In fact, every classically valid sentence 
and therefore, also every inference with a classical tautology as one of
its conclusions  is valid in it. Moreover, every inference with a classical
tautology as one of its premises is also valid. In fact, if no 1

2 -operator λ
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is available, a sentence  or an inference with an empty set of premises 
is valid in tt if and only if it is classically valid.

The logic øø is another curious logic. An inference Γ � ∆ is valid in
øø if and only if for any valuation v, if v(γ) ∈ {1, 1

2 , 0} for any γ ∈ Γ ,
there is a δ ∈ ∆ such that v(δ) ∈ ∅.

Obviously, øø is an empty logic  and it remains so no matter what
constants are added to the language. In fact, to say that it is empty
does not sufficiently describe how this logic works. It has the important
feature that that any valuation is a counterexample to any inference. In
this sense, it is unique, and unusually strong.

The logic øs is one of the strongest strong-Kleene logics. In fact, it
is only weaker than øø. An inference Γ � ∆ is valid in øs if and only if
for any valuation v if v(γ) ∈ ø for any γ ∈ Γ , there is a δ ∈ ∆ such that
v(δ) ∈ s.

Every classical contradiction will be valid in øs  and every classical
tautology will be invalid in it. Moreover, every inference without an
empty set of premises will be valid in it.

Our next logic is the last that we will present, and it might look
even stranger than the rest. It is a very special case, indeed. We are
talking about øø. An inference Γ � ∆ is valid in øø if and only if for
any valuation v, if v(γ) ∈ ∅ for any γ ∈ Γ , there is a δ ∈ ∆ such that
v(δ) ∈ ∅.

It might be thought that, as the standard for premises and conclu-
sions is the same, this is not a disjoint logic. And this is rightly so, at
least if we understand disjoint logics as logics such that the standard
for premises is different from the standard for conclusions. Nevertheless,
given an alternative definition of disjoint logics, øø surely qualifies as
such. According to this criterion, a logic is a disjoint if and only if the
intersection of the standards for premises and conclusions is empty. And
this is a feature that øø exhibits. D+ and D− do not have any elements
in common.

Whether or not is convenient to qualify øø as a disjoint logic seems
a terminological question. If this last way of understanding disjoint
logics seems preferable, then it might be interesting to see how this logic
behaves. For the reasons already mentioned, øø is as trivial with respect
to inferences with a non-empty set of premises as any other logic with
the empty set as a standard for premises. Moreover, as no sentence will
satisfy the standard for conclusions, it has no tautologies, though every
inference without an empty set of premises will be valid in it.
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øø

øs øt

ss tt

øt, øn, øt, øs, øn, øø

st ts

sø, sn tø, tn

nn, ns, nt, nø, tø, sø, nø, ss, tt, øø

Figure 1. A Hasse diagram of the lattice of strong-Kleene disjoint logics

The logics that we have presented  and the ones that we have only
mentioned  are all the three-valued disjoint logics based on a Strong
Kleene scheme. What we need to do now is to specify what the relations
and relative strength of these logics are. The next subsection is devoted
to these tasks.

3.3. An order for strong-Kleene disjoint logics

It seems natural to ask how all these disjoint logics relate to each other.
One important way to approach this task is to order them by their
relative inferential strength, i.e., by the inclusion relation between the
different sets of the valid inferences of these logics. To make it easy to
visualize this order, we will present a Hasse diagram of the lattice of these
disjoint logics (see Figure 1)  ordered, as we have said, by inferential
strength.

As the diagram shows, øø is the strongest strong-Kleene disjoint logic,
because it validates every non-empty inference  i.e, every inference with
at least one premise or at least one conclusion.12

12 Nevertheless, it is non-trivial, because the empty inference  i.e., the inference
with an empty set of premises and an empty set of conclusions  is not valid. In fact,
the empty inference is not valid in any mixed logic, pure or impure. An inference
Γ �D+

,D− ∆ is valid in a mixed logic D
+, D

− if and only if for any valuation v, if
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The logics øs and øt are the two remaining strongest. The two of
them validate every inference with a non-empty set of premises  because
no valuation can meet such a standard when applied to formulas (in
this case, premises of an inference). Nevertheless, not every empty-
premise inference is valid in them. While øs validates every empty-
premise inference just in case the conclusions are a set of classically
unsatisfiable sentences, øt makes valid every empty-premise inference
just in case the conclusions form a set of sentences satisfiable by every
classical valuation. So, in particular, every inference with a classical
contradiction will be valid in øs, and every inference with a classical
tautology will be valid in øt.

