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Abstract: Burn severity, which can be reliably estimated by validated spectral indices, is a key
element for understanding ecosystem dynamics and informing management strategies. However,
in North Patagonian forests, where wildfires are a major disturbance agent, studies aimed at the
field validation of spectral indices of burn severity are scarce. The aim of this work was to develop
a field validated methodology for burn-severity mapping by studying two large fires that burned
in the summer of 2013–2014 in forests of Araucaria araucana and other tree species. We explored the
relation between widely used spectral indices and a field burn-severity index, and we evaluated
index performance by examining index sensitivity in discriminating burn-severity classes in different
vegetation types. For those indices that proved to be suitable, we adjusted the class thresholds and
constructed confusion matrices to assess their accuracy. Burn severity maps of the studied fires
were generated using the two most accurate methods and were compared to evaluate their level of
agreement. Our results confirm that reliable burn severity estimates can be derived from spectral
indices for these forests. Two severity indices, the delta normalized burn ratio (dNBR) and delta
normalized difference vegetation index (dNDVI), were highly related to the fire-induced changes
observed in the field, but the strength of these associations varied across the five different vegetation
types defined by tree heights and tree and tall shrub species regeneration strategies. The thresholds
proposed in this study for these indices generated classifications with global accuracies of 82% and
Kappa indices of 70%. Both the dNBR and dNDVI classification approaches were more accurate in
detecting high severity, but to a lesser degree for detecting low severity burns. Moderate severity was
poorly classified, with producer and user errors reaching 50%. These constraints, along with detected
differences in separability, need to be considered when interpreting burn severity maps generated
using these methods.

Keywords: wildfire; Araucaria araucana; Landsat 8 OLI; normalized burn ratio; normalized difference
vegetation index; char soil index; mid-infrared burned index; classification thresholds

1. Introduction

Burn severity, defined as the magnitude of ecological change associated with a wildfire [1], is a
key element for understanding ecosystem dynamics as it influences processes that shape community
structure and composition, nutrient availability, and wildlife habitat [2–4]. At broader scales, the
spatial distribution of fire effects can determine species replacement and alter landscape dynamics [5,6].
Consequently, the assessment of fire effects is essential for understanding ecosystem resilience and
designing management strategies.
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Remote sensing allows for the spatial description of burn severity while overcoming cost and
logistic limitations of extensive field surveys [7], and numerous mapping methodologies have been
proposed and tested (see review by Meng and Zhao [8]). These are based on changes in the
spectral signature of fire-affected surfaces, mainly associated with moisture and chlorophyll content
of vegetation: red and near-infrared (NIR) reflectance decreases and short-wave-infrared (SWIR)
reflectance increases [9]. Several indices combining these bands have been tested for burn severity
mapping including the normalized difference vegetation index (NDVI) [10], the normalized burn
ratio (NBR) [11], the mid-infrared burned index (MIRBI) [12], and the char soil index (CSI) [13].
As fire effects are dependent on pre-existing vegetation, bi-temporal approaches use the difference
between pre- and post-fire indices; however, this requires precautions related to imagery selection to
minimize the differences in phenology, solar angle, geometric correction, and sensor calibration [7].
Uni-temporal analyses, based only on post-fire observations, are less affected by these issues but have
problems in discriminating burned areas from other spectrally similar areas [14]. Several studies
have demonstrated high correlations between field-based reference observations of burn severity and
post-fire and differenced versions of spectral indices [15–17]. Other protocols use a multitemporal
approach to improve the reference data (e.g., the multitemporal dNBRMT [18] that relies on time series
to select reference pixels) or avoid limited image availability due to quality issues (e.g., the relativized
burn ratio (RBR) [19], which uses compositing techniques to obtain pre- and post-fire data).

The sensitivity of these methods varies across different vegetation types [20,21] so they need to be
field validated to ensure that reliable information is generated. The validation should compare the
spectral index to the equivalent surface process or property [1]. Remotely sensed burn severity has
proven to be reliable in forests, savannahs, shrublands, and grasslands of different regions [13,22,23].
Some studies have also explored the variation in the sensitivity of indices for detecting changes in
different vegetation groups within the same region and have proposed group-specific parameters
for burn severity estimation [24–26]; grouping criteria have often considered structure, composition,
and/or regeneration processes (e.g., contrasting resprouting species and species regenerating mainly
from seed). However, field validation still needs to be conducted in many regions with complex
vegetation mosaics including North Patagonia.

