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Abstract 12 

In this work we report the synthesis of a series of derivatives of N-benzyl-2-phenylethanamine 13 

which is the framework of norbelladine, the natural common precursor of the Amaryllidaceae 14 

alkaloids. These compounds were assessed in the inhibition of both AChE and BChE which 15 

are the enzymes responsible for the breakdown of acetylcholine and hence they constitute 16 

targets in the palliative treatment of Alzheimer disease. In particular, brominated derivatives 17 

exhibited the lowest IC50 values against AChE. Interestingly, the presence of iodine in one of 18 

the aromatic rings highly increased the inhibition of BChE compared to its analogues, with an 19 

IC50 value similar to that of galantamine, which was the reference compound currently used in 20 

the treatment of AD. A possible mechanism of action for these compounds was determined by 21 

molecular modeling studies using combined techniques of docking and molecular dynamics 22 

simulations. 23 

 24 
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Abbreviations 29 

AD: Alzheimer Disease 30 

ACh: acetylcholine 31 

AChE: Acetylcholinesterase 32 

BChE: Butyrylcholinesterase 33 

IC50: half maximal inhibitory concentration 34 

Gal: Galantamine 35 

MD: Molecular Dynamics36 
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1. Introduction 37 

Alzheimer’s disease (AD) is the most common type of dementia among older adults which is 38 

characterized by chronic neurodegenerative pathology that causes a significant and 39 

progressive functional disability, loss of cognition and altered behavior. Several factors have 40 

been described to play a role in the pathogenesis of AD including a deficit of acetylcholine 41 

(ACh), tau-protein aggregation and extracellular deposits of amyloid plaques. Consequently, 42 

multiple pharmacological targets can be tackled as a palliative treatment for this disease 1,2. 43 

Cholinesterase inhibitors have been developed as therapeutic agents for AD based on the 44 

cholinergic dysfunction hypothesis which states that low levels of ACh lead to cognitive 45 

impairment and dementia 3. The human brain contains two different cholinesterases: 46 

acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) which 47 

are the enzymes responsible for hydrolyzing the neurotransmitter ACh into choline and 48 

acetate. Currently, only three AChE inhibitors have been approved by the FDA and used for 49 

the palliative treatment of mild to moderate symptoms of AD: galantamine, donepezil and 50 

rivastigmine. AChE has gained great relevance as a target for novel drug discovery because 51 

of its dual functionality: ACh hydrolysis and amyloid beta peptide aggregation  4. On the other 52 

hand, BChE has a role in the hydrolysis of ACh but also non-enzymatic functions, such as 53 

being involved in anti-inflammatory pathways and delaying the rate of neurotoxic amyloid-β 54 

fibril formation 5 which foster the study of this enzyme as an important target in AD 55 

pharmacotherapy.  56 

Several studies have been performed in order to discover novel anticholinesterases either as 57 

naturally-occurring compounds or synthetic inhibitors. Plant species and their potentially active 58 

compounds such as terpenes, coumarins, polyphenols and alkaloids have been screened for 59 

anti-AChE activity being the latter the most potent compounds assessed 6. Recently, some 60 

molecules have been designed and synthesized based on different scaffolds such as 61 

chalcone-derivatives 7–9, 1,2,3-triazole-chromenone carboxamides 10, dibenzo-γ-pyrones 11, 62 

benzofurans 12, spirooxindoles 13, tacrine-ferulic acid and quinoline-ferulic acid hybrids as 63 

multi-target-directed ligands 14,15, among many others 2. Most of them have shown moderate to 64 

significant cholinesterase inhibitory activity. Also, the modification of natural compounds by 65 

xenobiotic biotransformation has been a tool to increase their biological activity 16. 66 

Norbelladine is an alkaloid-like amine (protoalkaloid) resulting from the condensation of 3,4-67 

dihydroxybenzaldehyde -protocatechuic aldehyde- (derived from phenylalanine) and tyramine 68 
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(derived from tyrosine). This is the common precursor in the biosynthesis of all Amaryllidaceae 69 

alkaloids which is further regioselectively methylated to give 4’-O-methylnorbelladine that can 70 

undergo three different types of oxidative phenol coupling reactions (para-para’, ortho-para’, 71 

ortho’-para couplings) to give alkaloids such as haemanthamine, lycorine and galantamine. 72 

The latter is primarily isolated from daffodil (Narcissus spp.), snowdrop (Galanthus spp.), and 73 

summer snowflake (Leucojum aestivum) and has been used in the palliative treatment of 74 

Alzheimer’s disease in the early stages 17,18. The potential health effects of the Amaryllidaceae 75 

alkaloids have been widely investigated 19 although there are a limited number of studies of 76 

the bioactivities of their precursors. One recent example is the antioxidant and anti-77 

inflammatory effects of norbelladine via scavenging radicals and inhibiting both COX-1 and 2 78 

enzymes 20.  79 

Halogens in ligand–target complexes play an important role due to steric aspects that 80 

influence their conformation, allow intermolecular interactions that favorably contribute to the 81 

stability and also increase membrane permeability 21. Although less abundant than fluorine-82 

containing drugs which are estimated 20 % of all pharmaceuticals, there are interesting 83 

examples of commercially available organobromine drugs, such as the mucolytic drug 84 

bromhexine, the vasodilator nicergoline, the sedative and hypnotic brotizolam and non-85 

steroidal anti-inflammatory for ophthalmic use bromfenac 22. On the other hand, iodine is 86 

highly used in nuclear medicinal diagnostic techniques and there are a few examples of 87 

iodine-containing organic compounds such as iobenguane, a blocking agent for adrenergic 88 

neurons, I131 iodocholesterol with diagnostic imaging activity, 4'-iodo-4'-deoxydoxorubicin with 89 

antiamyloid activity and 4-iodopropofol, an alkylphenol derivative with anticonvulsant activity 23. 90 