The logics ss and tt are two of the stronger sublogics of øs and øt,
respectively. ss validates every inference with a set of classically unsat-
isfiable premises, or a set of conclusions unsatisfiable in classical logic.
Thus, every inference with a classical contradiction as a premise, or as
a conclusion, will be valid in the logic. In a parallel way, tt validates
every inference with a set of premises such that no valuation can be a
classical counterexample to every formula in the set. Also, tt makes valid
every inference with a set of conclusions such that no valuation can be
a counterexample of every formula according to classical logic (i.e., such
that no Boolean valuation is a counterexample to every conclusion). So,
every inference with a classical tautology as a premise, or as a conclusion,
will be valid in the logic. Therefore, these two logics are incomparable.13

The logics øt, øn, øt, øs, øn and øø are equivalent, sublogics of both øs
and øt, and incomparable with ss and tt. As they have ø as the standard
for premises, they validate every non-empty premise inference. But no
empty premise inference will be valid in them. The valuation v that gives

for any γ ∈ Γ we have v(γ) ∈ D
+, then there is a δ ∈ ∆ such that v(δ) ∈ D

−. As
the Γ of the empty inference contains no formula, any valuation v will satisfy the
antecedent of the previous conditional. But, as ∆ is also empty, it is not possible for
v to satisfy the consequent. Thus, if a logic validates the empty inference, then it
is not a mixed logic. Notice that not every logic that validates the empty inference
is trivial. Da Ré [10] presents two (single-premise) logics of this kind  and both of
them can be expanded non-trivially with a transparent truth predicate.

13 This does not mean that these conditions exhaust the valid inferences in each
logic. For example, the following schemes involving some form of double negation are
valid in these two logics: A � ¬¬A, ¬¬A � A. And none of them necessarily involve
neither unsatisfiable sets of formulas (in the premises or in the conclusions) nor sets
of formulas (in the premises or in the conclusions) such that no valuation can be a
counterexample to every formula in the set.



Disjoint logics 119

the value 1
2 is a counterexample to all those inferences in øt, øn, øs and

øø, while any Boolean valuation will be a counterexample to them in øn.

The logic st is strictly weaker than ss, but stronger than the rest
of its sublogics. Every counterexample in st is also a counterexample
in ss, but not the other way around. In fact, every inference with a
set of classically unsatisfiable conclusions, and without a set of premises
that are classically unsatisfiable, will be valid in ss, but not in st. Once
again, the valuation that gives the value 1

2 to every formula will be a
counterexample to this inferences. � p ∧ ¬p is a relevant example.

Similarly, the logic ts is strictly weaker than tt, but stronger than
the rest of its sublogics. Every counterexample to an inference in ts
is also a counterexample in tt, but not the other way around. Every
inference with a set of conclusions satisfiable by every classical valuation
or without a set of premises classically unsatisfiable, will be valid in tt,
but not in ts. The valuation that gives the value 1

2 to every formula
witness this fact. � p ∨ ¬p is one example of this kind.

The logics tø and tn are the two logics strictly weaker than tt, but
stronger than the rest of its sublogics. The three logics validate inferences
with a set of premises that is satisfiable by every valuation in classical
logic. Thus, it is satisfiable by every strong-Kleene valuation, and not
just by every Boolean one. Nevertheless, neither tø nor tn validates no
other inference, while, as we have seen, tt does.

The logics sø and sn have regarding st a similar relation than the
ones tø and tn have with respect to tt, as it is easy to see.

Finally, the logics nn, ns, nt, nø, tø, sø, nø, ss, tt and øø are empty;
and so they are sublogics of every other strong-Kleene disjoint logic. The
valuation that gives the value 1

2 to every formula will be a counterexam-
ple to every inference in each one of these logics but nø. Every Boolean
valuation will play a similar role in this logic.

A central task now is to provide a philosophical interpretation for
these logics. That is the goal of the next section.

4. An epistemic reading of three-valued logics

In this section, we will present some of the philosophical interpretations
available for these consequence relations.

It is standard to think that each value of a three-valued logic can
be suitable related to a specific epistemic or metaphysical state. Specifi-
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cally, the value 1 can be related to being true, but also to being certain 
i.e., to the epistemic state of certainty that a specific agent might be in
with respect to a specific proposition  or to the epistemic attitude of
acceptance of that proposition. 1

2 , in turn, can be related to the meta-
physical state of being neither true nor false, or the dialetheic situation
of being both true and false. But it can also be understood as a state
of uncertainty, of withholding belief, or one in which the agent has as
many reasons to accept the proposition as she has to reject it. Finally,
the value 0 is usually related to the metaphysical situation of being false,
but also to the epistemic state of rejection  or the probably different one
of being certain of the falsity of the proposition.14 With these different
ways to understand these traditional three values, it is possible to easily
build philosophical interpretations for all of these logics. In particular, if
we attach these values to the epistemic attitudes usually associated with
them  i.e., as accepting, neither accepting nor rejecting, or as rejecting
a certain (set of) sentence(s)  we will more or less automatically develop
epistemic interpretations for all of these logics.

Take sn, for instance. This logic can be read as qualifying as valid
inferences of neither accepted nor rejected premises from accepted sen-
tences  i.e., inferences such that if every premise is accepted, then at
least one conclusion is neither accepted nor rejected.

Another example: the logic ns can be understand as qualifying as
valid inferences of accepted sentences from neither accepted nor rejected

premises  i.e., inferences such that if every premise is neither accepted
nor rejected, then at least one conclusion is accepted.15

14 These attitutes may or may not be identical to the one of accepting the nega-
tion of the proposition rejected. As this discussion is not central to the point we want
to state here, we will leave it aside for the moment.

