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Protactinium contamination is a mayor issue in the thorium fuel cycle. We investigate, in this work, the

consequences of Pa incorporation in vacancy defects and interstitials in Th, ThC and ThN. We calculate

charge transfers and lattice distortions due to these incorporations as well as migration paths and en-

ergies involved in the diffusion of Pa.
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1. Introduction

In the search after better nuclear fuels for Generation-IV re-
actors [1] there has been a boost in the research work on thorium
and its compounds (ThC and ThN) [2—11]. They have higher melting
points, lower thermal expansion coefficients and larger thermal
conductivities than their uranium counterparts [12].

In the Thorium fuel cycle, 23%Th, the fertile material, captures a
neutron forming 233>Th. This becomes 2>3Pa through.

8~ decay, which develops into the fissile 233U, also by 8~ decay
[13]. 233Pa has a 27 days long half-life that enables the possibility of
a neutron capture resulting in a decline of the 233U production
[14,15]. This is the so-called protactinium effect.

Experimentally, Lorentz et al. determined the solubility of Pa in
Th [16], while Schmitz et al. obtained the corresponding diffusion
coefficient of Pa in Th [17].

On the simulation side, within the framework of Density func-
tional theory (DFT), N. Richard et al. [18] investigated the crystal
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structure of Thorium and ]. Bouchet et al. [19] studied its high-
pressure lattice dynamics and thermodynamic properties. In pre-
vious works, we have studied the stability and formation energies
of vacancies, interstitials, and divacancies in Thorium and the effect
of incorporation of Xe, He, Kr [4] and oxygen [7] atoms in Th defects
and also self-diffusion.

Regarding ThN, Y. Lu et al. [20], P. Modak and A. K. Verma [21]
and R. Atta-Fyn and A. K. Ray [22] obtained electronic, mechanical
and thermodynamic properties, phonon dispersion relations,
elastic constants and structural phase transitions. We have ob-
tained the formation energy of defects, such as vacancies, in-
terstitials, Frenkel pairs and Schottky defects in Refs. [23] and
oxygen incorporation in Ref. [4].

In the case of ThC, structural, mechanical, electronic and ther-
modynamic properties were investigated by S. Aydin et al. [24] and
by L. V. Lim and G. E. Scuseria [25]. While Shein et al. obtained X-ray
emission (XES) and absorption (XAS) spectra [26] and elastic
properties [27] of ThC. We have calculated the phonon spectrum
and thermophysical properties in Refs. [28]. We also obtained point
defect formation energies for ThC [29], He, Xe, Kr and O incorpo-
ration energies [30] and self-diffusion [31].

Taking into account that the presence of Pa in the thorium fuel
cycle is of technical interest and that there is a lack of information
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Table 1
Incorporation energy (eV) of a Pa atom in tetrahedral interstitials and vacancy de-
fects in Th, ThC and ThN.

Table 2
Solution energy (eV) of a Pa atom incorporated in tetrahedral interstitials and va-
cancy defects in Th, ThC and ThN.

Interstitial (eV) Vacancy (eV)

Interstitial (eV) Vacancy (eV)

Th 5.19 ~1.59
ThC 2.88 ~6.26 (Th) 5.82 (C)
ThN 7.63 ~4.00 (Th) 6.31 (N)

Th 5.19 0.51
ThC 2.88 —0.42 (Th) 597 (C)
ThN 7.63 ~0.03 (Th) 10.0 (N)

on this subject in the literature, we study in this work the effect of
having Pa atoms in Th, ThC and ThN lattices by means of DFT cal-
culations. This is done by obtaining the energy of incorporation of
Pa in vacancy and interstitial sites. Lattice distortions and charge
transfers due to Pa incorporation are also analyzed. Finally, energy
and migration paths are calculated.

2. Calculation and numerical details

Thorium's crystal structure is a face centered cubic with an
experimental equilibrium lattice parameter, A, of 5.085 A [32]. In
our previous work we obtained for ag, 5.045 A [4]. Thorium carbide
and thorium nitride have both a NaCl-type (B1) structure and
experimental equilibrium lattice parameters of 5.335—5.344 A [33]
and 5.167 A [34], respectively. For these compounds we previously
obtained 5.335 A (ThC) [28] and 5.161 A (ThN) [23]. The global
charge of the analyzed systems is neutral.

The expressions used to calculate the incorporation energies are
those of Ref. [35]. The incorporation energy of a protactinium atom
in a tetrahedral interstitial position is given by

Efgt =ENtT — EN — Ep, (1)

where EN is the energy of a supercell without defects and EN+1 is
the energy of a supercell with a Pa atom incorporated in a tetra-
hedral interstitial position and Ep, is the energy per protactinium
atom in the ground state. The incorporation energy in a vacancy site
is given by

EII?V(?C:EN71 - EII;]a - EPm (2)

where EN~1 is the energy of the supercell with a vacancy, E}, is the
energy with a Pa atom in a vacancy site.