In the present study, inspired by the common precursor of Amaryllidaceae alkaloids, we 91 

synthesized a series of substituted N-benzyl-2-phenylethanamine based on the norbelladine 92 

structure as a scaffold. Most of the compounds bear a halogen atom on one of the aromatic 93 

rings. These compounds were assessed as cholinesterase inhibitors and a plausible 94 

mechanism of action was explained by molecular modeling studies using combined 95 

techniques such as docking calculations and molecular dynamics simulations. As a result, the 96 

possible stereo-electronic requirements for these ligands were also discussed regarding to 97 

their different affinities. 98 

2. Results and discussion 99 

2.1. Synthesis of norbelladine analogues 100 
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N-benzyl-2-phenylethanamine (norbelladine framework) was used as a key unit to design new 101 

analogues with different substitution patterns mainly at the A-ring. 4’-O-methylnorbelladine and 102 

several non-natural analogues were synthesized by condensation of substituted aromatic 103 

aldehydes (1-9) and tyramine (10) or phenylethylamine (11) to form the Schiff base and further 104 

reduced with sodium borohydride. The reductive amination to obtain 4’-O-methylnorbelladine 105 

(12) has been already described in literature with different yields 24–27. Several experiments 106 

were conducted to improve the isolated yields, especially using some Lewis acid catalysts, 107 

bases and dehydrating agent in the reaction mixture as well as different temperatures (data 108 

not shown). The best results were obtained at room temperature in methanol using anhydride 109 

sodium sulfate as a desiccant and triethylamine (TEA) or KOH as a base to increase the 110 

nucleophile strength of the primary amine giving the desired products. Most of the halogenated 111 

norbelladine analogues precipitated during the work-up procedure in the alkaline aqueous 112 

medium at their corresponding isoelectric point and thus were purified by filtration and simple 113 

recrystallization. However, to recover 12 after work-up, it was necessary to perform a partition 114 

with ethyl acetate. As a result, a library of ten synthetic analogues of norbelladine was 115 

obtained in yields ranging from 51-92 % with purity higher than 96 % determined by GC-FID or 116 

GC-MS. The halogenated compounds were synthesized from the corresponding aldehydes as 117 

starting materials.  118 

 119 

 120 

 121 

 122 

 123 

 124 

Fig. 1. Reductive amination for the synthesis of norbelladine analogues 125 

12 R1: H R2: OH     R3: OCH3    R
4: H R5: OH 

13 R1: Cl R2: OH     R3: OCH3    R
4: H R5: OH 

14 R1: Br R2: OH     R3: OCH3    R
4: H R5: OH 

15 R1: I R2: OH     R3: OCH3    R
4: H R5: OH 

16 R1: H R2: OH     R3: OCH3    R
4: Br R5: OH 

17 R1: H R2: H        R3: F R4: H R5: OH 
18 R1: H R2: H        R3: Cl R4: H R5: OH 
19 R1: H R2: H        R3: Br R4: H R5: OH 
20 R1: H R2: H        R3: OH R4: H R5: OH 
21 R1: Br R2: OH     R3: OCH3    R

4: H R5: H 
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2.2. Cholinesterase inhibitory activity 126 

The synthesized compounds were tested for cholinesterase inhibition of both Electrophorus 127 

electricus AChE and equine butyrylcholinesterase BChE according to Ellman’s method 28 with 128 

some modifications 29, and the results were expressed as IC50 values. In order to make the 129 

compounds more water-soluble for the bioassays and avoid the use of co-solvents, the 130 

hydrochloride salts of 12-14 were prepared. No significant differences in the IC50 values for the 131 

inhibition of AChE or BChE were observed for the compounds with free amines compared to 132 

the amine salt (see Table S1). 133 

Compounds 13, 14, 16 and 21 showed the lowest IC50 values for AChE inhibition. The 134 

introduction of halogenated substituents at the A-ring improved the cholinesterase inhibition 135 

compared to the natural compound 4’-O-methylnorbelladine (12) with the exception of iodine. 136 

Other authors have also discussed how the presence of halogens on thiophene chalcones and 137 

pyrazoline derivatives exerted an increase in the cholinesterase inhibition 7,8. Brominated 138 

compounds on 2’ position 14 and 21 were the most effective inhibitors against AChE exhibiting 139 

IC50 values of 16.79 ± 0.51 and 17.14 ± 3.17 µM, respectively, differing by one order of 140 

magnitude higher than the positive control galantamine (IC50 of Gal: 1.2 ± 0.1 µM). These 141 

studies suggest that the brominated derivatives of 12 show higher cholinesterase inhibition 142 

than their analogues, being good candidates to deepen for this bioactivity. On the other hand, 143 

monosubstituted derivatives (17-20) at the A-ring displayed no inhibition activity towards 144 

AChE. However, with the exception of the fluorinated compound 17, they all showed to some 145 

extent some inhibition of BChE, being the brominated analogue the best inhibitor for this 146 

enzyme with an IC50 value of 23.90 ± 6.26.  147 

Interestingly, when the OH group at the B-ring was not present (compound 21) the product 148 

exerted a high inhibition of both cholinesterases with IC50 of 17.14 ± 3.17 for AChE and 13.35 149 