Fire is a major factor shaping landscapes in North Patagonia and fire-induced vegetation dynamics
have been described for the most widespread community types ranging from closed-canopy tall
forests of Nothofagus species (either evergreen or deciduous species), dense tall shrublands dominated
by resprouting woody species <12 m tall, to grassy open woodlands of the conifer Austrocedrus
chilensis [27,28]. Regeneration strategies (e.g., obligate seeding tall trees versus resprouting shrubs)
and community flammability have been associated with positive fire feedbacks that maintain a
mosaic of pyrophobic forests and pyrophytic shrublands over much of the region [29–31]. While
forests dominated by fire-sensitive obligate seeders are vulnerable to fire-induced conversion to
shrublands, some forests in North Patagonia are dominated by Araucaria araucana, a thick-barked
fire-resistant species also capable of resprouting following fire [32–34]. Thus, the general model of
tall forest conversion to more flammable shrub-dominated vegetation types in northern Patagonia
needs to be examined for vegetation types characterized by A. araucana. In addition, fire activity in
Araucaria-dominated forests has been shown to be sensitive to both interannual climatic variation
and to variability in the frequency of human-set ignitions [35]. Projected shifts in fire regimes caused
by climate and land cover changes raise concerns regarding forest resilience in relation to probable
increases in the frequency, extent, and severity of fires in North Patagonia [36–38] for which improved
methods of assessing fire effects related to burn severity are essential.

Araucaria araucana-dominated forests are characterized by a mixed severity fire regime including
both high and low severity burns [34,39]. Burn severity varies spatially over relatively short distances,
leading to a complex mosaic of differently structured vegetation patches across the landscape. Mixed
forests of A. araucana and Nothofagus pumilio or N. antarctica are typically controlled by moderate-
to high-severity fires that originate from stands with scattered surviving A. araucana surrounded by
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small multi-aged groups of A. araucana and a single post-fire cohort of Nothofagus spp. [34]. Post-fire
establishment of the obligate seeder N. pumilio decreases under conditions of higher severity [40]; if
the accompanying species is N. antarctica, a post-fire cohort is rapidly created by vigorous resprouts
that reach 1 m in height within three years [39]. In terms of the understory, higher severity induces
decreases in richness and abundance and changes in composition, with exotic species being more
abundant in situations of low severity [41]. Regeneration in burned areas is mainly controlled by burn
severity and basal area, with influences of topography and biotic interactions, but fire refugia also
play a role as seed sources for post-fire dynamics in the longer term [42]. As an important driver
of the dynamics of these forests, burn severity is generally assessed in the ecological studies of fire
events [43–45]. However, field-validation of burn severity mapping methodologies for Patagonian
forests is scarce [46]. In the case of Araucaria-dominated forests, the relative version of dNBR (RdNBR)
was tested using reference field data gathered 10 years after a fire in Chile [42], but no analogous work
is available for the Argentinian forests that are under drier climatic conditions.

The aim of this work was to develop field-validated burn severity maps of two recent (2013–2014)
wildfires that affected a complex mosaic of A. araucana-dominated vegetation types in North Patagonia
in order to propose a replicable mapping methodology for the region. We address the following
questions:

1. How do burn-severity estimators derived from satellite images relate to field-based measurements
of fire impact in A. araucana vegetation types defined by stand structure and species composition?

2. What are the classification thresholds that best discriminate severity classes across the range of A.
araucana vegetation types?

3. How well do fire-severity maps that are based on the different best performing spectral
indices agree?

First, we tested the association between field measurements of burn severity (four years following
the fire events) and widely used indices based on remotely-sensed data and conducted a sensitivity
analysis to select the best estimators of burn severity across a range of vegetation types. Then,
we adjusted the class thresholds for each selected index and assessed their accuracy, contrasting it
against other thresholds proposed in previous publications. Finally, we generated burn severity maps
for the two studied wildfire events that affected A. araucana forests by applying the most accurate
methodologies and evaluated the agreement between them.

2. Materials and Methods

2.1. Study Area

North Patagonian forests grow on the hills and valleys of the Andes in Chile and Argentina,
within a steep moisture gradient that decreases from 4000 mm annual precipitation in the west to 500
mm on the eastern side [32,47]. The precipitation is mostly concentrated between May and September
and occurs both as rain and snowfall; summer is the dry season. Mean monthly temperatures range
from 4 ◦C to 15 ◦C, and maximum values reach up to 35 ◦C in summer. These conditions favor the
occurrence of wildfires in summer, which can be more extreme during drought periods. Electric storms
are the main natural cause of ignition, but currently, most fires are human-ignited [35,48].

These forests present numerous endemics and are mainly dominated by species of the genus
Nothofagus [32,49]. In Argentina, large portions of Patagonian forests are protected under the National
Parks Administration. Most of the tree dominant species are relatively sensitive to fire because of
their thin to moderately thick bark. Among them, the more fire-sensitive tree species are obligate
seeders, whereas the fire-resistant trees and shrubs resprout after fire [50]. All of these species are
shade-intolerant and present a regeneration mode that is linked to disturbances. The structure of these
forests varies from tall pure or mixed-species stands to <12 m tall stands of multi-stemmed shrubs and
small trees including two-tiered stands. Wildfires are a widespread disturbance agent, due partially to
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the fire-promoting features of some species of the tree canopy and the understory. Consequently, this
landscape has been historically shaped by fires, and the mosaic of vegetation types largely reflects the
extent and severity of the past events [32,50].

