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Abstract. We establish the existence and multiplicity of solutions for some boundary value
problems on time scales with a (-Laplacian operator. For this purpose, we employ the concept
of lower and upper solutions and the Leray—Schauder degree. The results extend and improve
known results for analogous problems with discrete p-Laplacian as well as those for boundary
value problems on time scales.
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1. INTRODUCTION

In this work, we investigate the existence of solutions u : [p(0),(T)]; — R to the
following problem on time scales

()Y = f(t,u(t), te[0,Tly, (1.1)

under Dirichlet, Neumann, or periodic boundary conditions:

u(p(0)) = ula(T)) =0, (1.2)
u (p(0)) = u(T) = 0,
u(p(0)) = ula(T)), u®(p(0)) = u® (D), (1.4)

respectively.
Here, T is an arbitrary nonempty closed subset of the real numbers R (time
scale), [0,T]y := [0,T7]) N'T denotes the interval with respect to the time scale T,
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the mapping ¢ : R — R is an increasing homeomorphism such that ¢(0) = 0,
f:[p(0),0(T)]p x R — R is a continuous function and T is a positive real number.

By a solution of (1.1) under the boundary condition (1.2), (1.3) or (1.4) we mean
a function u : [p(0),o(T)]; — R of class C! such that p(u?) is V-differentiable on
[0, ) and (¢(u?))V continuous on [0, Ty, which satisfies the respective boundary
condition and (p(u® (1)) = f(t,u(t)) for all t € [0, T]y.

The theory of time scales was introduced by Stefan Hilger in his PhD thesis in
1988 (see [15] and the subsequent paper [16]) in order to unify the discrete and the
continuous calculus. Since then, a great variety of results were obtained for dynamic
equations where the domain of the unknown function is a time scale T. For instance,
the time scale R corresponds to the continuous case and, hence, results for ordinary
differential equations are retrieved. On the other hand, if the time scale is Z, then the
results apply to difference equations. However, the generality of the set T yields many
different situations in which the time scales formalism proves to be useful, e.g. the
study of hybrid discrete-continuous dynamical systems.

Existence of solutions for boundary value problems on time scales can be inves-
tigated by various methods: fixed point theorems [20, 22], more general topological
arguments [6,14], variational methods [12,13,21], lower and upper functions [6,9,20,22],
etc. In particular, in [22] the existence of solutions for a periodic boundary value
problem on time scales of the form

=2V () + q(t)y(t) = f(t,y(t), t€ [a,bly,
y(p(a)) = y(b),
y=(pla)) = y=(b),

is studied, where ¢(t) > 0, f : [p(a), b]; x R = R is continuous and a — p(a) > o(b) — b,
by means of the method of upper and lower solutions and the Schauder fixed point
theorem. Moreover, using a monotone method existence and uniqueness results were
obtained.

In [6], the periodic problem

Do(Dzy) + fr(zr) =0, 2<k<n-1,
L1 = Tn,
Dzy = Dxy 1,

where fi(z) is a continuous function and D is the standard discrete difference, namely
Dxy = xp41 — g, was studied combining the method of upper and lower solutions
with Brouwer degree theory. The interest in this class of problems is due to the fact
that they involve the discrete ¢-Laplacian operator and can be regarded as a problem
on time scales with T = {x1,...,2,}.

Another relevant reference for periodic boundary value problems on time scales
is [20], where the problem

eB8(t) = f(t,2(o(t), € la,bly,
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is studied by means of the Schauder fixed point theorem and the method of upper and
lower solutions. Existence of solutions was proved and a monotone iterative method
was developed.

Motivated by [6,20,22], in this work we study existence and multiplicity results
for problem (1.1) under different boundary value conditions. We distinguish several
aspects of these results.

On the one hand, the problems in the present paper consist of equations on time
scales, involving op-Laplacian operators, for which the literature is scarce. Recall
that such operators, among which the most prominent is the p-Laplacian given by
o(z) := |x[P~2x, have deserved a lot of attention in the last decades and found several
applications. There are also popular examples of bounded p-Laplacians, such as the

X

mean curvature operator ¢(x) := T O singular @-Laplacians, like the relativistic
xT

operator p(x) := Viert Many of the well known results and methods that are valid

for the standard semilinear case, with ¢ as the identity map, cannot be extended in
an obvious way when ¢ is an arbitrary homeomorphism and, thus, a lot of technical
issues may appear when dealing with the corresponding boundary value problems.