± 3.01 for BChE. This latter value was comparable to Gal (IC50 of 15.88 ± 1.6 µM). Also, 150 

compound 15 showed a high selectivity for BChE inhibition showing an IC50 value of 13.34 ± 151 

2.79 µM.  152 

 153 

154 
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Table 1 155 

Results of the cholinesterase inhibition with norbelladine analogues. 156 

 157 

Compound R
1
 R

2
 R

3
 R

4
 R

5
 IC50 [µM] Selectivity 

to BChE AChE  BChE  

12 H OH OCH3 H OH 69.26±0.52 65.48±4.84 1.05 

13 Cl OH OCH3 H OH 36.18±4.99 62.25±4.64 0.58 

14 Br OH OCH3 H OH 16.79±0.51 49.91±3.01 0.34 

15 I OH OCH3 H OH 173.66±14.78 13.34±2.79 13.01 

16 H OH OCH3 Br OH 34.79±4.52 30.32±1.81 1.15 

17 H H F H OH >200 >200 n.d. 

18 H H Cl H OH >200 159.27±28.44 n.d. 

19 H H Br H OH >200 23.90±6.26 n.d. 

20 H H OH H OH >200 52.98±8.58 n.d. 

21 Br OH OCH3 H H 17.14±3.17 13.35±3.01 1.28 

Gal*  1.21±0.06 15.88±1.65 0.08 

AChE and BChE inhibition is expressed as the mean ± SD (n = 3 experiments). Selectivity to BChE: 158 
IC50 for AChE/IC50 for BChE. *Galantamine (Gal) was used as positive control. n.d.: not determined. 159 

 160 

2.3. Molecular modeling studies 161 

In order to have a better understanding of the experimental results obtained, we carried out a 162 

molecular modeling study for compounds 12-21. It should be noted that calculations were 163 

carried out considering that the amino group is protonated at physiological pH. Results 164 

previously reported by our group regarding to a well-known AChE inhibitor, galantamine, was 165 

also included here for discussion 29,30. This study was performed in three stages. First, we 166 

conducted docking calculations which led us to find the probable modes of interaction between 167 

ligands and the active site of both enzymes. Next, we performed molecular dynamics (MD) 168 

simulations with the aim of analyzing compound behavior over time. In the last stage, using 169 

the trajectories obtained from MD simulations, we calculated free energy of different 170 

complexes and carried out a per-residue analysis in order to identify the AChE and BChE 171 

active site amino acids involved in the intermolecular interactions of the different complexes. 172 

Although biological tests were performed with EeAChE, the crystalline structure of TcAChE 173 
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was used in molecular modeling studies. This is possible since both enzymes are considered 174 

structurally homologous 31. The ligand binding pockets in TcAChE, EeAChE and even AChE in 175 

vertebrates, have almost the same geometry, therefore, they are expected to bind inhibitors in 176 

a very similar manner 31–33. 177 

Considering the experimental results, it should be noticed that most compounds reported here 178 

showed greater inhibitory activity against BChE than that observed against AChE. This might 179 

be due to the difference in the active sites of both enzymes. BChE active site presents a larger 180 

accessible area than the AChE active site since it has a lower number of aromatic residues in 181 

its binding pocket 34. Both enzymes have over 60% of sequence identity and show a similar 182 

response to a number of classical inhibitors since the amino acid sequence at the active site of 183 

both AChE and BChE is well conserved 35. Additionally, the existence of a catalytic triad (Ser, 184 

His and Glu) in the active site is considered important for the catalytic activity of both enzymes 185 

36,37. However, six residues, i.e. Tyr70, Tyr121, Trp279, Phe288, Phe290 and Phe330, with 186 

bulky aromatic side chains present in the AChE active site are substituted by non-aromatic 187 

residues of Asn68, Gln119, Ala277, Val286, Val288 and Ala328 in BChE. This may generate 188 

the appropriate conditions for these compounds to better accommodate in the active site of 189 

BChE. 190 

4’-O-methylnorbelladine (12) and its halogenated derivatives at C2 (13-15) showed AChE 191 

inhibitory activity, being compound 14 one the most active of all analogues studied here. 192 

Figure 2A shows the main interactions stabilizing 14-AChE complex. These interactions 193 

involve the following enzyme residues: Gln69, Trp84, Gly118, Ser122, Gly123, Ser124, 194 

Phe330 and Tyr334. Our simulations suggest that OH at C3 (A-ring) establishes an H-bond 195 

with the side chain of Gln69 and that OMe at C4 interacts with Ser124 backbone (Figure S1). 196 

The interactions with residues Trp84, Gly118, Ser122 and Phe330 are the same to those 197 

previously reported for galantamine 30 (Figure 2B), suggesting that these compounds are 198 

located in the same AChE region. It should be noted that activity increases when H at C2 of 199 

compound 12 is substituted by chlorine and bromine, resulting in compounds 13 and 14, 200 

respectively. It is important to highlight that 14 is about 4 times more active than 12. The 201 

presence of a halogen atom in norbelladine analogues allows intermolecular interactions that 202 

favorably contribute to the stability of the complexes. However, it seems that halogen atoms 203 

also play an important role from the steric point of view; compound 15 with an iodine atom 204 

showed the lowest activity of this series. These results could be related to the AChE active site 205 

size, since compounds with bulky substituents cannot accommodate properly to establish 206 
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favorable interactions compared to the other compounds of the same series (compare 207 

inhibitory effects of compounds 13-15). Figure 3 shows the histogram obtained for compound 208 