15 An anonymous referee has pointed out that this is not a very interesting logic,
because it only tells us that if we doubt a premise, we have to accept that we doubt
it. She points out that, if one has a “doubt” operator in ones language, then some
intuitively valid instances of it include “Jane is at the dentist; therefore, I doubt Jane
is at the dentist”. Nevertheless, if we look at what the theory invalidates, then the
theory might be more informative. For example, it tells us that if we doubt that p,
we should not be certain about whether p holds. We may accept that the normative
relations between what we withhold and what we accept may not be that interest-
ing. Nevertheless, if the logic works well  and, maybe, is supplied with interesting
operators, like “doubt”, then the things that will hold in it will be exactly what
are supposed to. In any case, even if this is not an interesting logic  because the
normative relations between what we withhold and what we accept are not be that
interesting  this does not mean that the rest of these logics are not interesting either.
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Can these logics, interpreted in this way, be applied to a specific
case  to the epistemic situation of some particular person? We believe
they can. And it is not that hard to understand what needs to be done
in these cases  from a technical point of view, at least.

Take, for example, nt. This logic validates the inferences from a set
of sentences that are neither accepted nor rejected, to set of sentences
that contained at least one rejected sentence. Thus, in order to obtain
which sentences must be rejected by a particular agent in some specific
situation, given the set of sentences she neither accepts nor rejects, the
models/valuations must be restricted to the ones that give the value
1
2 to the sentences that are in fact neither accepted nor rejected. The
conclusions of the valid inferences based on sets of sentences that received
the value 1

2 in all the remain models, will be the ones that must be
rejected  i.e., those whose rejection the subject is committed to, given
the set of sentences she neither accepts nor rejects.

Thus, we have philosophical interpretations for all of these logics or
at least for most of them. In particular, we are unsure whether this kind
of interpretation can be extended to mixed logics involving {1, 1

2 , 0} or ø
as a standard for premises or conclusions. In the cases where ø plays the
part of the standard for premises, we get a trivial logic that validates
every inference with a non-empty set of premises. Moreover, it is not
clear what the empty set might represent, as an attitude or a mix of
attitudes. There seems to be a similar problem with logics that have ø
as a standard for conclusions. In some of these cases we get a trivial
logic. What kind of commitment might a trivial logic represent?

Nevertheless, in the case of logics that have the set ø as a standard
for premises, there seems to be a clear philosophical reading of the kind
we have already introduced. These logics validate just the inferences
such that there is at least one conclusion that can be accepted/rejected/
neither accepted or rejected come what may, or a combination of them,
depending on the case. Thus, if our focus is on sentences rather than on
inferences, these logics seem to be useful.

So far, not only have we provided a recipe to build philosophical
interpretations for most of these logics, but we have also offered a good
case for claiming that it is not the case that everything goes  i.e., that
every possible logic will have a substantial philosophical interpretation.
Remember that there seems to be no useful reading of logics that has
the set containing every single value as a standard for conclusions. This
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might be a good case for arguing against taking these systems as ex-
pressing genuine  or real, or at least interesting  logics.

It is worth noticing that this epistemic reading of the truth-values,
in terms of acceptance, rejection, and withholding judgement, is closely
related to well-known philosophical interpretations of mixed-consequence
relations  specifically, to either non-reflexive or non-transitive ones.
Though the sets D+ and D+ are not attached any particular philosoph-
ical interpretation, in Malinowski’s discussion of q-matrices [as can be
seen in 25], they are often taken to represent, respectively, the set of
accepted and rejected elements. Valid inferences, as Malinowski puts
it in [24], should be read like this: if no statement of the conclusion
is accepted, then some of the premises should be rejected. Whereas, in
Frankowski’s discussion of p-matrices they are usually taken to represent,
respectively, the set of values that represents the degree of strength of
the premises and the set of values representing the degree of strength of
the conclusion [as can be seen in 13]. As he understand it, valid inference
of a logic with a p-consequence relation should be read like this: if all
premises are accepted, then some statements of the conclusion are not
rejected. In a line inspired by Malinowski, French in [14] reads valid
inferences (or sequents) as the ones such that if we do not reject every
premise, we should accept some conclusion. Shramko and Wansing [30],
while discussing q-matrices, identifies the truth-values belonging to D+

as representatives of a generalized notion of truth, and the truth-values
belonging to D− as representatives of a generalized notion of falsity. It
is worth keeping in mind that none of these readings of the consequence
relations correspond to a relation that may characterize a disjoint logic 
at least if the things accepted are included in the non-refuted and the
non-rejected ones.

Each one of these readings explains validity in terms of two atti-
tudes: acceptance and rejection. We do the same, but expand the set
of relevant attitudes used to apply or make sense of these consequence
relations, with one more attitude: withholding belief. Moreover, the
authors mentioned in the previous paragraph explain validity in terms
of two kinds of attitudes that can be taken with respect to premises and
conclusions, such that one of them implies the other one. For example,
acceptance is a kind of non-rejection. Nevertheless, the sets of attitudes
that are mentioned in the application of our disjoint logics, are such that
none of them is included in the other one.