This study focused on two large wildfires that burned between December 2013 and January 2014,
near Lakes Ñorquinco and Rucachoroy, in the northernmost area of the Argentinian Patagonian forests
(from 39◦06′S to 39◦13′S and from 71◦05′W to 71◦27′W; Figure 1). The Ñorquinco fire burned an area
of 1626 ha and the Rucachoroy fire extended over 1336 ha, mainly on the valley bottoms and moderate
to very steep hillsides with a northern- and southern-aspect, respectively. Both events occurred in
summer on days with strong westerly winds within a period of extreme drought, which resulted in
widespread intense fires.
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Figure 1. Location of study area, footprint of Landsat 8 OLI images (cyan squares), perimeters of burned
areas in Ñorquinco and Rucachoroy (red and purple polygons), and 111 burn-severity validation plots
(black dots).

2.2. Remote Sensing Data

We used Landsat 8 OLI images downloaded from the USGS repository. As both fires occurred in
nearby areas, the same set of images was used in the assessment of both events (Path 232, Row 87;
Figure 1). Images with low cloud cover were selected from the Level 1 Landsat Collection, which
includes terrain correction, corresponding to the end of the summers that preceded (7 April) and
followed the fires up until the year of field survey (23 March 2014; 26 March 2015; 28 March 2016;
15 March 2017; 2 March 2018; Table 1). In this way, the first post-fire image corresponds to the end
of the growing season when the fires occurred, minimizing the effect of early recovery or invasion,
and images of the following years might reflect either of these processes and/or delayed mortality.
The selection of close-to-anniversary images allows the comparison of pre- and post-fire images with
no concern about the phenology and solar angle effects. All image processing was conducted in QGIS
2.18.20 [51].

Images were converted to surface reflectance with the semi-automatic classification plugin, using
dark-object subtraction. Red, near-infrared (NIR), and short-wave infrared (SWIR1 and SWIR2) bands
were used to generate indices that are commonly used for burn severity estimation: normalized burn
ratio (NBR) [11], normalized difference vegetation index (NDVI) [10], mid-infrared burned index [12]
and the char soil index (CSI) [13]. The differenced version of the indices (dNDVI, dNBR, dMIRBI,
dCSI) were also included in this work as they measure a magnitude of change, which is closer to
the definition of burn severity. These indices have been widely applied in burn severity mapping,
with different accuracies in contrasting vegetation types [26,52,53]. To compensate for the effect of the
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misalignment between the plot and grid centers, index values associated with each mCBI plot were
sampled through bilinear interpolation.

Table 1. Field and remote sensing data: identification and date of wildfires, date of field survey, number
of plots, and capture dates of the Landsat 8 OLI images.

Wildfires Field Survey Landsat 8 OLI images

ID Date No. of Plots Date Path–Row Pre-Fire Post-Fire

Ñorquinco 29/12/13 to
20/01/14

55 20/02/18 to
02/03/18 232–87 07/04/13 23/03/14; 26/03/15; 28/03/16;

15/03/17; 02/03/18Rucachoroy 56

2.3. Field-Based Reference Burn Severity Data

Field metrics of burn severity were collected between February and March 2018 in accessible
areas of the Ñorquinco and Rucachoroy fires. Prior to the fieldwork, preliminary severity maps were
developed using reference dNBR thresholds [11], and were used to identify homogeneous patches.
Uniformity is important due to the offset between the circular plot and grid cell centers. As these points
are rarely aligned, surveyed information usually combines data registered in more than one pixel.
Therefore, this precaution in plot location improves the relationship between the field and remotely
sensed data. One hundred and eleven 15 m radius plots were distributed in areas of low, moderate, and
high severity across all vegetation types. The number of plots was determined following Chuvieco [54]
for the error estimation of classified images with a 95% probability and maximum allowed error of 5%.

Extended assessment, that is sampling the year following the fire, is expected to enable accounting
for delayed mortality or survival of vegetation. Due to the timing of the fieldwork (four years after the
fires), this analysis constitutes a long-term assessment. One of the dominant species of these forests
(A. araucana) is documented to resprout from epicormic and protected terminal buds following fire
damage, but many sprouts dry in the following years and only some individuals continue regenerating
the crown [39,55]. Consequently, gathering field data a few years after fire events (in this case, in the
fourth growing season after the events) should allow for a better characterization of fire impact on
these forests. However, the long time lapse from burning to field sampling impedes the evaluation of
fire effects on the components of vegetation that recover more quickly (i.e., herbs and low shrubs),
limiting the direct application of indices designed for more immediate surveys.

We based our field protocol on the composite burn index (CBI) [11]. In the summer of 2016–2017,
we conducted a preliminary assessment where we surveyed 20 plots distributed along the severity
gradient and the different vegetation types affected in both fires. Based on this information, we
developed a modified CBI index (mCBI) that better fit the specific conditions of this study (Table 2). The
modifications included the exclusion of the fast recovering components (herbs and low shrubs) and the
elimination of variables that required knowledge of some attributes of the pre-burn vegetation in the
plots (e.g., pre-burn presence of small herbs and shrubs and standing dead trees), as a consequence of
the lack of pre-fire data and the high structural variability of these forests. Consequently, low severity
was characterized by high proportions of green foliage, low char height on trunks, and unburned
litter and woody debris; high severity was defined by the opposite conditions; and moderate severity
implied an intermediate situation (Figure 2). The proportion of dead fire-killed trees was recorded in
every plot.
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Figure 2. Photographs of burned Araucaria araucana forests showing a gradient of fire damage, four
years after fire. (a) Low severity, with intact crowns and low char height on trunks, and with both dead
and resprouting shoots of the bamboo Chusquea culeou; (b) moderate severity, with an intermediate
proportion of dead trees, partially burned crowns and trunks and no remains of living pre-fire tall
shrubs; and (c) high severity, with almost no surviving trees, completely charred trunks and no remains
of living pre-fire shrubs.