On the other hand, we generalize previous results concerning boundary value
problems for difference equations obtained in [6,12,13,21] and for dynamic equations
in time scales proved in [20,22]. However, differently to the latter two references,
our results are formulated assuming a different a priori condition on the time scale.
Moreover, we extend techniques applied both for the resonant case (see e.g. [20]) and
the non-resonant case (see [1,22]) to the context of p-Laplacian operators. Specifically,
we adapt the method of lower and upper solutions (see [10] for a complete survey on this
method) and the Leray—Schauder degree theory, from the continuous calculus to time
scales, in order to prove existence of solutions for boundary value problems. To this end,
we apply Mawhin’s continuation method in the spirit of [19], conveniently adjusted
to the present situation. Our approach follows the techniques employed for example
in [4,22]. If, moreover, the function f(¢,u) satisfies a one-sided growth condition then
a monotone iterative method can be developed, converging to extremal solutions of
the problem. This proof is based on well known methods for semilinear equations,
adapted for time scales in [20]. Furthermore, we obtain a version of the so-called Three
Solutions Theorem. In the continuous and semilinear case, this result can be traced
back to [17], although a more general statement and a proof by topological degree
methods can be found in [2] and [3] (see also [10] for further references).

We emphasize the fact that, in this work, the above mentioned ideas are extended to
a more general setting, which includes different boundary conditions and a (-Laplacian
operator. Moreover, for Neumann boundary conditions the results are most likely
not only new but also original in the sense that the problem has not been studied
employing this particular technique.

The article is organized as follows. In Section 2, we introduce some notation
and preliminaries concerning the classic theory of real times scales, the concept
of upper and lower solutions and set the operators required for the continuation
approach. In Section 3, we prove existence and multiplicity results for periodic boundary
conditions, that can be extended to Neumann and Dirichlet boundary conditions in
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a straightforward manner. Furthermore, under a one-sided Lipschitz condition, we
define monotone sequences that converge to extremal solutions of the problem. Our
main results are extensions of the results in [6,20] and [22].

2. NOTATION AND PRELIMINARIES

Let us firstly recall some basic definitions and results concerning time-scales. Further,
general details can be found, for example, in [7,8].

A time scale T is a nonempty closed subset of the real line R. For ¢t € T we define
the forward jump operator o : T — T and the backward jump operator p : T — T by

o(t):=inf{se€T:s>1t},
p(t) :=sup{s € T:s<t}.

For convenience, if T is bounded from above or from below we define o(sup T) = sup T
and p(inf T) = inf T, respectively.

We say that a point ¢t € T is right scattered, left scattered, right dense, left dense
if o(t) > t,p(t) < t,o(t) =t,p(t) = t, respectively. a point ¢t € T is isolated if it is
right scattered and left scattered. We define the sets T® and T, which are derived
from the time scale T as follows. If T has a left-scattered maximum in m, then
T* =T — {m}, otherwise T* = T. Similarly, if T has a right-scattered minimum m,
then T, = T — {m}, otherwise T, = T.

Finally, we define the forward graininess function p : T — [0, +00) by

u(t) :=o()—t forallteT,
and the backward graininess function v : T — [0, +00) by
v(t):=t—p(t) forallteT.

We endow T with the topology inherited from R. a function v : T — R is called
rd-continuous on T if it is continuous at right-dense points of T and its left-side limit
exists at left-dense points. Then, v : T — R is called continuous on T if is continuous
at each right-dense point and each left-dense point. Finally, we say that the function
u is delta differentiable at t € T* if there exists a number (denoted by u®(t)) with the
property that given any e > 0 there is a neighbourhood U of ¢ (i.e., U = (t—0,t+d)NT
for some 0 > 0) such that

|(u(o(t)) = uls)) —u?(t) (o(t) = 8)| < €o(t) - s

for all s € U. Thus, we call u(t) the delta derivative of u at t. Moreover, we say that
u is delta differentiable on T* provided that u®(t) exists for all ¢ € T*. The function
u® : T% — R is then called the (delta) derivative of u on T*.