These reading of the consequence relations of the disjoint logics we
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have presented can be strengthened if some epistemic bridge principles
in the normativity of logic literature are adopted. Though we prefer to
remain neutral with respect to this important discussion, we will present
some examples of how these interaction could work. As MacFarlane
mentions in his classic paper [22], a bridge principle can have a wide or
narrow scope. They might be presented, respectively, under these two
general forms:

(NS) If Γ � ∆, then if you have the epistemic attitude X with respect
to Γ , then you must have the epistemic attitude X with respect
to ∆

(WS) If Γ � ∆, then either we have the epistemic attitude X with re-
spect to Γ , or we must have the epistemic attitude Y with respect
to ∆.

In (WS), X and Y are mutually exclusive attitudes, like rejection and
acceptance.

If we adopt a disjoint logic, both kind of bridge principles should be
presented under a different form. (NS) should be recast like this:

(NS′) If Γ � ∆, then if you have the epistemic attitude X with respect
to Γ , then you must have the epistemic attitude X′ with respect
to ∆

And the attitudes X and X′ might not be identical.
Similar changes should be made if we choose a wide scope bridge-

principle. Now X and Y in (WS) need not be mutually exclusive atti-
tudes.

As an example, if we adopt the logic sn, these two principles might
look like this:

(NS-sn) If Γ � ∆, then if you have accepted Γ , then you must either

accept or reject ∆
(WS-sn) If Γ � ∆, then either you withhold judgement or reject Γ , or

you neither accept nor reject ∆ [for more about bridge princi-
ples see 12, 20, 28, 31].

Before ending this section, we will like to refer to one further issue.
Though some of the strong-Kleene disjoint logics are empty, this does not
mean that they are all the same. For example, we might still discriminate
between them if suitable new vocabulary is added, or if the valuations are
restricted in such a way that, for example, the particular rejections of an
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agent are represented. And by this we mean that, for example, if we add
a 1

2 constant to the vocabulary, it will not be the case that two former
empty logics will keep on validating the same inferences. Consider, for
example, logics nt and ns. If a nullary constant ⊥ representing the value
0 is added to the language, then � ⊥, for example, will be valid in nt,
but not in ns. But if a nullary constant ⊤ representing the value 1 is
added, then � ⊤ will be valid in ns, but not in nt. Thus, this two empty
logics do not react in the same way when new constants are added to
the language, and therefore cannot be taken as the same logic.

Finally, it is worth pointing out an important feature of strong-Kleene
logics. A transparent truth predicate  plus a suitable mechanism to
achieve self-reference  can be safely added to all of these logics  at
least if there is no problematic logical constant around, such as a consis-
tency/classicallity operator.16 Though we will not say more about this
issue here, this happens because they are defined through Strong Kleene
valuations (or models, or some other way to interpret predicated and
names, as the addition of a truth predicate force us to do).

So far, then, we have provide a way to achieve philosophical inter-

16 As an anonymous referee has pointed out, this is not immediate. First, because
these are propositional, and quantified versions of these logics haven’t been discussed.
Second, because If PA is based on a disjoint logic, the diagonal lemma will likely
fail. And lastly, as modus ponens fails for many of these logics, it would not be
easy to understand transparency in terms neither of the arrow nor of the turnstile.
Nevertheless, it would not be problematic to present first order versions of these logics.
Changes should be made, because we will need to expand the semantics with models.
But notice that all of these logics are defined in terms of the strong-Kleene schema.
The quantifiers, then, might be interpreted in a pretty straightforward way, as infinite
conjunctions and infinite disjunctions. Probably PA is not the safest option as a
mechanism to achieve self-reference, but this is not the option available. Ripley [26]
and French [14], for example, use a metalinguistic function from names to sentences.
Moreover, Barrio et al. [2] adapts this way to achieve self-reference in a first-order
theory to build a truth-theory in a language without quantifiers but with propositional
constants, based on a (paraconsistent) logic of formal inconsistency with a strong 
and, thus, suitable to express revenge sentences  negation. (For more about strong
negations, see, for example, [11].) So it is not necessary to be in a first-order context
to express traditional paradoxical sentences like the Liar. Moreover, worries about a
suitable conditional vanishes once we choose this way to achieve self-reference over
PA’s Diagonal Lemmas. In addition, it is worth noticing that three-valued theories
can represent the Liar sentence through a 1

2
constant. This has the additional virtue

of seeing if the Liar trivializes the theory. But it is easy to see that every non-trivial
strong-Kleene disjoint logic can be expanded with a 1

2
constant without becoming

trivial.
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pretations for most of the three-valued disjoint logics that we have pre-
sented. Nevertheless, there is one major criticism that can be found
in the literature to this kind of approach to logic. The next section is
devoted to it.

5. Permeability (and why it is not such a big problem)

The following objection against disjoint logics can be traced back to
Chemlá et al. [5], and can be summarized like this: all disjoint logics
are permeable. But no permeable theory can be a true logic. Therefore,
disjoint logics are not real or fully-fledged logics. To fully understand it,
we need first to introduce some definitions.

A consequence relation is permeable if and only if it is left-to-right or
right-to-left permeable, in the following sense:

left-to-right permeability: for all Γ, ∆, Σ : Γ, Σ � ∆ ⇒ Γ � Σ, ∆
right-to-left permeability: for all Γ, ∆, Σ : Γ � ∆, Σ ⇒ Γ, Σ � ∆

As they proved, a truth-relation is polarized if and only if it is non-
permeable. Disjoint logics are non-polarized truth-relations. Therefore,
they are permeable.