15. In this case significant interactions were observed for Asp72, Tyr121 and Trp279, all of 209 

them belonging to the peripheral anionic site or bottleneck region 37. These results suggest 210 

that compound 15 is located out of the AChE active site and establishes a different interaction 211 

pattern in comparison with compounds 13 and 14, which could explain its poor activity.  212 
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 213 

Fig. 2. Histograms of interaction energies partitioned with respect to AChE amino acid sequence when 214 
complexed with compound 14 (A), Gal (B) and compound 17 (C). The X-axis denotes the residue 215 
number of AChE and the Y-axis denotes the interaction energy between the compounds and a specific 216 
residue. Negative values and positive values are favorable or unfavorable to binding, respectively. 217 
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 218 

Fig. 3. Histograms of interaction energies partitioned with respect to AChE amino acid sequence when 219 
complexed with compound 15. The X-axis denotes the residue number of AChE and the Y-axis denotes 220 
the interaction energy between the compounds and a specific residue. Negative values and positive 221 
values are favorable or unfavorable to binding, respectively. 222 
 223 

Regarding 21, one of the most active compounds with an IC50 value of 17.14 ± 3.17 µM, it is 224 

structurally very similar to 14, being their only difference the lack of OH at B-ring. This 225 

suggests that the presence of this substituent in this position is not an important structural 226 

requirement for inhibition activity. 227 

On the other hand, monosubstituted derivatives at the A-ring (17-20) showed IC50 values ≥ 228 

200 µM for AChE, and therefore, they were considered as inactive. Figure 2C shows the 229 

histogram corresponding to 17, as an example of these inactive compounds. It should be 230 

noted that due to the different pattern of substitutions, the important interactions with Gln69 231 

and Ser122 discussed above are missing for this compound.  232 

Regarding BChE, Figure 4A shows the histogram obtained for compound 15. The main 233 

interactions stabilizing the complex are Trp110, Glu225, Phe357, and His466 among others. 234 

Similar results were obtained for the rest of the active compounds. Comparing these results 235 

with those observed for BChE-Gal complex 29 (Figure 4B), it is reasonable to assume that 236 

derivatives 12-21 interact with the same region of the enzyme. In all complexes, the 237 

protonated amino group of ligands is oriented towards the carboxyl group of Glu225, 238 

establishing a salt bridge in most cases (Figure S2). 239 
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 240 

Fig. 4. Histograms of interaction energies partitioned with respect to BChE amino acid sequence when 241 
complexed with compound 15 (A), Gal (B) and compound 17 (C). The X-axis denotes the residue 242 
number of BChE and the Y-axis denotes the interaction energy between the compounds and a specific 243 
residue. Negative values and positive values are favorable or unfavorable to binding, respectively. 244 
 245 
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On the other hand, the inhibitory effect of compounds 13 to 15 increases with the atomic 246 

radius of the halogen in position R1. This might be due to the possibility that the iodine 247 

substituent in 15 establishes a higher number of interactions with neighboring amino acids 248 

than the rest of halogen derivatives tested. Compound 15 with IC50 value lower than 249 

galantamine, establishes strong interactions with Trp110, Glu225 and His466 (Figure 4A). In 250 

this line, the presence of the OH substituent at the B-ring seems to be important for this 251 

compound to show inhibitory activity since an H-bond can be formed with the backbone of 252 

Trp110 (Figure S2). It is important to notice that compound 15 is the most active against BChE 253 

in this series. However, this compound does not display significant inhibitory activity against 254 

AChE. As discussed above, the amino acid sequence in BChE active site allows to 255 

accommodate bulkier ligands if compared to AChE. Figure 5 represents the spatial view of 256 

both cholinesterases active sites when complexed with compound 15. As can be 257 

seen, 15 adopts a different spatial arrangement in each complex. In 15-AChE complex (Figure 258 

5A), the ligand remains close to the surface of the active site interacting with amino acid 259 

residues from the peripheral anionic site and the bottleneck region. In contrast, in the 15-BChE 260 

complex (Figure 5B), the ligand is located deeper in the gorge and can interact with the 261 

catalytic triad and the acyl-binding pocket of the cholinesterase. 262 

A B

 263 

Fig. 5. Active sites of Torpedo californica acetylcholinesterase (AChE) (A) and Equus caballus 264 
butyrylcholinesterase (B) when complexed with compound 15 which is represented in ball and stick and 265 
colored in blue. The gorge of each enzyme is depicted by its molecular surface in semi-transparent 266 
gray. The main amino acid residues from both active sites are also shown. The catalytic triad and 267 
oxyanionic subsite residues are in magenta. The acyl-binding pocket amino acids are in orange. The 268 
anionic subsite is colored in yellow. The peripheral anionic site is represented in cyan. The residues 269 
from the bottle neck region are in green. 270 
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The inactive compound 17 (IC50 > 200 µM) showed a different interaction pattern and 271 

interaction energy values in comparison with 15-BChE and 21-BChE. In Figure 4C, it can be 272 

seen that in 17-BChE interactions with Trp110 and His466 are significantly decreased. The 273 

main interactions stabilizing the 17-BChE complex are those with Met109, Val155, Tyr468 and 274 

Glu471. 275 

An unexpected result was the remarkable inhibitory activity of compound 21 (IC50 = 13.35 ± 276 

3.01 µM) despite the lack of the OH substituent in B-ring. Unlike 14 and 15, in which the OH 277 

group of the phenethyl moiety establishes an H-bond with the backbone of Trp110, 21 adopts 278 

a different conformation that favors the interaction between Ser315 and OH at C3 from A-ring. 279 