Table 2. Assessment table of the modified composite burn index (mCBI): ranking scale for each factor
of the four strata (substrates, tall shrubs, intermediate trees, big trees) corresponding to unburned, low,
moderate, and high severity.

Strata

Severity Scale

Unburned Low Moderate High

0 0.5 1 1.5 2 2.5 3

Substrates
Litter intact charred absent absent absent absent absent

Duff intact Intact partially
charred charred scarce very scarce absent

Light Fuels intact partially
charred charred/absent absent absent absent absent

Medium Fuels intact Intact partially
charred

partially
charred charred/absent absent absent

Heavy Fuels intact Intact intact intact partially
charred charred absent

Tall shrubs (1 to 6 m)
% altered foliage 0% 5% 10% 30% 50% 75% 100%

% resprout 100% 95% 90% 60% 30% <10% <1%

Intermediate trees (subcanopy)
% green foliage 100% 90% 80% 60% 40% <10% 0%
% black foliage 0% 5% 20% 30% 60% >85% 100%
% charred trunk

height 0% 10% 30% 40% 60% 70% >90%

Big trees (upper canopy)
% green foliage 100% 90% 80% 60% 40% <10% 0%
% black foliage 0% 5% 20% 30% 60% >85% 100%
% charred trunk

height 0% 10% 30% 40% 60% 70% >90%
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2.4. Data Analyses

2.4.1. Sensitivity Analysis

We explored the relationship between the field and remotely sensed estimates of burn severity by
using scatter plots and correlation analysis. Correlation between mCBI and percentage of dead trees
was analyzed to assess the performance of the index. Pearson correlation tests have been used in similar
studies [15,56]; we used Spearman tests because the data did not meet the assumption of normality,
tested using the ‘fitdistrplus’ function in R. Due to the four-year gap between the fires and the field
survey, and considering that both early and delayed resprouting occurs in these forests, we evaluated
the most useful acquisition date for severity mapping based on the strength of the association between
mCBI and image-derived indices. Indices showing a correlation higher than 0.70 (absolute values)
were then subjected to a sensitivity analysis. This was assessed through a separability index [57],
calculated as:

Si−ii =
µi − µii

sdi − sdii
(1)

where Si-ii is the separability of two consecutive severity classes (low-moderate or moderate-high);
µi and µii are the mean values of the index for each severity class; and sdi and sdii are the respective
standard deviations. Overall separability was obtained as a weighted mean, following Nguyen
Tran et al. [26], to assign higher importance to the detection of high severity (0.35 Slow-moderate; 0.75
Smoderate-high). To determine constraints on sensitivity related to species-specific reproductive and
other traits, this analysis was also conducted separately for each vegetation type (described below)
and then summarized as a mean value for each severity index. The higher the value of S, the better
the discrimination between two classes; a value of 1 or higher is desired for indices to be used for
mapping [58].

Vegetation types were discriminated based on canopy height and regeneration strategy of the
dominant species (Figure 3). Tall forests were dominated by trees, with a single closed canopy layer
and heights between 30–40 m; multi-stemmed structures of <15 m in height occurred in low forests or
two-tiered stands when combined with tall trees. Dominant species were either obligate seeders (S) or
resprouters (R). Five vegetation types were identified: Tall/S, dominated by N. pumilio; Tall/R, including
stands of N. obliqua or A. araucana; Tall/RS, characterized by mixed stands of N. pumilio-A. araucana;
Two-tiered/R, codominated by N. antarctica and A. araucana; and Low/R, dominated by N. antarctica.
A. araucana forests varied from open- to closed-canopy stands and, although it can regenerate both
by seedlings and resprouts, the crown recovery is the fastest recovery mechanism. The 3 to 6 m tall
Chusquea culeou native bamboo occurs in varying quantities in all vegetation types and acts as a highly
flammable ladder fuel because it is mostly very fine (grass leaves) or fine (<24 mm diameter) material,
and when the culms die following mast events, it leaves massive amounts of fine dead fuels [50].
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Figure 3. Photographs of the five vegetation types: (a) low/R, dominated by Nothofagus antarctica;
(b) tall/R, dominated by Araucaria araucana; (c) tall/S, dominated by N. pumilio; (d) tall/SR, codominated
by N. pumilio and A. araucana with the bamboo Chusquea culeou; (e) two-tiered/R, codominated by
A. araucana and N. antarctica.