A mixed truth-relation �D+,D− is polarized if and only if it is T-
polarized and F-polarized, in the following sense:

T-polarization: D+ ∩ D− 6= ∅

F-polarization: V \ (D+ ∪ D−) 6= ∅

More specifically, they proved the following:

Theorem 5.1 (5, Theorem 2.28). A mixed semantics is sound and com-

plete with respect to a non-permeable logic if and only if it is polarized.

So now we can see exactly what is happening here: disjoint logics are
permeable because they are not T-polarized (by definition).17

We do not consider this objection too compelling. In order to un-
derstand why, it is useful to check the main reasons why permeability
should, initially, be avoided. Both of them are captured, respectively, by
the following passage:

If a logic is not permeable, then its consequence relation is neither uni-
versal nor trivial (when negated, either constraint implies non-triviality

17 And some of them are even not F-polarized.
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as per the antecedent and non-universality as per the denied conse-
quent). [5, p. 4]

Before presenting an answer, it will be useful to keep in mind that
when they talk about Universality, they mean that every inference is
valid, and when they refer to Triviality, they mean that no inference is
valid. This is why, as they say, the negation of any of the two permeabil-
ity constraints  i.e., of any of the two conditionals  implies that there
is at least one valid inference  thus denying triviality  and at least one
invalid inference  thus denying universality.

If the only reason to reject permeable logics is to avoid both triviality
and universality, then the scope of the attack is narrower that what it
might initially be supposed to be. Though it is true that there are some
trivial disjoint logics, just as there are universal logics of this kind, many
of the disjoint logics that we have presented are truly informative, i.e.,
neither trivial nor universal. Thus, if this is the only reason to avoid
permeability, these logics show us that there is nothing to worry about.
But, of course, the authors think that there are some other reasons to
reject permeability. One of them is displayed in the following remark:

We may describe a permeable consequence relation as one that would
confuse the role of premises with the role of conclusions, or the reverse.

[5, p. 4]

We think that this objection is kind of exaggerated. Take, for exam-
ple, sn. Though this logic is not left-to-right permeable, it is right-to-left
permeable. Does this means that sn confuses premises with conclusions?
How serious a situation is this?

We think that being right-to-left permeable though not left-to-right
permeable, does not mean that we are dealing with a logic that confuses
the role of premises with the role of conclusions. If that were the case,
then it would be the case, for example, p � q ∧ ¬q if and only if q ∧ ¬q �

p. But while the first one is invalid, the second one is valid. Thus,
it is not true that permeability equals confusion between premises and

conclusions.
This does not mean that being, for example, right-to-left permeable is

not an undesirable feature. But in the particular case of sn, this happens
because this logic has no tautologies whatsoever, and in fact every valid
inference involves a set of classically unsatisfiable set of premises. But
the real question here is whether this is enough to disqualify some system
as a real logic, or something like that. This might well be the case if the
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system confuses premises with conclusions, but, as we have show, this
should not be equal with being permeable. Until some other reasons
were provided, we do not think the dismissal of these logics is justified.

Moreover, the only reason why a logic like nn is permeable, is that
no inference is valid in it. Thus, the antecedents of both permeability
conditions will be false, and, thus, both conditionals will come out true.
But it is a little bit misleading to say that an empty inferential logic,
like nn, messes up the role of premises and conclusions, just because no
inference is valid according to it. If that is the case, then another fairly
well established substructural logic, like TS  which is another empty
logic, if the language of the logic does not contain neither ⊤ nor ⊥ 
must also be disregarded as a true logic. Nevertheless, French [14] has
defend it as a suitable solution to semantic paradoxes (and provide a
compelling bilateralist reading of it). Regarding permeability, both TS
and nn stand and fall together.

As Chemlá et al. [6] define the notion, a logic can be permeable just
because it is right to left permeable, though not left-to-right permeable 
and neither universal nor trivial. sn is a logic like this. Suppose that we
accept the claim of Chemla et al. that permeable logics confuse the role
of premises with the role of conclusions. How bad is this? Is it always
equally bad? Does sn confuse it in the same way as an empty logic like nn
does? There seems to be, at least, a matter of degree, but also a matter of
different types involved  a left-to-right, but not right-to-left permeable
logic seems very different from a a right-to-left, but not left-to-right
permeable logic  something that the criteria given in [5] do not capture.