Similarly, if v : T — R we say that the function u is nabla differentiable at t € Ty,
if there exists a number (denoted by uV (t)) with the property that given any ¢ > 0
there is a neighbourhood U of ¢t on T such that

|(u(p(t) = u(s)) = u¥ (t) (p(t) — )| < elp(t) — 5]



Multiple solutions of boundary value problems on time scales. . . 409

for all s € U. Thus, we call uV(t) the nabla derivative of u at t. Note that for
T = R, we have u® = uV = o/, the usual derivative, and for T = Z we have that
uP(t) = Au(t) = u(t + 1) — u(t) and u¥ (t) = Vu(t) = u(t) — u(t — 1).

For fixed T' > 0, let C := C([p(0),o(T)];,R) be the Banach space of continuous
functions on [p(0), o (T)]; endowed with the uniform norm

ullog = sup —u(?)]
[p(0).0(T))y

and let C1 := C'([p(0),o(T)]t,R) denote the Banach space of all continuous functions
on [p(0),0(T)]r that are A-differentiable with continuous A-derivatives on [p(0), T
endowed with the usual norm

lul, = sup Ju(t)] + sup [u(t)].
1p(0),0 (D)l 10(0). 7]y

A function U : T — R is called a A-antiderivative of u : T — R provided that
U (t) = u(t) holds for all ¢ € T*. Then, the A-integral from ¢ to ¢ of the function u
is defined by

¢
/u(s)As =U(t) —U(tg), forallteT.
to

A function V : T — R we call a V-antiderivative of u : T — R provided that
VV(t) = u(t), for t € T,.. We then define the V-integral from tq to ¢ of the function

u by
t

/ w(s)Vs = V() — Vit), forallteT,
to

In particular, it is well known that a continuous function has always a A-antiderivative
and a V- antiderivative, which are unique up to a constant term. For the details on
basic notions related to time scales, we refer the readers to the books [7,8].

We introduce the following operators:

~ the Nemytskii operator Ny : C* — C,

Ny(u)(t) = f(t, u(t)),
— the A-integration operator Ha : C — C1,

Ha(u)(t) = / u(s)As,
(0)

p

— the V-integration operator Hy : C — C*,

Ho(u)(t) = / u(s)Vs,
(0)

p
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and the following continuous linear projectors onto the subset of constant functions of C":

T
Q:C—C, Qut)= 1 / u(s)Vs,
(0)

P:C—C, Pu)(t)=u(p(0)).

Moreover, given u : [p(0),0(T)]; — R continuous, we shall denote

U = mMin  u,
[0(0),0(T)]r
Uy = max  u.
[0(0),0(T)]r

Remark 2.1. Let T be a time scale. The following equivalences hold:

In this paper we shall consider time scales T such that 0 € ([p(0),o(T")]). and
T € ([p(0),0(T)]p)". This is equivalent to say that 0 € T is left scattered or right
dense and T € T is right scattered or left dense, that is:

v(0) > 0or p(0) =0and v(T) =0or u(T) > 0. (2.1)

For example, T = Z,R or Z~ U [0, +00).
The following lemma is a straightforward adaptation of a result in [4] to the time
scales context.

Lemma 2.2. For each h € C, there exists a unique Qp, = Qu(h) € [hm, ha] such
that

o(T)

[ et - Qumyae—o.

p(0)

Moreover, the function Q, : C' — R is continuous and maps bounded sets into bounded
sets.
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Next, we define lower and upper solutions for problem (1.1) as follows.

Definition 2.3. a lower solution « (resp. upper solution ) of (1.1) is a function
o € C! such that ¢(a®) is V-differentiable on [0,7]r, (¢ (a® (t)))v is continuous on

[0, T]r (resp. B € C*, o(B?) is V-differentiable on [0, Tz, (¢ (ﬂA(t)))v is continuous
on [0, T]r) and

(0 (2(1))" = flt,alt) (resp. (9 (B2(1))" < f(t,5(1))) (2:2)
for all t € [0, T]y. In addition, we shall assume

(i) for the Dirichlet boundary condition (1.2):

a(p(0)) <0, a(o(T)) <

0
(resp. B(p(0)) = 0, B(a(T)) = 0).