Additionally, a better hydrophobic interaction with Trp110 can be observed for this compound 280 

(Figure S3). These results may explain, at least in part, the significant inhibitory activity found 281 

for compound 21. 282 

 283 

3. Conclusions 284 

The synthesis of a series of N-benzyl-2-phenylethanamine derivatives was optimized and 285 

performed by a simple methodology involving a reductive amination affording the products with 286 

moderate to excellent yields. Most of these compounds exerted significant in vitro inhibition of 287 

AChE and BChE. In particular, brominated norbelladine analogues showed the highest 288 

inhibition values, whereas the presence of iodine showed a high selectivity towards BChE with 289 

a strong IC
50

 value comparable to galantamine. Moreover, the lack of hydroxyl group on the B-290 

ring had an influence on the inhibition of BChE showing a high inhibition with similar values for 291 

both enzymes. All these observations can be explained by molecular modeling studies 292 

considering the size and structural features of the active sites of both enzymes. Due to the 293 

presence of different halogens on one of the aromatic rings, these compounds can adopt 294 

different conformations that allow some of them to accommodate very well in the active site by 295 

establishing the necessary interactions to stabilize the molecular complexes. These results 296 

can be very useful for the design and development of new inhibitors possessing similar 297 

structural characteristics. 298 

 299 

 300 
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4. Experimental Section 301 

4.1. General experimental procedures 302 

4.1.1. Chemicals 303 

3-Hydroxy-4-methoxybenzaldehyde (1), 4-fluorobenzaldehyde (6), 4-chlorobenzaldehyde (7), 304 

4-bromobenzaldehyde (8), 4-hydroxybenzaldehyde (9), tyramine (10), phenylethylamine (11) 305 

were purchased from Sigma–Aldrich, Argentina. Aldehydes 2-5 were prepared by 306 

halogenation reactions. Compounds 12-21 were obtained by reductive amination as described 307 

in Section 4.2.3. Their NMR spectra and GC-FID or GC-MS chromatograms are shown in the 308 

Supplementary Material. 309 

4.1.2. Analytical methods 310 

Thin-layer chromatography (TLC) was performed on silica gel 60 F254 plates (Merck) using n-311 

hexane:ethyl acetate mixtures of different polarity for halogenated aldehydes and 312 

diclorometane:methanol:NH4OH (80:15:5) for norbelladine analogues and visualized by UV 313 

irradiation at 254 nm and further sprayed with acidic anisaldehyde solution. The GC-FID and 314 

GC-MS analyses were performed using a Perkin Elmer Clarus 500 and a Thermo Trace 1300 315 

gas chromatograph coupled to an ITQ900 ion trap mass spectrometer (GC/MS-ITQ Thermo 316 

Scientific), respectively. 1H and 13C NMR spectra were recorded using a Bruker AC-200 317 

spectrometer in CDCl3 or D2O at 200 and 50 MHz or Bruker Avance 400 MHz spectrometer at 318 

400 and 100 MHz, respectively. Melting points were determined with Leitz Wetzlar 553174 319 

(1.25 X) apparatus (Germany). 320 

4.2. Synthesis 321 

4.2.1. Synthesis of halogenated aldehydes 322 

2-bromo-3-hydroxy-4-methoxybenzaldehyde (2) 323 

NBS (1.75 g, 9.86 mmol) was dissolved in 60 mL of glacial acetic acid. A solution of 3-324 

hydroxy-4-methoxybenzaldehyde (1) (1.5 g, 9.86 mmol) in 30 mL of glacial acetic acid, was 325 

added dropwise. The reaction mixture was stirred at room temperature for 4 h. After that the 326 

precipitated solid was filtered and washed with glacial acetic acid and then with water.  Finally, 327 

the product was dried under vacuum to obtain 2 as a white solid (1.51 g, 66 % yield). Mp: 200 328 

°C (Mp. Lit. 210 °C 38). 1H NMR (200 MHz, CDCl3) δ 4.01 (s, 3H, CH3), 6.08 (s, 1H, OH), 6.93 329 
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(d, J = 8.6 Hz, 1H, Ar), 7.58 (d, J = 8.6 Hz, 1H, Ar), 10.26 (s, 1H, CHO). 13C NMR (50 MHz, 330 

CDCl3) δ 56.7, 109.4, 113.0, 122.9, 127.3, 143.3, 151.8, 191.1. 331 

6-bromo-3-hydroxy-4-methoxybenzaldehyde (3) 332 

To obtain 3 we followed the methodology described by Hazlet and Brotherton 39 with 333 

modifications. To a solution of 1 (1 g, 6.6 mmol) in 25 mL of chloroform, a solution of bromine 334 

(1.5 g, 9.5 mmol) in 10 mL of chloroform was added dropwise. The mixture was heated at 60 335 

°C by reflux under argon atmosphere for 1 hour. The reaction was stopped in absence of 336 

starting material and evaporated to dryness. The solid was resuspended in ethyl acetate and 337 

washed with sodium thiosulfate solution (10 %) to eliminate the bromine excess. The organic 338 

phase was washed with H2O and the aqueous phase with chloroform. Organic phases were 339 

dried and evaporated and the crude product was purified by chromatography on silica gel (70–340 

230 mesh, Sigma-Aldrich) with dichloromethane to afford a pale brown solid (1.1 g, 73 % 341 

yield). Mp: 118-120 °C (Mp. Lit. 112-114°C. 40). 1H NMR (200 MHz, CDCl3) δ 3.99 (s, 3H, 342 

