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The theoretical derivation of the relation between moving charges in the plasma and external circuit current was first

established on a firm basis by Sato1 for the case of a discharge with constant applied voltage between bare electrodes.

The generalization to time varying applied voltages was established by Morrow and Sato2, still considering bare elec-

trodes. In the present work we extend the latter derivation to include general devices with arbitrarily arranged linear

dielectric media, and multiple electrodes with time dependent voltages, of interest, for instance, for a Dielectric Barrier

Discharge (DBD). In particular, the present derivation determines a general, practical expression for the reactive term

present in Morrow and Sato formula. Using the expression derived we show how in simple DBD geometries usual

circuit approximations of the plasma discharge can be obtained and its validity justified. Also, we consider the de-

termination of the internal plasma current from the measurement of the external circuit current for a cylindrical DBD

operated with helium at atmospheric pressure. Finally, we apply the theory to a three-electrode device in order to relate

electric measurements to volume integrals on the plasma that were shown to be useful in order to quantify species

production by electron impact.

I. INTRODUCTION

The question of what currents are induced in the external

circuit of a plasma device by the motion of charged particles

in the plasma was satisfactorily answered in the work of Sato1

(see this reference for a discussion of previous approaches). In

that reference, for the case of a DC discharge with bare elec-

trodes, the conservation of energy, together with a clever de-

composition of the electric field into a laplacian and a Poisson-

like component, allowed the determination of the circuit cur-

rent in terms of a volume integral involving the density and

velocity of charged species in the plasma. Later, Morrow and

Sato2 showed how the previous formulation could be extended

to include the case of time varying discharges, still consider-

ing bare electrodes, and also including in the integral the con-

tribution of the diffusion of charged particles.

In the present work we extend the derivations in2 to include

the presence of linear dielectric media, of importance, for in-

stance, for the applications to a Dielectric Barrier Discharge

(DBD). Since some devices that include dielectric media also

use more than two electrodes3, we also consider the presence

of multiple external power sources. Moreover, since a descrip-

tion in terms of charged species densities, velocities and dif-

fusion processes enters the formalism only through their de-

termining the total conduction current density, the derivations

are done directly in terms of this current, and only for com-

parison purposes are charged species explicitly mentioned.

We find that the expression of Morrow and Sato is valid

also when linear dielectric media are included. In addition,

we derive a practical expression for the reactive contribution

in their formula, valid for arbitrary geometries.

a)Electronic mail: minotti@df.uba.ar

We note that the validity of Morrow and Sato’s expression

in the case of devices with linear dielectric media is not an

obvious result, since polarization of the dielectrics contributes

to the energy content and generates polarization currents too.

Also, conduction currents in the plasma lead to electric charge

deposited on the dielectrics, which in turn influence the value

of the charge in the electrodes.

The obtained expression relates circuit currents and volt-

ages to an integral, over the volume of the plasma, of the scalar

product of the conduction current density times the laplacian

electric field. In this way, an immediate important application

of the expression derived is the determination of the expected

circuit current from a numerical simulation of a plasma dis-

charge, since in that case the plasma current density can be

determined.

For alternative applications further elaborations are neces-

sary in order to obtain useful information, so that as an exam-

ple we derive, for the case of DBDs with simple geometries,

the relation between plasma current and measured circuit cur-

rent and voltage, that is usually obtained from circuit models.

In these approximations the plasma is modeled as a parallel

circuit between a variable resistor and a fixed capacitor4,5. In

deriving the plasma current from first principles, the validity

of the approximations are thus clarified. Also, the obtained

expression for a cylindrical DBD is used in an experiment

with helium at atmospheric pressure to show how important

characteristics of the plasma current are thus made apparent.

As a final example the formalism is applied to a particular

three-electrode discharge that combines a DBD with a remote

third electrode, at fixed high voltage, that favors the propa-

gation of streamers across a relatively wide gap. In this case

the formula is useful to estimate the importance of different

regions of the plasma in the production of reactive species.

In section II we derive the general expression of the relation

between plasma and circuit currents, together with the condi-
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Relation between circuit current and plasma current in discharges with dielectric media 2

tions for its application.