2.4.2. Thresholding and Accuracy Assessment

To define the class thresholds, we followed two different approaches using mCBI as a reference with
class limits of 1.25 (low/moderate) and 2.25 (moderate/high) [59]. First, we fitted linear and polynomial
models. Linear and non-linear models have been widely applied for describing relationships between
field severity data and spectral indices [17,60,61]. Polynomial models appear to better describe the
non-linear relation between these variables [62], but the improvement may be only marginal [17].
Having graphically checked assumptions of normality, homoscedasticity, and independence, best-fit
models were selected following the criterion of lowest Akaike score and class thresholds were derived.
As an alternative strategy, we determined thresholds by an iterative procedure: increasing values for
each threshold (low/moderate and moderate/high) were combined until the highest proportion of
samples was correctly classified [42,59].

To select the best performing method for mapping, we compared the accuracies of the classifications
derived from the adjusted thresholds and others recommended by Key and Benson [11] and by
Assal et al. [42]. The latter study was conducted in Araucaria-dominated forests in Chile, similar to the
vegetation in our study area. We applied a bootstrapping method, sampling with reposition, to generate
111 confusion tables and the associated accuracy indices (total accuracy, Kappa, and the producer
and user errors for each severity class). Based on this information, we conducted Kruskal–Wallis
non-parametric variance analyses to evaluate significance of apparent differences in accuracy.

2.5. Burn Severity Mapping

The two most accurate methods were used to generate burn severity maps for each event.
Perimeters of the burned areas were obtained through supervised classification on dNBR and dNDVI
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layers and manual editing using technical reports (M. Mermoz, pers. com.) and high resolution images
as references. Finally, we assessed the agreement between the maps by contrasting the information
generated on the proportion of area affected under each severity class.

3. Results

3.1. Index Sensitivity

Field measurements of burn severity were highly and significantly correlated (0.87, p < 0.001;
Table 3), indicating that mCBI is a good estimator of post-fire tree mortality. The correlation between
mCBI and the tested indices was strongest for data acquired at the end of the summer of 2013–2014
when the fires occurred (>0.70) and declined in the subsequent years for all burn severity indices,
except for MIRBI, dMIRBI, and dCSI, which consistently presented low correlations (<0.60; Figure 4).
These indices were discarded from further analyses. In the year of the end of the growing season
when the fire occurred, the strongest Spearman correlation with mCBI was that of the NDVI (−0.85),
followed by NBR, CSI, dNBR, and dNDVI (Table 3). NDVI also had the strongest correlation with
%DT (−0.83), whereas the correlations of the other four indices were weaker but similar (0.77 to 0.78).
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Figure 4. Correlations between the mCBI and remote burn severity indices, for post-fire images
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Table 3. Spearman correlation between the field and remote burn severity estimates for the end of the
season when the fires occurred. * Asterisks denote significant correlations (p < 0.001).

mCBI %DT NBR NDVI CSI dNBR dNDVI

mCBI 1 0.87 * −0.81 * −0.85 * −0.80 * 0.80 * 0.77 *
%DT 0.87 * 1 −0.77 * −0.83 * −0.78 * 0.77 * 0.77 *

%DT: Percentage of dead trees.

The highest sensitivity was shown by NDVI and dNBR, but the indices performed differently
when vegetation type was considered. In general, separability was around 1 for tall or low stature
vegetation types, regardless of the regeneration strategy, but was always under 0.6 for the two-tiered
forest (Table 4). In resprouter-dominated forests, NDVI showed higher separability, whereas NBR was
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more sensitive for obligate seeders. Severity in stands with both types of species was well detected by
all indices (separability > 1). When these partial values were summarized, the most sensitive index was
dNBR and the separability of all the others was below 1. dNDVI presented a more balanced sensitivity
across vegetation type than NDVI and was particularly more sensitive for the two-tiered stands.

Table 4. Mean separability of indices calculated for the complete dataset (All), discriminated for each
vegetation type: low canopy, dominated by resprouting species (low/R); tall canopy, dominated by
resprouting species (tall/R); tall canopy, dominated by seeding species (tall/S); tall canopy, codominated
by resprouting and seeding species (tall/R-S); two tiered canopy, dominated by resprouting species
(two-tiered/R) and summarized as a general mean (Overall).

Plots NBRpost NDVIpost CSIpost dNBR dNDVI

All 111 0.95 1.06 0.90 1.10 0.93
Canopy Regen.

Low R 30 0.92 1.04 0.94 0.94 1.03
Tall R 25 1.00 1.21 0.92 0.98 1.03
Tall S 18 1.00 0.73 0.80 1.12 0.89
Tall RS 27 1.58 1.64 1.40 1.56 1.05

Two tiered R 11 0.43 0.23 0.29 0.58 0.40
Overall 0.99 0.97 0.87 1.03 0.88

R: resprouter-dominated stand; S: obligate seeder-dominated stand; RS: mixed stand of resprouters and
obligate seeders.