CH3), 5.63 (s, 1H, OH), 7.06 (s, 1H, Ar), 7.48 (s, 1 H, Ar), 10.18 (s, H, CHO). 13C NMR (100 343 

MHz, CDCl3) δ 56.6, 114.6, 115.1, 118.7, 127.4, 145.4, 151.9, 190.8. 344 

2-chloro-3-hydroxy-4-methoxybenzaldehyde (4) 345 

To a solution of 3-hydroxy-4-methoxybenzaldehyde (1) (1.5 g, 9.86 mmol) in 30 mL of glacial 346 

acetic acid, was added dropwise a solution of NCS (1.97 g, 14.8 mmol) in 60 mL of glacial 347 

acetic acid. The reaction was carried out for 24 h. The precipitated solid formed was filtered 348 

and washed with glacial acetic acid and water to yield 4. The resulting product was a white 349 

solid (582 mg, 48 % yield). Mp: 187-189 °C. 1H NMR (200 MHz, CDCl3) δ 4.01 (s, 3H, CH3), 350 

5.97 (s, 1H, OH), 6.90 (d, 1H, J = 8.6 Hz, Ar), 7.57 (d, 1H, J = 8.6 Hz, Ar), 10.35 (s, 1H, CHO). 351 

13C NMR (50 MHz, CDCl3) δ 56.7, 108.9, 122.2, 123.2, 126.5, 142.3, 152, 189.1. 352 

3-hydroxy-2-iodo-4-methoxybenzaldehyde (5)  353 

The iodination of 3-hydroxy-4-methoxybenzaldehyde was obtained according to literature 41 354 

with modifications. 3-Hydroxy-4-methoxybenzaldehyde (1.5 g, 9.86 mmol) and NaI (1.73 g, 355 

11.53 mmol) was dissolved in EtOH (30 mL). NaClO (16.4 mL, 9.86 mmol) was added 356 

dropwise to the solution. The precipitate formed was filtered and washed with cold water. The 357 

ocher solid was obtained in 46 % yield. Mp: 170-172 °C. 1H NMR (200 MHz, CDCl3-DMSO-d6) 358 

δ 4.00 (s, 3H, CH3), 6.93 (d, 1H, J = 8.5 Hz, Ar), 7.56 (d, 1H, J = 8.5 Hz, Ar), 10.04 (s, 1H, 359 

CHO). 13C NMR (50 MHz, CDCl3) δ 56.7, 88.2, 110.1, 124.0, 128.8, 145.8, 150.8, 194.9.  360 
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 361 

4.2.3. General procedure for the synthesis of N-benzyl-2-phenylethanamines (12-21)  362 

To obtain the norbelladine analogues, we followed the procedure described by Tachy et al. 26 363 

with modifications. Aldehydes 1-9 (2.16 mmol) and amines 10-11 (2.16 mmol) were dissolved 364 

in MeOH (12 mL) and anhydride Na2SO4 and triethylamine (TEA) (400 µL) or KOH (100 mg) 365 

were added. The reaction was stirred overnight under inert atmosphere. After that, the imine 366 

formed was reduced with NaBH4 (2.16 mmol) on ice bath until no starting material was 367 

observed by TLC. The solvent was evaporated and the solid was resuspended in water. The 368 

pH of the aqueous phase was adjusted to the corresponding theoretical isoelectric point of the 369 

products. The precipitated product was filtered and dried under vacuum. The solid was 370 

dissolved in hot ethanol and after cooling, the suspension was filtered. The resulting solid was 371 

dried to yield the desired product. To obtain the corresponding hydrochloride, each compound 372 

was dissolved in absolute EtOH and then HCl was added in equimolar relation with the 373 

product. The reaction was stirred for 3 h and after that, the solvent was evaporated and the 374 

residue washed with acetone. 375 

N-(p-hydroxyphenylethyl)-N-(3-hydroxy-4-methoxy)benzylamine (12) beige solid. 51 % yield. 376 

Mp: 206-208 °C (Mp. Lit. 208° 26). 1H NMR (200 MHz, D2O) as hydrochloride: δ 2.92 (m, 2H, 377 

CH2), 3.25 (m, 2H, CH2), 3.88 (s, 3H, OCH3), 4.11 (s, 2H, CH2), 6.85-7.18 (m, 7H, Ar). 13C 378 

NMR (50 MHz) 30.5, 47.5, 50.2, 55.7, 112.4, 115.6, 116.5, 122.5, 123.2, 128.0, 130.0, 144.9, 379 

148.2, 154.4. 380 

N-(p-hydroxyphenylethyl)-N-(2-chloro-3-hydroxy-4-methoxy)benzylamine (13) Light brown 381 

solid. 66 % yield. Mp: 172 °C. 1H NMR (200 MHz, CDCl3) δ 2.72-2.82 (m, 4H, CH2-CH2), 3.82 382 

(s, 2H, CH2), 3.87 (s, 3H, OCH3), 6.69-6.82 (m, 4H, Ar), 7.00 (d, J = 8.4 Hz, 2H, Ar). 13C NMR 383 

(100 MHz, D2O) as hydrochloride: δ 30.5, 47.9, 48.2, 56.2, 110.3, 115.7, 120.7, 121.0, 123.4, 384 

128.0, 130.1, 142.0, 149.5, 154.6. 385 

N-(p-hydroxyphenylethyl)-N-(2-bromo-3-hydroxy-4-methoxy)benzylamine (14) light brown 386 

solid. 77 % yield. Mp: 185-187 °C. 1H NMR (200 MHz, CDCl3) δ 2.75-2.85 (m, 4H, CH2-CH2), 387 