The derivation of simplified expressions from the general

relation, valid for DBDs with simple geometries, usually ob-

tained from circuit models of the plasma, is done in section

III, together with an application to an actual experiment.

In section IV the formalism is applied to a three-electrode

device, and elaborated in order to obtain expressions useful

for the determination of active species production by electron

impact.

Finally, some conclusions are made in section V.

II. THEORETICAL DERIVATION

For the electrical discharges in gases as those considered

by Morrow and Sato the contribution of the magnetic field

energy to the energy balance can be neglected. To obtain a

quantitative estimation of the conditions for this to hold, we

consider the device to have a characteristic length L, and op-

erated with power sources of characteristic frequency T−1.

From Ampère-Maxwell equation it is thus readily seen that

if the displacement current contributes significantly to the de-

termination of the magnetic field, the ratio of magnetic energy

to electric energy can be estimated as (ε0 and µ0 are the vac-

uum permittivity and permeability, and c the speed of light in

vacuum)

UB

UE

=
B2

µ0ε0E2
∼

L2

c2T 2
,

so that the well known condition for quasi-stationary regime,

L2 ≪ c2T 2, (1)

is a first one to be satisfied. Note that this condition ensures

the relative smallness of the magnetic energy, in the quasi-

stationary regime, even when the displacement current is im-

portant, as, for instance, in the operation of a capacitive de-

vice.

On the other hand, the magnitude EC of the conservative

component of the electric field can be estimated through the

voltage difference V across the length L as

EC ∼V/L,

while the magnitude ENC of the non-conservative component

can be estimated using Faraday equation as

ENC ∼
L

T
B.

In the quasi-stationary regime, using Ampère-Maxwell

equation, the magnitude of the magnetic field can be related

to the magnitude of the current I flowing into the device as

B ∼ µ0I/L.

This is so even if the displacement current is important, be-

cause in such a case this current and I have similar magni-

tudes. The ratio of non-conservative to conservative compo-

nents of the electric field can thus be estimated as

ENC

EC

∼
µ0I

V

L

T
=

µ0cI

V

L

cT
, (2)

while the ratio of magnetic energy to electric energy, consid-

ering as the magnitude of the electric field that of the conser-

vative component, is

UB

UE

∼
B2

µ0ε0E2
C

∼
µ0I2

ε0V 2
=

(

µ0cI

V

)2

. (3)

Taking into account condition (1), so that L < cT , from re-

lation (2) it is seen that the non-conservative component is

small, relative to the conservative one, if the right-hand side

of relation (3) is small as compared with unity, so that the

only additional condition to (1), in order to be able to neglect

magnetic effects in the description of the discharge is

(

µ0cI

V

)2

≪ 1. (4)

In the SI units used (µ0c)2 ≃ 1.4× 105V2A−2, so that, for

instance, in a typical DBD with I ≃ 10−1 A, V ≃ 1 kV, the

magnetic energy is about three orders of magnitude smaller

than the electric energy.

In this way, when conditions (1) and (4) are satisfied, the

conservation of energy in devices that include multiple pow-

ered electrodes and arbitrarily arranged linear dielectric media

can be written as6

∑
k

ikVk =
∫

j ·EdΩ+
d

dt

1

2

∫

E ·DdΩ

=
∫

j ·EdΩ+
∫

E ·
∂D

∂ t
dΩ. (5)

where ik is the discharge current that flows to the electrode

k, with instantaneous voltage Vk (all voltages are referred to

ground, or zero voltage), j is the conduction current density in

the plasma, and E and D the electric and displacement fields,

respectively. The volume integrals are formally extended to all

space. Taking advantage of the linearity of the equations for

given charge distributions and voltages, the fields can be de-

composed into a Laplace component EL, corresponding to the

electric field generated by the biased electrodes, but without

free electric charge present, and a Poisson component EP, due

to the free charge present, of volume density ρ , and consid-

ering grounded electrodes. These fields thus satisfy the equa-

tions

EL,P =−∇φL,P,

∇ ·DL = 0,

∇ ·DP = ρ,

with the relation

DL,P = Ξ ·EL,P,

where Ξ is the dielectric tensor, which is symmetric: ΞT = Ξ,

with T denoting tensor transposition7. The dielectric tensor

has in general a dependence on the space position, so as to

model any complex arrangement of different dielectrics, in-

cluding gases and vacuum. Use of a general, not necessarily

isotropic, linear medium does not complicate the derivations
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Relation between circuit current and plasma current in discharges with dielectric media 3

to follow, while allowing to extend the range of possible ap-

plications.