A third passage might give further reasons to reject permeable logics:

On an inferentialist perspective, however, it is often desirable to single
out two special truth values, True and False, matching propositions
with specific inferential roles. The value False is attached to the prin-
ciple that from a contradictory proposition anything follows, but also
to the principle that if an argument is not valid, then the addition of a
contradiction to the conclusions won’t make it valid. The roles for the
True are dual: a tautology should follow from any premise whatsoever,
but if an argument is not valid, adding it among the premises will not
make it valid either. Using 1 and 0 to represent the True and the False,
those principles correspond to:

(T1) ∀γ, δ : γ |= δ, 1 (T2) ∀γ, δ : γ, 1 |= δ implies γ |= δ
(F1) ∀γ, δ : γ, 0 |= δ (F2) ∀γ, δ : γ |= δ, 0 implies γ |= δ.
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However, none of the semantic properties we have introduced so far for
truth-relations guarantees that three will be truth values playing the
roles of the True and the False.18 [5, pp. 9–10]

The first thing worth saying about this is that truth and falsity are
primarily semantic notions that are not initially defined by their infer-
ential roles. At least, the burden of the proof falls on those who want
to reduce them to proof-theoretic rules. If anything truth and falsity
seem to be more connected with attitudes such as acceptance and rejec-
tion19 than with specific rules (without interpretation in a consequence
relation).

But suppose that it is in fact the case that Truth and Falsity are
indeed accurately represented by principles T1, T2, F1 and F2. Thus,
if a logic can be expanded with constants that satisfy these principles,
they can represent both Truth and Falsity. Well, it is actually the case
that many disjoint logics may be expanded with constants like 1, 0,
despite being permeable and having non-polarized consequence relations.
Nevertheless, it is not easy to associate those constants with Truth and
False, at least not in those logics. Thus, either it is not true that Truth
and Falsity are indeed accurately represented by principles T1, T2, F1
and F2, or it is not true that permeable and non-polarized consequence
relations cannot represent them.

For example, in sn, a constant 1  representing truth, or acceptance 
can be added to the language satisfying T1 and T2, while a constant
1
2  representing neither truth nor falsity or neither acceptance nor re-
jection  can be added to the language. And that constant will satisfy
F1 and F2.

In a similar vein, in nt, a constant 1
2  representing neither truth

nor false, or or neither acceptance nor rejection  can be added to the
language. That constant will satisfy both T1 and T2, while a constant
0  representing false, or rejection  can be added to the language. This
new constant will satisfy F1 and F2.

It is worth noticing that, though the language for these disjoint logics
may include a 1-constant ⊤ and a 0-constant ⊥, there is no guarantee

18 To clarify, what the authors are claiming is that when one adds constants for
the top and bottom elements of the lattice, a permeable logic will not satisfy one of
those four principles, and thus will not adequately capture truth or falsity.

19 Or with the following possible norms of the practice of assertion: accepting
(the truth) and rejecting (the false).
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that T1 and T2 will hold for the former, and F1 and F2 will hold for the
latter. In fact, it is the 1

2 -constant  and not ⊤  that satisfies T1 and
T2 in nt, while in the sn’s case that constant  and not ⊥  is the one
that satisfies principles F1 and F2.

Let’s sum up. We have shown that being left-to-right (or right-to-left)
permeable is not enough to confuse the role of premises and conclusions,
and as many disjoint logics can be expanded with constants satisfying,
respectively, principles T1, T2, F1 and F2, Chemlá and Egré seem to lack
a forceful reason to reject every permeable logic just for being permeable.
Thus, we not only have provide some positive reasons for accepting these
logics, but also reject the available criticisms they are subject to, given
that they are permeable logics.

6. A proof system for disjoint logics

Though this project is about how some new logics  i.e., the strong-
Kleene disjoint logics  can be characterized through semantic means, it
is possible to design proof systems for them. In what follows we will
present a calculus that can be used for the strong-Kleene disjoint logics
that we have introduced. Our target proof theory will be the three-sided
disjunctive sequent system DL (for “disjoint logics”, of course).

We now specify how disjunctive sequents behave.20

A disjunctive sequent Γ | Σ | ∆ is satisfied by a valuation v if and
only if v(γ) = 0 for some γ ∈ Γ , or v(σ) = 1

2 for some σ ∈ Σ, or v(δ) = 1
for some δ ∈ ∆. A sequent is valid if and only if it is satisfied by every
valuation. A valuation is a counterexample to a sequent if the valuation
does not satisfy the sequent.

As we have said, DL can be used as a proof system for our disjoint
logics. To exemplify how this works, we will take a closer look to the
case of ss. ss’s consequence relation is such that an inference from Γ to
∆ is valid if and only if there is no valuation such that every formula
in Γ receives the value 1 and every formula in ∆ also receives the value
1. Thus, there is a strong relation between DL’s valid sequents and ss’s
valid inferences:

Γ |=ss ∆ if and only if Γ, ∆ | Γ, ∆ | ∅ is valid.

20 This system strongly resembles  and is obviously based on  the one Ripley
present in [26] for the truth theories based on ST, TS, LP and K3.
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This fact follows from the definition of ss’s validity and the definition
of validity of a three-side sequent.

The proof system we are about to present includes, as usual, some
axioms and rules. A sequent is provable if and only if it follows from the
axioms by some number (possibly zero) of applications of the rules. As
we are working with sets, the effects of the structural rules of Exchange
and Contraction are built in, and Weakening is built into the axioms.
Still, to make things easy, we will include a Structural Rule of Weakening.
We will have three versions of a three-sided cut rule, and also a Derived
Cut rule (that can be inferred from the three basic rules of cut) that will
be a key part of the Completeness Proof. Id is the only axiom-schema of
DL. Weak, cut1, cut2, cut3 and Derived Cut are structural rules. The
rest of them are DL’s operational rules.