3.2. Thresholds and Accuracy of Selected Indices

Three severity indices were selected for thresholding: dNBR, dNDVI, and CSI. For all indices, the
best model was a second order polynomial, with an adjusted R2 of 0.77 for dNBR, 0.71 for dNDVI, and
0.70 for CSI (all p < 0.001). The model-derived thresholds were moderately close to those obtained
through the iteration process, and for dNBR, the latter approach produced class limits that were the
most similar to the field-based reference classes (Table 5).

Table 5. Accuracy assessment of burn severity classifications. Values in brackets indicate the
classification thresholds for low-moderate/moderate-high severity. H and p values correspond to
the Kruskal–Wallis variance test for each accuracy index and lowercase letters indicate significantly
different groups.

Low Moderate High

Classification Total Acc. Kappa UE PE UE PE UE PE

dNBR Ref. 1
(270/600)

77 ± 1 64 ± 2 15 ± 2 11 ± 2 55 ± 2 21 ± 2 1 ± 1 27 ± 2
B c B c bc f d a

dNBR Ref. 2
(275/500)

82 ± 1 68 ± 2 15 ±2 11 ±2 46 ± 2 49 ± 2 11 ±1 11 ± 1
De d B c d c c e

dNBR It.
(300/500)

83 ± 1 70 ± 2 17 ± 2 7 ± 2 41 ± 2 49 ± 2 11 ± 1 11 ± 1
E d Ab d e c c e

dNDVI It.
(200/300)

83 ± 1 69 ± 2 20±2 3 ±2 33 ±2 59 ±2 13 ±1 9 ± 1
E d A e f b b ef

CSI It.
(1070/920)

73 ± 1 54 ± 2 12 ± 2 39 ± 2 64 ± 2 44 ± 2 11 ± 1 16 ± 1
A a C a a d c c

dNBR Mod.
(205/550)

77 ± 1 61 ± 2 6 ± 2 26 ± 2 58 ±2 33 ± 2 11 ± 1 19 ± 2
B b D b b e c b

dNDVI Mod.
(116/323)

80 ± 1 65 ± 2 6 ± 2 28 ± 2 52 ± 2 32 ± 2 11 ± 1 14 ± 2
C c D b c e bc d

CSI Mod.
(138/75)

81 ± 1 66 ± 2 17 ± 2 7 ± 2 43 ± 2 67 ± 2 15 ± 2 8 ± 1
D c B d de a a f

H 372 310 310 267 353 249 575 539
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

dNBR Ref. 1: thresholds as in Key and Benson (2006); dNBR Ref. 2: thresholds as in Assal et al. (2018). It.: Iterative
thresholding; Mod.: Model-derived thresholding. Total Acc.: total accuracy; UE: user’s error; PE: producer’s error.
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The most accurate classifications were those generated using the iteratively obtained thresholds
for the indices dNBR and dNDVI, with total accuracies over 80% and Kappa indices around 70%.
Reference class limits taken from the study by Assal et al. [42] in an area in Chile close to our study site
produced a similarly accurate categorization (Table 5). These classifications were significantly more
accurate than the other tested ones. In terms of class accuracy, the general pattern was shared among
all classifications: the lowest errors were found in the high severity class, followed by low severity,
while the moderate severity class was the least accurate one (Table 5). For the most accurate protocols,
the producer’s error for the high severity class ranged from 9% to 11% and the user’s error varied
between 11% and 13%. These errors took values of 3–11% and 15–20% in the case of the low severity
class and reached levels of 49–59% and 33–46% for moderate severity, respectively.

3.3. Burn Severity Maps

Burn severity maps were generated using dNDVI and dNBR indices with thresholds obtained by
the iteration process (Figure 5). In the case of the Ñorquinco fire, most of the area was burned with
high severity (60–70%) while the rest of the area was evenly distributed between moderate and low
severity. The agreement between the two maps for this event was 81%, with most of the disagreement
occurring in the moderate burn class (42% coincidence). In the case of the Rucachoroy fire, the area
was burned in proportions of 50%, 30%, and 20% with high, low and moderate severity, respectively.
Again, the two maps coincided in categorizing 81% of the area and the moderate class was the one with
the lowest agreement (52% coincidence). Considering dNBR maps as a reference, misclassification
was more often due to an underestimation of burn severity (15% of the burned area) rather than an
overrating (6%) and mainly occurred in the moderate class (Table 6).
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Table 6. Confusion matrix comparing the severity maps based on dNBR and dNDVI with iteratively
defined thresholds including the area burned in the Ñorquinco and Rucachoroy fires. Area expressed
in hectares.

dNBR It.

Low Moderate High Total (ha) Agreement

dNDVI It.
Low 658 183 18 859 77%

Moderate 47 288 267 603 48%
High 0 136 1703 1839 93%

Total (ha) 706 608 1988 3302
Agreement 93% 47% 86%

4. Discussion

Our results, based on the collection of field-based reference data, confirm that reliable burn
severity estimates can be derived from spectral indices for Araucaria araucana-dominated vegetation
types in North Patagonia. We demonstrate that the most commonly employed indices (dNBR and
dNDVI) corresponded highly with fire-induced changes observed in the field, although this association
was not equally strong across different vegetation types. Time since fire influences this correspondence,
with the correlations being higher when spectral indices are obtained from the first post-fire growing
season. Based on these indices, we were able to determine class thresholds that produced accurate
classifications and identify their constraints as well as finally propose a validated burn severity mapping
methodology for the region.