The boundary conditions are that the potentials φL,P decay

to zero at infinity, and that at the k electrode, with instanta-

neous voltage Vk, they satisfy

φL|k =Vk,

φP|k = 0.

Expression (5) can thus be split as

∑
k

ikVk =
∫

j ·ELdΩ+
∫

j ·EPdΩ+
∫

EL ·
∂D

∂ t
dΩ

+
∫

EP ·
∂DP

∂ t
dΩ+

∫

EP ·
∂DL

∂ t
dΩ. (6)

We note that in the problem of determining the Poisson part

of the field all boundaries have zero potential, so that no ex-

ternal power is supplied to this component. The conservation

of energy for the Poisson field alone must thus satisfy

∫

j ·EPdΩ+
∫

EP ·
∂DP

∂ t
dΩ = 0. (7)

The proof of (7) can be obtained directly from the funda-

mental equations noting that

∫

EP ·
∂DP

∂ t
dΩ =−

∫

∇φP ·
∂DP

∂ t
dΩ

=−
∫

∇ ·

(

φP

∂DP

∂ t

)

dΩ+
∫

φP

∂

∂ t
∇ ·DPdΩ.

Since φP = 0 on all boundaries, use of Gauss theorem im-

mediately shows that the first integral in the second line is

zero. Using also Gauss law: ∇ ·DP = ρ , and charge conserva-

tion: ∂ρ/∂ t =−∇ · j, one obtains the desired result as

∫

EP ·
∂DP

∂ t
dΩ =

∫

φP

∂

∂ t
∇ ·DPdΩ =

∫

φP

∂ρ

∂ t
dΩ

=−
∫

φP∇ · jdΩ

=−
∫

∇ · (φPj)dΩ+
∫

j ·∇φPdΩ

=−
∫

j ·EPdΩ,

where Gauss theorem and the condition φP = 0 on all bound-

aries were used.

The last integral in (6) is readily seen to be zero too:

∫

EP ·
∂DL

∂ t
dΩ =−

∫

∇φP ·
∂DL

∂ t
dΩ

=−
∫

∇ ·

(

φP

∂DL

∂ t

)

dΩ+
∫

φP

∂

∂ t
(∇ ·DL)dΩ

= 0.

In the last line φP = 0 on all boundaries and Gauss theorem

were again used, together with ∇ ·DL = 0.

Relation (5) thus reduces to

∑
k

ikVk =
∫

j ·ELdΩ+
∫

EL ·
∂D

∂ t
dΩ. (8)

We consider now the last integral in (8)
∫

EL ·
∂D

∂ t
dΩ =

∫

EL ·

(

Ξ ·
∂E

∂ t

)

dΩ

=
∫

(

ΞT ·EL

)

·
∂E

∂ t
dΩ =−

∫

DL ·∇
∂φ

∂ t
dΩ

=−
∫

∇ ·

(

DL

∂φ

∂ t

)

dΩ+
∫

∂φ

∂ t
∇ ·DLdΩ

=−
∫

∂φ

∂ t
DL ·ndS,

where φ = φL+φP. The symmetry of the dielectric tensor was

used in the second line, and also that ∇ ·DL = 0 in the last line.

The integrals in this last line are extended to all boundaries:

formally infinity and the boundary of the electrodes.

The boundaries at infinity do not contribute to the integral

since the involved products of fields and potentials due to lo-

calized charges decay to zero sufficiently rapidly.

In case that the boundary corresponds to that of the k elec-

trode one has DL ·n =−σL
k , with σL

k the local Laplace charge

surface density on the k conductor (that induced by the biasing

of all the electrodes, without free electric charges present out-

side the electrodes). Also, at that boundary, ∂φ/∂ t = dVk/dt.