(ii) For the Neumann boundary condition (1.3):

a®(T) <0 < a®(p(0))
(resp. 32 (p(0)) < 0 < B2(T)).

(iii) For the periodic boundary condition (1.4):

a(p(0)) = a(a(T)), a®(p(0)) = a®(T)
(resp. B(p(0)) = B(a(T)),  B2(p(0)) < B2(T)).

Such lower (upper) solution is called proper if it is not a solution of the equation
with the respective boundary condition. If furthermore the inequality (2.2) is strict
for all t € [0, Ty, then it is called a strict lower (resp. upper) solution.

For convenience, for each pair «, as before such that a(t) < S(t) for all ¢
we associate a function v : [p(0),0(T)]r x R — R given by

x if a(t) <z < B(t),
Yt x) = qB(t) if x> B(t),
alt) if z < aft).

3. THE PERIODIC PROBLEM

In this section, we consider problem (1.1) under the periodic boundary condition (1.4).
To this end, we shall define an appropriate fixed point operator, which is similar to the
one introduced in [18]. In order to transform problem (1.1), (1.4) into a fixed point
problem we employ Lemma 2.2. The proof is similar to the continuous case and shall
not be repeated here.
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Lemma 3.1. u € C*! is a solution of (1.1), (1.4) if and only if u is a fived point of
the operator My defined on C by

s My(u) = P(u) + Q(Ny () + Ha (7" [Hy (Ny(u) — Q(Ny(u))
— Qo (Hy (N (u) = Q(Ny(u))))])-

Here ¢~!, with a slight abuse of notation, is understood as the operator

o 1:C — C defined as ¢~ 1(v)(t) := ¢ (v(t)). Moreover, by the Arzela—Ascoli
theorem, My is completely continuous.

Remark 3.2. Note that if u is a solution of (1.1), then the following equivalence
holds: u®(p(0)) = u®(T) & Q(Ny(u)) = 0.

3.1. UPPER AND LOWER SOLUTIONS AND A MODIFIED PROBLEM

Let «, 8 be lower and upper solutions of (1.1), (1.4) such that a(t) < §(t) for all
t € [p(0),0(T)]r, and consider the modified problem

u(o(T)), (3.1)

where F': [p(0),0(T)]r x R — R is defined by

x —y(t,x)

F(t,z) = f(t,y(t,z)) + MY e -~

for some arbitrary 7 > 0. The fixed point operator associated to problem (3.1)
is given by

Mp(u) = P(u) + Q(Nr(u)) + Ha (¢~ [Hy (Np(u) — Q(Np(u)))
— Qu(Hy(Np(u) — Q(Np(u))))]).
Theorem 3.3. Suppose that (1.1), (1.4) has a lower solution o and an upper solution

B such that at) < B(t) for all t € [p(0),0(T)]r. If u is a solution of (3.1), then
a(t) <wu(t) < B(t) for allt € [p(0),0(T)|r and hence u is a solution of (1.1), (1.4).

Proof. Let u be a solution of (3.1), we shall see that a(t) < u(t) for all ¢ € [p(0),o(T)]r.
Assume, by contradiction, that the function z := « — u attains a positive maximum

in [p(0),0(T)]r. Let

[p(OTgé)]T(a(t) —u(t)) = alte) — u(te) = z(to) >0

and for simplicity assume, without loss of generality, that z(t) < z(to) for all
t € (to,o(T)]r. In particular we observe that, due to the boundary condition, ¢y > p(0).
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We now distinguish between three cases, according to the position of the point ¢g.
(a) to € (p(0),0(T))r. We claim that

(™) ¥ (to) < (9(u®)7 (ko).
Indeed, if tg is left scattered, then it is readily seen that
a(to) < u(to),
a®(p(to)) = u®(p(to))

and the claim follows. Next, suppose that tq is left dense and observe, in the first place,
that 22 (t9) = 0, since otherwise 22 (o) < 0 and 2 decreases strictly in a neighbourhood
of tg, a contradiction.