4.1. From Index Suitability to Index Selection

The strong relations of NBR, NDVI, dNBR, dNDVI, and CSI with mCBI suggest the potential use
of these spectral indices for burn severity estimation in North Patagonian forests. Previous research
in Mediterranean pure and mixed-species forest stands showed that NBR performed better than
NDVI for severity estimation and that the association was always weaker in the case of bi-temporal
indices [16,52]. A stronger relation to the post-fire uni-temporal indices was also detected in boreal
forests and wetlands, where correlation to field severity metrics was higher for NBR than for the
other twelve spectral indices including NDVI and CSI [15]. In Australian sclerophyllous forests and
woodlands, dNBR outperformed dNDVI in discriminating low severities in a ‘cool’ fire but not in a
‘hot’ fire where classifications where similar [63]. dNDVI was also weaker than dNBR in estimating
severity across different vegetation types in the USA, ranging from grasslands and shrublands to
conifer and deciduous forests [64,65]. In contrast, CSI was better than NBR for mapping severity
in African savannas [13] and MRIBI, CSI, or NDVI were more suitable in wet heath, dry heath, or
coniferous stands of European heathlands, respectively [25]. In our study, MIRBI was the only index
that showed a weak relation to field severity metrics and was discarded from further analyses.

In all cases, the strength of these relations decreased over time, indicating that burn severity
in these forests is better expressed by reflectance in the first growing season following fire events.
In Pinus ponderosa dominated forests, the dNDVI correlation with CBI decreased after the second
post-fire year, but the dNBR correlation was strong five years later [66]. In North Patagonian forests, the
heterogeneity at plot and landscape levels resulted in multiple post-fire scenarios combining various
processes. Patches dominated by vigorous resprouters would be expected to mask severity faster than
stands of slow resprouters or obligate seeders; a similar situation would occur in open stands where
the growth of grasses can be strongly enhanced. In contrast, delayed mortality and slow recovery, as
exhibited by A. araucana, would be presumed to be limited or not easily detected in the first period
following the fire, leading to an under- or overestimation of severity. Our results suggest that the
heterogeneity in species composition and stand structures across this landscape generates a mixture
of diverging post-fire reflectance trends, weakening the potential of spectral indices to assess burn



Remote Sens. 2020, 12, 214 13 of 18

severity as time since fire increases. This heterogeneity also generates variability within the growing
season, so we compared images at the end of the summer to ensure all species were actively growing.
Future research should assess the performance of these indices using a multitemporal approach that
could summarize the variability or integrate the information of several post-fire seasons. In the U.S.,
composite-derived dNBR, RBR, and RdNBR indices outperformed the bi-temporal versions, although
improvement in validation statistics was variable in some cases [67].

In our study in North Patagonia, all indices showed an overall suitable sensitivity, but with variable
sensitivities across different vegetation types as has been found in studies conducted in other regions.
Severity detection by dNBR and dNDVI has been found to perform better in forests than in grasslands
and shrublands of temperate and boreal regions in the USA [64], with differences between coniferous-
and deciduous-dominated stands [68]. Vegetation class also determined the potential of spectral indices
for severity mapping in a heterogeneous landscape in Australia, which was higher for forest covered
areas than for grasslands and shrublands [24]. In this same region, index suitability changed along with
the regeneration strategy of the dominant species: dNBR was better for resprouter-dominated forests
and dNDVI was superior for those composed by obligate seeders [26]. In contrast, our results showed
that dNBR sensitivity to burn severity was higher in obligate seeder-dominated stands whereas dNDVI
was more sensitive in stands dominated by resprouting species. Differences in tree life forms might
explain these opposite results: while the studied Australian forests were all dominated by evergreen
angiosperms (Eucalyptus spp.), in our study areas, the dominant trees included deciduous angiosperms
and one evergreen conifer, so differences in spectral behavior could be expected. Coinciding with
Nguyen Tran et al. [26], CSI sensitivity was lower in all vegetation classes in our study. Regardless of
the variation, the separability values were around the expected for indices with good discriminatory
power (>1) [58] for nearly all vegetation types.

The effect of vegetation type on indices suitability in our study and in previous similar studies
suggests that burn severity estimation could be improved if calibration is conducted separately for each
vegetation type. Allen and Sorbel [68] suggest using different scales for coniferous versus deciduous
boreal forests. Schepers et al. [25] and Nguyen Tran et al. [26] followed this approach and adjusted
predictive models or class thresholds using the best-performing index per vegetation group. This was
not feasible in our research because the number of mCBI plots, when stratified by vegetation type, was
not sufficient to conduct robust accuracy analyses. However, the investigation of sensitivity differences
is relevant for gauging the constraints of the severity estimates.