In this way
∫

EL ·
∂D

∂ t
dΩ = ∑

k

dVk

dt

∫

σL
k dS = ∑

k

dVk

dt
QL

k ,

where QL
k is the total Laplace charge of the electrode k.

The charge QL
k can be determined using the capacitance co-

efficients Ckn, evaluated (or measured) for the device without

plasma present, as

QL
k = ∑

n

CknVn.

One can thus finally write

∑
k

ikVk =
∫

j ·ELdΩ+∑
k,n

CknVn

dVk

dt
. (9)

If just two electrodes are present, with relative voltage V (t),
expression (9) reduces to

i =
1

V

∫

j ·ELdΩ+C
dV

dt
, (10)

where C is the device capacitance. In this way, the result of

Morrow and Sato2 is reobtained if the current density in Eq.

(10) is expressed in terms of the charge carriers densities and

drift velocities:

j = ∑
i

qi (Niwi −Di∇Ni) ,

where qi is the charge of the species i, Ni its number density,

wi the species drift velocity, and Di its diffusion coefficient.

Expression (10) has the practical advantage, over the cor-

responding Eq. (23) in2, of expressing the inductive power

term, the last one in both expressions, in terms of the capac-

itance and time derivative of the voltage. A similar term was

obtained in that reference, but restricted to a particular device

with plane, bare parallel electrodes, and neglecting fringe field

effects.
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Relation between circuit current and plasma current in discharges with dielectric media 4

III. APPLICATION TO SIMPLE DBD GEOMETRIES AND

RELATION TO CIRCUIT MODELS OF THE DISCHARGE

Usual designs of DBD devices have a high degree of sym-

metry, with plane or cylindrical electrodes. In those cases,

if border effects can be neglected, the laplacian field EL has

just one vector component that depends only on the coordinate

corresponding to that component, which we denote generi-

cally as ξ . In this way, one can write the integral in Eq. (10)

as
∫

j ·ELdΩ =
∫

dξ EL (ξ )
∫

S(ξ )
jξ dS

=
∫

dξ EL (ξ ) I (ξ ) , (11)

where EL and jξ are the ξ components of the corresponding

vectors, S (ξ ) is the surface corresponding to a constant ξ in

the gap, and I (ξ ) is the instantaneous current crossing that

surface.

If the charge conservation equation

∂ρ

∂ t
+∇ · j = 0,

is integrated over a given surface S (ξ ), one readily obtains

∂Σ

∂ t
+

∂ I

∂ξ
= 0, (12)

where Σ is given by

Σ(ξ , t) =
∫

S(ξ )
ρdS,

so that Σ(ξ , t)dξ is the electric charge between the surfaces

S (ξ ) and S (ξ +dξ ).
Considering signals with time resolution below the tran-

sit time of ionization fronts and/or streamers across the gap

(which is smaller than about 10ns for millimeter sized gaps8),

charge variation manifests only in very thin layers at the di-

electric surfaces where charge is deposited, so that the current

I is spatially uniform, except in those layers, thus allowing to

approximate Eq. (11) as

∫

j ·ELdΩ = I

∫

EL (ξ )dξ .

Noting further that the laplacian field can be written as the

instantaneous voltage difference V between the electrodes,

times a factor f (ξ ) depending only on the geometry and phys-

ical characteristics of the device, Eq. (10) can be reduced to

i = I

∫

f (ξ )dξ +C
dV

dt
, (13)

where the integration extends to the length of the gap.

As examples we consider the devices shown in Fig (1). The

first device has plane electrodes of area A, each covered with

dielectrics of width d1 and d2, and permittivities ε1 and ε2,

respectively. The gap between the dielectrics has a width dG.

FIG. 1. Plane and cylindrical DBD devices.

Neglecting fringe fields the corresponding capacitance is

C =
A

d1/ε1 +dG/ε0 +d2/ε2
,

with ε0 the vacuum permittivity. The laplacian electric field in

the gap has ξ component

EL =
V

ε0d1/ε1 +dG + ε0d2/ε2
,

so that

∫

f (ξ )dξ =
dG

ε0d1/ε1 +dG + ε0d2/ε2
=

CdG

ε0A
.