3.83 (s, 2H, CH2), 3.87 (s, 3H, OCH3), 6.67-6.86 (m, 4H, Ar), 7.02 (d, J = 8.3, 2H, Ar). 13C NMR 388 

(100 MHz, D2O) as hydrochloride: 30.4, 47.8, 50.9, 56.1, 110.7, 111.4, 115.6, 122.4, 123.5, 389 

127.8, 130.0, 143.0, 149.0, 154.4. 390 
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N-(p-hydroxyphenylethyl)-N-(2-iodo-3-hydroxy-4-methoxy)benzylamine (15) Ocher solid 49 % 391 

yield. Mp: 202-205 °C (as hydrochloride). 1H NMR (400 MHz, D2O) as hydrochloride δ 2.93-392 

3.36 (m, 4H, CH2-CH2), 3.87 (s, 2H, CH2), 4.32 (s, 3H, OCH3), 6.84 (d, J = 8.2 Hz, 2H, Ar), 393 

7.02 (s, 2H, Ar), 7.15 (d, J = 8.2 Hz, 2H, Ar). 13C NMR (100 MHz, D2O) δ 30.6, 48.0, 54.9, 394 

56.2, 89.4, 111.7, 115.8, 123.5, 126.0, 127.9, 130.1, 145.8, 147.8, 154.6. 395 

N-(p-hydroxyphenylethyl)-N-(6-bromo-3-hydroxy-4-methoxy)benzylamine (16) Pale yellow 396 

solid. 56 % yield. Mp: 122-125 °C. 1H NMR (200 MHz, CDCl3) δ 2.75- 2.84 (m, 4H, CH2-CH2), 397 

3.75 (s, 2H, CH2), 3.85 (s, 3H, OCH3), 6.73 (d, J = 8.4 Hz, 2H, Ar), 6.88 (s, 1H, Ar), 6.96 (s, 398 

1H, Ar), 7.05 (d, J = 8.4 Hz, 2H, Ar). 13C NMR (100 MHz, CDCl3) δ 35.4, 50.3, 53.1, 56.2, 399 

112.6, 115.0, 115.3, 116.2, 129.8, 132.1, 144.9, 146.1, 153.8.  400 

N-(p-hydroxyphenylethyl)-N-(p-fluor)benzylamine (17) yellow solid. 51 % yield. Mp: 163-165 401 

°C. 1H NMR (400 MHz, D2O) as hydrochloride δ 2.91-3.28 (m, 4H, CH2-CH2), 4.20 (s, 2H, 402 

CH2), 6.87 (d, 2H, Ar), 7.15-7.21 (m, 4H, Ar), 7.42-7.46 (m, 2H, Ar). 13C NMR (200 MHz, D2O) 403 

δ 30.7, 47.9, 50.2, 115.8, 116.0, 116.2, 126.6, 128.2, 130.2, 132.0, 132.1, 154.6, 162.0, 164.4. 404 

N-(p-hydroxyphenylethyl)-N-(p-chloro)benzylamine (18) pale yellow solid. 55 % yield. Mp: 123-405 

126 °C. 1H NMR (400 MHz, D2O) as hydrochloride δ 2.91- 3.28 (m, 4H, CH2-CH2) 4.20 (s, 2H, 406 

CH2), 6.87 (d, J = 8.4 Hz, 2H, Ar), 7.16 (d, J = 8.3, 2H, Ar), 7.39 (d, J = 8.4, 2H, Ar), 7.46 (d, J 407 

= 8.4, 2H, Ar). 13C NMR (100 MHz, CDCl3) δ 30.6, 47.9, 50.1, 115.7, 128.1, 129.1, 129.2, 408 

130.1, 131.3, 135.0, 154.5. 409 

N-(p-hydroxyphenylethyl)-N-(p-bromo)benzylamine (19) white solid. 84 % yield. Mp: 140-143 410 

°C. 1H NMR (200 MHz, CDCl3) δ 2.75-2.84 (m, 4H, CH2-CH2), 3.75 (s, 2H, CH2), 6.73 (d, J = 411 

8.3 Hz, 2H, Ar), 7.04 (d, J = 8.3 Hz, 2H, Ar), 7.15 (d, J = 8.2 Hz, 2H, Ar), 7.42 (d, J = 8.2 Hz, 412 

2H, Ar). 13C NMR (100 MHz, CDCl3) δ 35.2, 50.5, 53.2, 115.6, 121.0, 129.9, 130.1, 131.4, 413 

131.7, 138.8, 154.6. 414 

N-(p-hydroxyphenylethyl)-N-(p-hydroxy)benzylamine (20) white solid. 92 % yield. Mp: 220-222 415 

°C (as hydrochloride). 1H NMR (400 MHz, D2O) as hydrochloride δ 2.87-3.23 (m, 4H, CH2-416 

CH2), 4.11 (s, 2H, CH2), 6.84 (d, J = 8.5 Hz, 2H, Ar), 6.90 (d, J = 8.5, 2H, Ar), 7.13 (d, J = 8.5 417 

Hz, 2H, Ar), 7.28 (d, J = 8.5 Hz, 2H, Ar). 13C NMR (100 MHz, D2O) δ 30.6, 47.6, 50.3, 115.8, 418 