We also calculate the solution energy, E°!, as the energy
required to create the defect and the subsequent incorporation of
an atom into that defect. It is defined as

ESOl = + EF, 3)

where E! is the incorporation energy (in a vacancy or in an inter-
stitial position) and EF is the defect formation energy. In the case of
incorporation in an interstitial position the solution and the
incorporation energies are the same.

We obtain the charge transfer to protactinium atoms incorpo-
rated in interstitial and vacancy sites by doing a Bader analysis [36].

The behavior of Pa atoms in these materials is analyzed through
the calculation of migration energies along different paths. This is
done using the nudged elastic band (NEB) method [37]. The mini-
mum energy path from an initial to a final state is obtained by
optimizing a set of intermediate images of the system. From these
paths we obtain the migration energies.

First-principle calculations are done with the software package
Quantum ESPRESSO [38] based on the density functional theory.
The reliability of the calculations made with this software in these
systems has already been proven in several works, see Refs. [4,28].
The Generalized Gradient Approximation in the

Perdew—Burke—Erzenhof (GGA—PBE) formulation [39] is used for
the exchange and correlation potential. Thorium and protactinium
pseudopotentials are norm-conserving Troullier—Martins [40] ones
and are generated with the atomic software available in the same
package following Ref. [18]. The pseudopotentials for carbon [41]
and nitrogen [42] are taken from the Quantum ESPRESSO pseu-
dopotential library. In these calculations, 64 atoms supercells in the
cases of ThC and ThN and a 32 atoms supercell in the case of Th, are
used. These supercell sizes are large enough to avoid spurious in-
teractions due to the periodicity. For energy convergence a 250 Ry
cutoff is considered. To sample the Brillouin zone, we use a
Monkhorst—Pack [43] (MP) scheme together with a 4 x 4 x 4 k-
point mesh. The integrations are performed with the
Methfessel—Paxton [44] scheme and with an energy smearing of
0.02 Ry. The atomic positions are fully relaxed till forces are less
than 0.026 eV/A. The migration paths and energies are obtained
with the NEB method as implemented in the Quantum ESPRESSO
software package [38].

3. Results and discussions
3.1. Incorporation and solution energies

Incorporation energies of protactinium in tetrahedral interstitial
positions and in Th, C and N vacancies of the systems under study
are shown in Table 1. It is worth mentioning that incorporation
energies, as defined in Egs. (1) and (2), do not take into account
composition deviations and thermal effects, but, despite this fact
they can be well considered as a first step in the analysis of this
topic. A lower incorporation energy value implies a more favorable
incorporation position and a negative energy indicates that the
incorporated atom is energetically stable in the lattice.

We observe that the energetically more favorable position is a
Th vacancy in the three cases. In fact, we note that in these cases the
incorporation energies are negative, on the contrary the other
incorporation sites present positive energies, suggesting energeti-
cally unstable positions. This is the expected behavior as thorium
and protactinium have similar atomic radii.

Solution energies calculated using equation (3) are presented in
Table 2. Vacancy formation energies were previously obtained in
Ref. [4] for Th, in Refs. [29] for ThC and in Ref. [23] for ThN.

We notice that even taking into account the energy cost of
forming a Th vacancy, the energy necessary to incorporate prot-
actinium in the vacancy is still negative for ThC and ThN. In the case
of Th, although it is not negative it is very small. The other incor-
poration sites, studied in this paper, are energetically very
unfavorable.

3.2. Lattice distortions due to Pa atoms

The protactinium atoms in the lattices of Th, ThC and ThN
produce distortions that affect the surrounding atoms. Pa atoms
incorporated in thorium vacancies give rise to inward displace-
ments of the neighboring atoms for Th (0.03 A), ThC (0.13 A), and
ThN (0.11 A), as expected due to the similar atomic radii of Pa and
Th. Large outward displacements of the four first nearest neighbor
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Fig. 1. Total density of states as a function of energy for a lattice without defects and a
lattice with a Pa atom incorporated in a Th vacancy site in (a) Thorium nitride. (b)
Thorium carbide. (c) Thorium.

Th atoms occur when Pa is in a tetrahedral interstitial site, 0.47 A in
Th, 0.38 A in ThC and 0.44 A in ThN. This behavior is similar to the
one taking place when incorporating a thorium atom in interstitial
sites in Th [4], ThC [29], and ThN [23]. If a Pa atom is incorporated in
a C vacancy, it yields an outward displacement of 0.20 A of the six
nearest thorium atoms. In the case of a N vacancy there is a 0.16 A
outward displacement of the neighboring thorium atoms.

3.3. Electronic structure

In Fig. 1 we show total densities of states (DOSs) as a function of
energy for the three systems under study. In panel (a) we compare
the DOSs of ThN without defects and with a Pa atom incorporated
in a Th vacancy. In panel (b) and (c) we plot the same but for ThC
and Th, respectively.