One thus obtains the expression of the plasma current as

I =
ε0A

CdG

(

i−C
dV

dt

)

. (14)

The second device has cylindrical electrodes, the inner one

of radius r0 and the outer one of internal radius r3. A dielectric
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Relation between circuit current and plasma current in discharges with dielectric media 5

of permittivity ε1 covers the inner electrode up to radius r1,

and a second dielectric of permittivity ε2 occupies the region

between radius r2 and r3, the gap is in between radius r1 and

r2.

The device capacitance is given by

C =
2πLε0

ε0
ε1

ln
(

r1
r0

)

+ ln
(

r2
r1

)

+ ε0
ε2

ln
(

r3
r2

) ,

where L is the device axial length. The expression of the ξ
(radial) component of EL is

EL =
V/ξ

ε0
ε1

ln
(

r1
r0

)

+ ln
(

r2
r1

)

+ ε0
ε2

ln
(

r3
r2

)

so that

∫

f (ξ )dξ =
ln
(

r2
r1

)

ε0
ε1

ln
(

r1
r0

)

+ ln
(

r2
r1

)

+ ε0
ε2

ln
(

r3
r2

)

=
C

2πLε0
ln

(

r2

r1

)

.

The plasma current can thus be related to the measured volt-

age and circuit current as

I =
2πLε0

C ln(r2/r1)

(

i−C
dV

dt

)

. (15)

Relations (14) and (15) correspond to those usually ob-

tained using circuit models of the plasma4,5. The derivations

shown here thus help to clarify the conditions for the validity

of those expressions.

An interesting point is that the factor multiplying i −
CdV/dt in Eqs. (14) and (15) is larger than one (this factor is

equal to one for the case of bare electrodes.) Polarization cur-

rents in the dielectric media oppose the current in the plasma,

reducing the effect of the latter on the circuit current.

As an example we consider now the application of Eq. (15)

to a cylindrical DBD operated with atmospheric pressure he-

lium. The device used is like the second one shown in Fig.

(1), and represented in side view in Fig. (2). The discharge

is made between two coaxial electrodes covered by dielectric

barriers. The inner electrode consists in an iron rod of 3 mm

diameter covered by a glass capillary tube sealed at the tip,

with an external diameter of 6 mm. The 23 mm long outer

electrode is an aluminum tape attached to an acrylic tube of

1.5 mm thickness and an external diameter of 10 mm.

The central electrode was connected to a high voltage

power source(0−25 kV, 10 kHz) and its voltage V measured

using a high voltage probe (Tektronix P6015A 1000X/3.0

pf/100MHz). The external electrode was either grounded

through a 50 Ω resistor, to measure the discharge current, or

through a 10 nF capacitor to measure the charge Q transported

to the external electrode.

By measuring the charge Q as a function of the applied volt-

age V for a sufficiently low voltage amplitude, in order to

avoid gas breakdown, the device capacitance was measured,

resulting in C = (4.34± 0.02) pF.

FIG. 2. Experimental device.

FIG. 3. Applied voltage (black), circuit current i (green) and corre-

sponding plasma current I (red), for a cylindrical DBD with He as

operating gas. The amplitude of the voltage is about 3 kV. The cir-

cuit current has a reactive component of amplitude about 1 mA, with

peaks of approximately 0.25 mA. The plasma current presents peaks

of about 0.4 mA, above a mean component of similar magnitude that

decays in about 20 µs.

In Fig. (3) we present the measured circuit current i to-

gether with the applied voltage and the plasma current I deter-

mined using Eq.( 15).

As discussed above, the relative factor between plasma and

circuit currents, that in the right-hand side of Eq. (15), is

larger than one, and indicates, for the considered device, that

the plasma current is about 60% larger than the circuit current

minus its purely reactive component.