122.3, 128.2, 130.1, 131.6, 154.5, 156.5. 419 

N-(phenylethyl)-N-(2-bromo-3-hydroxy-4-methoxy)benzylamine (21) pale yellow solid. 55 % 420 

yield. Mp: 102-105 °C. 1H NMR (400 MHz, CDCl3) 2.85-2.96 (m, 4H, CH2CH2), 3.89 (s, 3H, 421 
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OCH3), 3.91 (s, 2H, CH2), 6.76 (d, J = 8.3 Hz, 1H, Ar), 6.88 (d, J = 8.3 Hz, 1H, Ar), 7.18-7.30 422 

(m, 5H, Ar). 13C NMR (100 MHz, CDCl3) δ 35.2, 49.2, 52.4, 56.3, 109.4, 110.3, 121.5, 126.4, 423 

128.6, 128.7, 138.9, 143.3, 146.6. 424 

 425 

4.3. Microplate assay for AChE and BChE inhibitory activities 426 

The enzymes AChE from Electrophorus electricus (EeAChE) and BChE from equine serum 427 

(EqBChE) (Sigma-Aldrich) were used. For the AChE and BChE activity assay, 428 

acetylthiocholine iodide and butyrylthiocholine iodide were used as substrates, respectively. 429 

Briefly, 50 µL of AChE or BChE in phosphate-buffered saline (PBS) (8 mM K2HPO4, 2.3 mM 430 

NaH2PO4, 0.15 M NaCl, pH 7.6) and 50 µL of the sample dissolved in the same buffer, were 431 

added to the wells of a microplate. When necessary, the compounds were dissolved in 432 

dimethyl sulfoxide (DMSO) or methanol at a final concentration of 0.02 % and 0.5 %, 433 

respectively The plates were incubated for 30 min at room temperature before the addition of 434 

100 µL of the substrate solution (0.1 M Na2HPO4, 0.5 M DTNB, 0.6 mM ATCI in Millipore 435 

water, pH 7.5). The absorbance was read in a Thermo Scientific Multiskan FC microplate 436 

photometer at 405 nm after 5 min. Enzyme inhibitory activity was calculated as a percentage 437 

compared to an assay using buffer without any inhibitor. The results obtained were analyzed 438 

with the software package Prism (Graph Pad Inc., San Diego, CA, USA). The values were 439 

expressed as half-maximal inhibitory concentration IC50 (µM), and were calculated as means ± 440 

SD of 3 individual determinations. Galantamine (Sigma-Aldrich) was used as a positive 441 

control. 442 

 443 

4.4. Molecular Modeling Studies 444 

3D models of Torpedo californica AChE (TcAChE) (1DX6) 42 and Equus caballus BChE 445 

(EqBChE) (UniProtAC Q9N1N9) available at Protein Data Bank (http://www.rcsb.org) were 446 

used for carring out the molecular modeling studies. Water molecules and ligands were 447 

removed from the structures before performing the docking calculations. Receptors and N-448 

benzyl-2-phenylethanamine derivatives structures were converted from pdb to pdbqt format 449 

using AutoDockTools 1.5.4 43. Gasteiger charges were added for all the compounds and non-450 

polar hydrogen atoms were merged. AutoDockTools 43 was also used to perform further 451 

graphic manipulations and visualizations required. For docking procedures, Autodock version 452 
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4.0 44 was used. The receptor structure was set as rigid and grid dimension were 60 60 60 for 453 

the X, Y and Z axes, respectively, in the catalytic site of TcAChE and EqBChE with a spacing 454 

resolution of 0.375 Å in both cases. All torsions of the ligand were allowed to rotate during 455 

docking. The number of collected poses was 200. Other parameters were set to default 456 

values. The resulting docked conformations were clustered into families based on the rmsd 457 

between the coordinates of the ligands and were ranked regarding to the binding free energy 458 

of complexes. The structure with lower binding free energy from the cluster with the largest 459 

number of members was chosen as the optimum docking conformation and was used in 460 

subsequent simulations. 461 

MD simulations for all complexes selected from docking procedures were performed using the 462 

Amber16 software package 45. Antechamber software 46 was used to generate their 463 

parameters with FF99SB 47 and GAFF 48 force fields. The complex geometries from docking 464 

were soaked in truncated octahedral periodic boxes of explicit water using the TIP3P model 49 465 

with a margin of 10.0 Å in each direction from the solute. Na+ or Cl- ions were placed by Leap 466 

to neutralize the negative and positive charges of AChE and BChE complexes, respectively. 467 

The energy of each system was then minimized with sander module using a steepest-descent 468 

algorithm for 1000 steps. There upon the complexes were equilibrated during 500 ps at 469 

constant volume. The SHAKE algorithm 50 was applied allowing for an integration time step of 470 

2 fs. The systems were heated from 0 to 300 K using Langevin thermostat 51 in order to control 471 

temperature, collision frequency = 1.0 ps-1. Next, three MD simulations were conducted for 472 

each complex at 298 K target temperature. All production was performed under NVT 473 

conditions. The particle mesh Ewald (PME) method 52 was applied using a grid spacing of 1.2 474 

Å, a spline interpolation order of 4, and a real space direct sum cutoff of 8.0 Å. Simulation time 475 

was set to 20 ns, the time step was set to 2.0 fs and coordinates were saved for analysis every 476 

10 ps. Post MD analysis was performed with the program PTRAJ 53. A per-residue interaction 477 

energy decomposition analysis using mm_pbsa program was carried out in order to determine 478 

the residues of AChE and BChE that interact with each ligand. For mm_pbsa methodology 54, 479 

snapshots from the corresponding last 1000 ps of MD trajectories were considered. The 480 

explicit water molecules and counter ions were removed from the snapshots. 481 
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