If the claim is not true, then the function p(a=) — ¢(u?) is strictly increasing
over some nonempty interval [t1,%o)r. From the monotonicity of ¢ and the fact that
22 (ty) = 0, we conclude that z(s) < 0 for all s € [t1,to)r, which contradicts the
maximality of z(tg).

Because a(tg) > u(to), using the definition of lower solution from (2.2), and the
fact that 0 < tg < T we get the following contradiction:

(p(a®)Y (to) < (p(u))Y (to) = F(to, u(to))

u(to) — a(to)
= f(to,Oé(tO)) + 771 + |uo(t0) — Oé(zt()”

< f(to,alto)) < (p(@®)Y (to).

(b) If to = o(T) = T then, on the one hand, using the boundary conditions
we obtain:

) )

(3.2)

2(p(0)) = 2(T),  22(p(0)) = z3(T).
On the other hand, z achieves its maximum at p(0), then z(p(0)) < 0. Due to
condition (2.1), T is left dense and hence 2z (T) > 0; thus we conclude that

22(p(0)) = 22(T) = 0.
Now we must distinguish between two possibilities.

(i) If 0 is left scattered, then z(0) = z(p(0)) and the function z attains its maximum
also at ¢ = 0. But, since 0 € (p(0), (7)), a contradiction is obtained as in case (a).

(i) If 0 is left dense, then z2(0) = 0, that is u(0) = a®(0).
We claim that (¢(a®))V(0) < (p(u?))V(0). Indeed, otherwise we deduce as
before, using condition (2.1), that p(u®(t)) < ¢(a”(t)) over an interval (0,0)r.
By the monotonicity of ¢, this implies 22 > 0 on (0, §)r, which contradicts the
fact that z achieves its maximum at 0. Hence, a contradiction is obtained exactly
as in (3.2), with to = 0.

(c) If tg = o(T) > T then z*(T) > 0. From the boundary conditions we deduce,
as before, that 22(T) = 0 and hence z(T) = z(o(T)). Thus z attains its maximum
also in T" and a contradiction yields as in case (a).

Summarizing, we proved that a(t) < u(t) for all ¢ € [p(0), o(T)]r. Similarly, it can
be shown that u(t) < g(¢) for all ¢ € [p(0),o(T)]r and the conclusion follows. O
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3.2. EXISTENCE RESULT

In order to establish the existence of a solution to (3.1), let us consider the following
family of problems defined for A € [0, 1]:

(@(u?)Y = ANF(u) + (1 = MQ(NF(u)),
u(p(0)) = u(a(T)), (3-3)
u®(p(0)) = u(T)

So, for each A € [0, 1], the nonlinear operator associated to (3.3) is the operator M (], ),
where M is defined on [0,1] x C! by

M(X,u) = P(u) + Q(Nrp(u)) (3.4)
+Ha(¢™ [NHy(Np(u) — Q(Np(w))) — Qup(AHv (NF (u) — Q(Np(u)))))-

Again, it is seen that M is completely continuous and, moreover, system (3.3) is
equivalent to the fixed point problem:

=M\ u).

The following result gives a priori bounds for the possible solutions of the family
of boundary value problems (3.3). This result is based on the works by Bereanu and
Mawhin [4,5] for the continuous case T = R.

Lemma 3.4. Assume there exist R,e > 0 such that
T

/ fl,v(t,u(t)Vt > e if um > R,

p(0)
T

[ featuenve <~ if u <R
p(0)
and fix 1 := 7=5g5. Then there exists © > 0 such that if (A\,u) € [0,1] x C! werifies
= M (X u), then |jul, < ©.