Id
A, Γ | A, Σ | A, ∆

Γ | Σ | ∆
Weak

Γ, Γ ′ | Σ, Σ′ | ∆, ∆′

Γ, A | Σ | ∆ Γ | Σ, A | ∆
Cut 1

Γ | Σ | ∆

Γ | Σ | ∆, A Γ | Σ, A | ∆
Cut 2

Γ | Σ | ∆

Γ, A | Σ | ∆ Γ | Σ | ∆, A
Cut 3

Γ | Σ | ∆

Γ, A | Σ, A | ∆ Γ | Σ, A | ∆, A Γ, A | Σ | ∆, A
Derived Cut

Γ | Σ | ∆

Γ | Σ | ∆, A
L¬

Γ, ¬A | Σ | ∆

Γ | Σ, A | ∆
M¬

Γ | Σ, ¬A | ∆

Γ, A | Σ | ∆
R¬

Γ | Σ | ∆, ¬A

Γ, A, B | Σ | ∆
L∧

Γ, A ∧ B | Σ | ∆

Γ | Σ | ∆, A Γ | Σ | ∆, B
R∧

Γ | Σ | ∆, A ∧ B

Γ | Σ, A | ∆, A Γ | Σ, B | ∆, B Γ | Σ, A, B | ∆
M∧

Γ | Σ A ∧ B | ∆

As ∨ can be defined in terms of the former, we will not specify rules
for it.

The following are some important properties of DL:
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Theorem 6.1 (Soundness). If a sequent Γ | Σ | ∆ is provable in DL,

then it is valid.

Proof. The axioms are valid, and validity is preserved by the rules, as
can be checked without too much trouble.

But the system DL is also complete. In Appendix we prove:

Theorem 6.2 (Completeness). If a sequent Γ | Σ | ∆ is valid, then it is

provable in DL.

7. Conclusion

We have presented all the different mixed and impure disjoint three-
valued metainferential consequence relations based on the strong-Kleene
schema that exist. Most of them are non-reflexive, while some of them
are non-transitive, thus qualifying as substructural. Some, but not all
of them, are (inferentially) empty logics, others are trivial, while even
others are neither. We have compared them regarding their validities,
and also provided a recipe to build philosophical interpretations for every
single one of these logics, and shown why the kind of permeability that
characterized them is not such a bad feature. Finally, we have given a
disjunctive sequent-system for one of these strong-Kleene disjoint logics.

Appendix: The completeness proof

We will use the method of reduction trees,21 that allows us to build for
any given sequent, either a proof of that sequent, or a counterexample
to it. The method also provides of a way of building the eventual coun-
terexample. We will introduce the notions of subsequent and sequent
union, that will be used in the proof:

A sequent S = Γ | Σ | ∆ is a subsequent of a sequent S′ = Γ ′ | Σ′ | ∆′

(written S ⊑ S′) if and only if Γ ⊆ Γ ′, Σ ⊆ Σ′ and ∆ ⊆ ∆′.

A sequent S = Γ | Σ | ∆ is the sequent union of a set of sequents
{Γi | Σi | ∆i}i∈I (written S =

⊔
{Γi | Σi | ∆i}i∈I) iff Γ =

⋃
i∈I Γi,

Σ =
⋃

i∈I Σi and ∆ =
⋃

i∈I ∆i.

21 For similar proofs, see [26].
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The construction starts from a root sequent S0 = Γ0 | Σ0 | ∆0, and
then builds a tree in stages, applying at each stage all the operational
rules that can be applied, plus Derived Cut “in reverse”, i.e. from the
conclusion sequent to the premise(s) sequent(s). For the proof, we use
an enumeration of the formulae. We will reduce, at each stage, all the
formulae in the sequent, starting from the one with the lowest number,
then continuing with the formula with the second lowest number, and
moving on in this way until the formula with the highest number in
the sequent is reduced. In the case where a formula appears in more
than one side of the sequent, we will start by reducing the formula that
appears on the left side and then proceed to the middle and the right
side, respectively. The final step, at each stage n of the reduction process,
will be an application of the Derived Cut rule to the n-formula in the
enumeration. If we apply a multi-premise rule, we will generate more
branches that will need to be reduced. If we apply a single-premise rule,
we just extend the branch with one more leaf. We will only add formulae
at each stage, without erasing any of them. As a result of the process
just described, every branch will be ordered by the subsequent relation.
Any branch that has an axiom as it topmost sequent will be closed. A
branch that is not closed is considered open. This procedure is repeated
until every branch is closed, or until there is an infinite open branch. If
every branch is closed, then the resulting tree itself is a proof of the root
sequent. If there is an infinite open branch Y , we can use it to build a
counterexample to the root sequent. Thus, stage 0 will just be the root
sequent S0. If it is an axiom, the branch is closed. For any stage n + 1,
one of two following things might happen:

1. For all branches in the tree after stage n, if the tip is an axiom,
the branch is closed.

2. For open branches: For each formula A in a sequent position in
each open branch, if A already occurred in that sequent position in that
branch (i.e. A has not been generated during stage n + 1), and A has
not already been reduced during stage n + 1, then reduce A as is shown
below. There are three possible positions in which a formula can appear
in a sequent: either on (i) the left side, or on (ii) the middle, or on (iii)
the right side. We need to consider all these possible cases.
• If A is a propositional letter, then do nothing.
• If A is a negation ¬B, then: if A is in the left/ middle/ right position,

extend the branch by copying its current tip and adding B to the
right/ middle/ left position.
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• If A is a conjunction B∧C, then: (i) if A is in the left position, extend
the branch by copying its current tip and adding both B and C to
the left position. (ii) If A is in the middle position, split the branch
in three: extend the first by copying the current tip and adding B to
both the middle and right positions; extend the second by copying
the current tip and adding C to the middle and right positions; and
extend the third by copying the current tip and adding both B and
C to the middle position. (iii) If A is in the right position, split the
branch in two: extend the first by copying the current tip and adding
B to the right position; and extend the second by copying the current
tip and adding C to the right position.

We will also apply the Derived Cut rule at each step. Consider the
nth formula in the enumeration of formulae and call it A. Now extend
each branch using the Derived Cut rule. For each open branch, if its
tip is Γ | Σ | ∆, split it in three and extend the new branches with the
sequents (Γ, A | Σ, A | ∆), (Γ, A | Σ | ∆, A), and (Γ | Σ, A | ∆, A),
respectively.

Now we need to repeat this procedure until every branch is closed,
or, if that does not happen, until there is an infinite open branch. If
the first scenario is the actual one, then the tree itself is a proof of the
root sequent, because each step will be the result of an application of
a structural or operational rule to the previous steps. If the second
scenario is the actual one, we can use the infinite open branch to build
a counterexample.

If in fact there is an infinite open branch Y , then the Derived Cut
rule will have been used infinitely many times. Thus, every formula will
appear at some point in the branch for the first time, and will remain in
every step afterwards. Now, we first collect all sequents of the infinite
open branch Y into one single sequent Sω = Γω | Σω | ∆ω =

⊔
{S : S is

a sequent of Y }. Notice that, as Derived Cut has been applied infinitely
many times in the construction of the branch, every formula will occur
in exactly two places in Sω.22 Thus, there will be a valuation such that
no formula in the sequent gets the value associated with the place where
it occurs (i.e. 0 if the formula occurs in the left, 1

2 if it occurs in the
middle, 1 if it occurs in the right). Hence, for each formula A in the

22 It cannot occur in the three places, because then there will be some finite stage
n where the formula appears for the first time in the branch in the three sides. But
then that sequent will be an axiom, and therefore the branch will be closed.
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sequent, v will give to A a value different from the ones corresponding
to the sides where A appears in the sequent. But that includes all the
formulae in the initial and finite sequent S0. That valuation, then, will
also be a counterexample to S0. Therefore that valuation will be a
counterexample to the sequent being considered.

Thus, for atomic formulae A (propositional letters), v(A) = 0 or 1
2

or 1, respectively, if and only if A does not appear in Γω or Σω or ∆ω,
respectively. Let us now take A to be any formula whatsoever.

The rules for reducing formulae can be used to show by induction
that, if none of the components of complex formulae receive the value
associated with any place in which they appear in Sω, neither will the
compound. We will not see, due to limitations of space, how this method
works in detail. We will just consider the case of conjunctions B ∧ C as
an example.

We need to consider three possible situations: (i) either the conjunc-
tion appears in both the left and the right sides, or (ii) it appears both
in the left and in the middle sides, or (iii) it appears on the middle
and the right sides. We will just check what happens with case (i), and
leave (ii) and (iii) to the reader. In this case, eventually, B ∧ C will be
reduced from a sequent like Γ, B ∧ C | Σ | ∆, B ∧ C. The reduction of
the conjunction on the left side will demand to copy the current tip, and
also the addition of B and C on the left. But, as B ∧ C appears also in
the right side, this demands to split the branch in two, and to extend
the first by copying the current tip and adding B to the right position,
and also to extend the second by copying the current tip and adding C
also to the right position. Thus, the two new sequents will be:

Γ, B ∧ C, B, C | Σ | ∆, B ∧ C, B
...

Γ, B ∧ C, B, C | Σ | ∆, B ∧ C, C
...

Thus, these are two new branches. The complexity of B and C is less
than the complexity of B ∧ C, hence the inductive hypothesis can be
applied to them. Therefore, B will get the value 1

2 on the valuation
corresponding to the first branch  because the only place where it does
not appear is the middle one  , while C will get the value 1

2 in the
valuation corresponding to the second branch  because, once again, the
only place where it does not appear is the middle one. Therefore, it does
not matter whether C, in the first case, or B, in the second case, gets
the value 1 or 1

2 . In each of these cases, B ∧C will get the value 1
2 . Thus,
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none of these formulae in the branch receives the value associated with
the sides of the sequent in which they appear.

By completing the induction along these lines, we can show that
we can construct a valuation such that no formula receives the value
associated with any place where it appears in Sω. But, as we know, that
includes all the formulae in the initial sequent S0. That valuation, then,
will also be a counterexample to S0, which is what we were looking for.
Thus, for any sequent S, either it has a proof or it has a counterexample.
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