We observe that the difference between the DOSs with and
without an incorporated Pa atom lies just above the Fermi energy.
In the three cases the difference between the DOSs with defect and
without defect is very small, this might be related to the low con-
centration of Pa in the lattice. It is worth mentioning that oxygen
with the same low concentration makes an appreciable difference
in the DOSs, as we already observed in Ref. [7]. Therefore, the small
difference can also be attributed to the similarity between Th and
Pa.

3.4. Charge transfer

The charge transferred to protactinium atoms in interstitial
positions and in vacancy defects are obtained through a Bader
charge [36] analysis (see Table 3).

Just for comparison, we mention that in the case of pure ThC the
charge transfer from Th to C is —1.81e [29] and in the case of ThN
the charge transfer from Th to N is —1.72e [23]. When introducing
Pa the largest transfer takes place when it is incorporated in a Th
vacancy, which coincides with the energetically most favorable

Table 3
Charge transferred to an incorporated Pa atom in interstitial positions and in va-
cancy defects obtained through Bader analysis for Th, ThC and ThN.

Interstitial Vacancy
Th — 0.45e — 0.30e
ThC +1.11e +1.89e (Th) — 0.14e (O)
ThN +1.20e +1.85e (Th) — 0.53e (N)

alk

DeOe® o e
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Fig. 2. Charge density contour plots. (a) ThC without defects. (b) Pa atom in a Th va-
cancy in ThC. (c) ThN without defects. (d) Pa atom in a Th vacancy in ThN.

incorporation site. It is also similar to the charge transferred to C
and N in ThC and ThN, respectively. For Pa incorporated in an
interstitial position, in the case of Th, the charge transfer is larger
than in the vacancy case.

In Fig. 2 we show charge density contour plots. We note that a Pa
atom in a Th vacancy presents a larger covalent bonding to its
nearest C (Fig. 2 (b)) or N (Fig. 2 (d)) neighbor than Th (Fig. 2 (a) and
(c)). This is evident from the fact that the electronic charge density
is larger in these cases than for Th. This should show up also when
comparing the values of the vacancy formation energies for Th in
ThC and in ThN and, the incorporation energies of Pa in the same
compounds. This is precisely what happens, in the case of ThC the
vacancy formation energy and the incorporation energy are 5.84 eV
and 6.26 eV respectively, while for ThN the energies are 3.97 eV and
4.00 eV. This is similar to the behavior of the cohesive energy of
‘3d’, ‘4d’ and ‘5d’ transition metals, which increases with increasing
‘d’ occupation, if the occupations correspond to less than half filling.
In our case, responsible for the value of the incorporation energy, as
well as for the relative degree of covalency, is the filling of the ‘5f
band. Both Th and Pa have a less than half filled ‘5f level, and Pa has
one ‘5f electron more than Th. Thereafter it is reasonable that Pa
presents a stronger covalent bond to its ‘sp’ neighbors than Th.

(@)

() Carbon or Nitrogen o Thorium

6 Vacancy

Fig. 3. Pa migration path through Th vacancy sites. (a) ThN or ThC with NaCl type
structure. (b) Thorium FCC.

(,/\ . w
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Fig. 4. Relative energy (eV) as a function of the reaction coordinate for the migration of
a Pa atom through a Th-vacancy path in Th (red circles), ThC (blue triangles), and ThN
(green squares). The energies are relative to the initial configurations. The lines are an
interpolation of the path energy profile that goes exactly through each image. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 4
Migration energy (eV) for a Pa atom through a Th-vacancy path for Th, ThC
and ThN.
Th ThC ThN
1.05 2.32 3.35

3.5. Migration of Pa atoms

When analyzing the diffusion of protactinium through the lat-
tices of Th, ThC, and ThN, we only calculate migration through
thorium vacancy paths (see Fig. 3), as incorporation of protactinium
in Th vacancies is energetically more favorable than in C and ones.

In Fig. 4 we present the energy barriers for a protactinium atom
migrating from one vacancy to another. We observe that the
highest energy barrier is obtained for ThN. In Table 4 the migration
energies for these paths are shown. This indicates that the Pa atoms
should migrate more easily in ThC than in ThN and in Th than in
ThC.

The same behavior is observed for the migration of an O atom
through these materials [7].

4. Conclusions

We studied some consequences of the presence of Pa atoms in
Th and in its compounds by means of density functional theory
calculations.

The incorporation and solution energies of Pa in interstitial and
vacancy sites in Th and compounds were calculated. Incorporation
of Pa in Th vacancies was found to be energetically more favorable
than incorporation in interstitial sites.

Atomic displacements, electronic structures and charge trans-
fers were also analyzed. It was observed that there is almost no
change in the DOS when a Th atom is replaced by a Pa one.

NEB calculations were performed and migration paths and en-
ergies for Pa atoms through Th vacancies were calculated for Th and
its compounds. It was found that the migration energy is lowest in
the case of pure Th and highest in the case of ThN.

We conclude that Pa atoms, that substitute Th atoms, will
migrate through Th-vacancy paths and that the Th compound with
the smaller migration energy is ThC.

We hope this work encourages more experiments and new

calculations on these systems due to the technical interest of this
subject.
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