4.2. From Thresholding to Validated Classifications

In our study, second order polynomials were the best fitting models for all indices, as was
previously described for this vegetation type in Chile [42] and other forested regions [16,66,69].
Different models have performed better in other forest types: the sigmoidal model in temperate forests
in the USA [70], saturated growth model in Canadian boreal forests [71], and third order polynomial in
Russian forests [61], etc. It has also been suggested that using non-linear- instead of linear-models
might not refine the severity prediction in spite of the improvement of the fitting parameters [72].
In the cases of dNDVI and dNBR, we found that the model-derived classifications were less accurate
than those generated using the iteratively defined thresholds.

All severity estimations in our study performed within the accuracy range reviewed by
French et al. [73] with a mean accuracy of 73%, ranging from 59% to 95%. Fire impact has been
estimated with similar accuracy in Australian forests, where dNBR performed better than the dNDVI
(Kappa index of 77% and 57%, respectively) [63]. In temperate North American forests, dNBR detection
of severity was accomplished with accuracy ranging from 62 to 66% [21,70]. The best dNBR and dNDVI
classifications presented global accuracies higher than 80% and Kappa indices around 70%, indicating
that severity assessment through these methods is reliable. Nevertheless, global indicators should
never represent the only evaluating criteria [59]. Unbalanced performance of severity classifications is
common, especially on the low and moderate classes [74]. Moderate severity was the least accurately
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detected class by Soverel et al. [22] in Canadian forests as well as by Kurbanov et al. [61] in Russia.
Coinciding with Cocke et al. [21], these studies were best at classifying areas corresponding to high
severity. Our results show that, in all cases, high severity was the best discriminated class, with
balanced user’s and producer’s errors, and moderate severity was poorly classified (errors around
50%). Low severity class was satisfactorily distinguished, but alternately, one of the two errors was
always higher. This is probably due to the high variability of spectral indices in the moderate class,
associated with the heterogeneity of fire effects and vegetation types that the field severity indices
summarize. This class includes different fire effects on surface and understory modifications that
might not be captured by passive sensors [7]. These constraints should be considered when extracting
conclusions from the spectral estimation of burn severity.

When subsequent validations are conducted for the same region, the confidence in remote
sensing assessments is expected to increase and, ideally, reach a point where the need for field data is
minimized [11]. For forests dominated by A. araucana, similar to our study area, the study conducted
nearby in Chile by Assal et al. [42] is the only precedent of field validated severity mapping and
the RdNBR thresholds they proposed are similar to the dNBR limits we determined. Moreover, the
accuracy of the classifications derived from either set of values in our study is higher than the one
reported in their work (68% global accuracy and 52% Kappa index), most likely because our study
was based on field data that was acquired closer to the date of the fires. Overall, these results indicate
that comparable severity assessments can be executed in these forests. The higher accuracy and the
different value of our proposed thresholds in comparison to those fixed by Key and Benson [11] sustain
the idea of a need to calibrate the methodology to each unique region.

4.3. Application: Burn Severity Mapping

The two most accurate classification protocols (dNBR and dNDVI) were used to generate burn
severity maps of the two fire events in the Araucaria araucana-dominated vegetation of North Patagonia.
The agreement between these maps reflects the strengths and weaknesses described in the preceding
sections: coincidence was high for the high and low severity classes, which were more accurately
detected, but declined to 50% for moderately burned areas. Regardless of the spatial distribution, both
maps produced the same estimation of proportion of area burned. Similarity in the spatial patterns of
NDVI- and NBR-derived severity estimates was detected by Lhermitte et al. [75] in African savannas,
who found differences when comparing severity maps generated using the bi-temporal approach and
the control pixel method. Comparing maps allows for a demonstration of the impact of methodology
in the thematic presentation of burn severity and, thus, can identify the limitations of the generated
information. Our results indicate that either approach is similarly reliable for severity mapping in
North Patagonia. However, the dissimilar association of NDVI and NBR to different vegetation types
could determine the selection of one over the other. We found that greater sensitivity to burn severity
was shown by NDVI in areas dominated by resprouting tall shrub species and NBR in obligate seeder
stands of tall trees. Further studies specifically comparing the performance of these indices in areas
dominated by species of different regeneration strategies would be needed to confirm if one index is
preferable, depending on the predominant vegetation type.

5. Conclusions

This work explored the performance of the most frequently used spectral indices for burn severity
mapping in North Patagonian forests. Our findings suggest that reliable estimates can be obtained from
the dNBR and dNDVI using the adjusted thresholds. As in other forested regions, field-validated maps
increase the confidence in these analyses and contribute to a replicable methodology and comparable
results. This is particularly important in Patagonian forests where burn severity is usually assessed on
a per-fire event basis, with no standardized methods or specific comparison with previously applied
thresholds. However, interpretation of the results of our study should consider limitations related to
the low-accuracy identification of moderate severity as well as the differential sensitivities of indices for
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vegetation types of different structure, species composition, and contrasting regeneration strategies of
resprouters versus seeders. Similar research including a greater range of vegetation types throughout
the Andean-Patagonian region is necessary for generating a burn-severity mapping methodology that
performs well across these vegetation types.
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