Also, a slow decay to zero of the plasma current is clearly

seen after the succession of current peaks, a feature that is not

apparent in the circuit current. Moreover, the relative height

between different peaks in the plasma current cannot be di-

rectly appreciated in the circuit current.
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FIG. 4. Schematic of the three-electrode device. V1 and V2 are AC

and DC voltage sources, respectively. Electrodes 1 and 1′ correspond

to the DBD, with electrode 1′ covered with dielectric medium. Elec-

trodes 1 and 2 are bare.

IV. APPLICATION TO A THREE-ELECTRODE DEVICE

We consider now the application to a device designed for

polluted gas remediation that combines a DBD with a third

electrode that favors the development of streamers across a

relatively wide gap3. A schematic of the device is shown in

Fig. (4) including the definition of the currents and voltages

employed.

Eq. (9) applied to this device is written as

i1V1 + i2V2 =
∫

jDBD ·ELdΩ+
∫

jST ·ELdΩ

+(C11V1 +C12V2)
dV1

dt
, (16)

where the plasma density current was explicitly split into the

contribution from the DBD current, jDBD, and that from the

streamers, jST . Also, it was taken into account that the voltage

V2 is constant.

The density currents jDBD and jST amount to currents IDBD

and IST leaving (when they are positive) the bare electrode of

the DBD arrangement, respectively, so that the charge Q1 on

that electrode satisfies

dQ1

dt
=C11

dV1

dt
= i1 − IDBD − IST .

A similar relation can be applied to the bare electrode 2,

which collects the current IST , to give

dQ2

dt
=C12

dV1

dt
= i2 + IST .

From the last two equations one obtains

IDBD = i1 + i2 − (C11 +C12)
dV1

dt
, (17)

IST =C12
dV1

dt
− i2. (18)

As observed in the experiment, and expected from the con-

ditions for streamer propagation9, the current density jST is

distributed in a very localized axial position, in the radial ex-

tension between the bare electrode of the DBD and the elec-

trode 2. In this region the laplacian field at fixed axial po-

sition is an axially symmetric function dependent on radius,

so that, with the same considerations used in the simplified

circuit models, one can write
∫

jST ·ELdΩ = IST

∫ r2

r1

ELdr =−IST (V2 −V1)

=

(

i2 −C12
dV1

dt

)

(V2 −V1) , (19)

where EL denotes the radial component of EL, and Eq. (18)

was used in the second line. This relation, together with Eq.

(16), thus allows us to write
∫

jDBD ·ELdΩ = (i1 + i2)V1 − (C11 +C12)V1
dV1

dt
. (20)

As done in3 integrals as those in the left-hand sides of Eqs.

(19) and (20) can be seen to be proportional (through a co-

efficient dependent on the particular reaction involved) to the

production of species by electron impact. In this way, one can

relate this species production to the electric measurements on

the device, and also to discriminate the role of the different

regions of the discharge in this production.

V. CONCLUSIONS

Extending the derivations by Sato1 and Morrow and Sato2

we have obtained from first principles the relation between in-

ternal plasma current density and circuit current, in electrical

discharges in devices containing linear dielectric media.

The expression derived is particularly useful in numerical

simulations in order to relate the simulated plasma current to

the expected circuit current in an actual experiment.

The relation obtained by Morrow and Sato is shown to be

valid also when dielectrics are included, if the reactive term in

their formula is conveniently expressed in terms of the actual

device capacitance.

More phenomenological approaches, that treat the plasma

in a DBD as a circuit with a variable resistor in parallel with

a fixed capacitor, are also shown to be valid in usual simple

geometries. The conditions are that end effects can be ne-

glected, and that relatively slowly varying electric signals are

considered, that do not resolve the rapid evolution of ioniza-

tion avalanches and/or streamer propagation.

As a direct application to an experiment, the plasma current

in a cylindrical DBD operated in atmospheric pressure helium

was obtained from the circuit signals, showing characteristics

of the plasma current profile that are not apparent in the circuit

current.

Finally, many DBD devices are intended for environmental

and biological applications, in which the production of reac-

tive species is of fundamental importance. As shown in3, the

rate of production of species involving electron impact can be

directly related to the volume integrals that appear in the for-

malism, so that we finally show its application to a particular

three-electrode device designed for polluted gas remediation.
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