Proof. Let (\,u) € [0,1] x C! be such that v = M (A, u). Then, taking t = p(0)
we obtain

T
1
QVe(w) = 7= % F(s,u(s))Vs =0, (35)
which implies
p(u (1)) = AHy (Nr (u))(t) = Qp(AHy (Np(u))) (3.6)

for all ¢ € [p(0), T]y.
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From the definition of F(t,x), we get
U(T)
N (Np(u))(1)] < \f s y(s.u(s))) + 1
p(0)

u(s) = (s, u(s))

T+ Ju(s) — (s a()]|

o(T)
< / 1£(5,7(5,u())| Vs + n[o(T) — p(0)]
p(0)
< L(w+n),
with L := o(T) — p(0) and
Wi sup F(s,0)].

5€[p(0),0(T)]r,a(s) <v<B(s)

Using (3.6) and Lemma 2.2, it is seen, for some constant k, that

(B (t)] <kt €[p(0),T];

and hence
\ At <0 telp(0),Ty,

where 6 := max {!go -k |}
On the other hand using (3 5), we obtain

—1

T
/f(t,'y(t,U(t)))Vt <e.
p(0)

It follows that
uy > —R, u, < R.

Using the inequality ups <y, + fg(T) |u( )’ As, (3.6) and (3.8), we obtain
upy < R+ 0L.
Analogously it can be shown that
Uy > — (R+6L).

Thus,
sup  |u(t)] < R+6L.
[p(0),0(T)]y

Then using (3.7) and (3.9) we conclude that

lull, = sup Ju(®)[+ sup |u(t)] <O,
()0 (D) [0(0). Tl

where © := R+ 6(L + 1).
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Remark 3.5. In particular, the assumption in the previous lemma is satisfied if

T T
/ £t B)VE > 0 > / £(t, ()t
p(0) p(0)

with R > ||&|co, |B]lcc and e > 0 sufficiently small. Observe furthermore that, from
the definition (2.2) together with the boundary condition and the monotonicity of ¢,

one has:
T

/ F(t, BE)VE > o(BAT)) — 9(B2(p(0))) > 0
p(0)

and

T
/ F(t a(t)Vt < p(a®(T)) - p(a®(p(0)) <0,
p(0)

and equality holds in each case only if 5 or « are solutions of (1.1), (1.4). We conclude
that the conditions in the previous lemma are always fulfilled if @ and 3 are proper.

Remark 3.6. As mentioned in the introduction, our results impose a different condi-
tion on the time scale from the ones assumed in previous works, such as a smallness
condition on the graininess function y in [20] or the condition v(0) > w(T) in [22].
Moreover, it is worth noticing that the assumption in the previous lemma depends
in fact on the time scale, because it involves the V-integral. An elementary example
showing this dependence is f(t,u) = a(t)g(u), with a : R — R>( continuous such
that its set Z, of zeros is nonempty and discrete. If g is continuous and satisfies
g(R) > 0 > g(—R) then the lemma is verified for T = R with 3 = R and o = —R.
However, if T = Z,, then the assumptions of Lemma 3.4 cannot be fulfilled. In
concordance with the previous remark, this is due to the fact that, in this case, the
only possible lower or upper solution is the trivial one.

We are now able to prove an existence theorem for (1.1), (1.4). Let us denote by
degp and deg; g the Brouwer and Leray—Schauder degrees respectively. The following
result shows that the Leray—Schauder degree of the solution operator over large balls
of the space C! is different from zero.

Theorem 3.7. Suppose that (1.1), (1.4) has a proper lower solution « and a proper
upper solution B such that a(t) < B(t) for all t € [p(0),0(T)]r. Assume that
[ :1p(0),0(T)]p x R =R is continuous and choose 1 according to Lemma 3.4 and
Remark 3.5. Then deg;¢(I — Mg, Bs(0),0) = —1 for 6 > 0, and the problem (1.1),
(1.4) has at least one solution.

Proof. Let M be the operator given by (3.4) and let § > 6. Then for each A € [0, 1],
the Leray—Schauder degree deg; (I — M(A,+), Bs(0),0) is well defined, and by the

homotopy invariance

degLS(I - M(Oa ')aB(S(O)?O) = degLS<I - M(L ')a B5(0)70>'
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On the other hand,
degys(I — M(0,-), Bs(0),0) = degs(I — (P + QNr), B5(0),0).
Next, observe that the range of the mapping
u = P(u) + Q(Np(u))

is contained in the subspace of constant functions, isomorphic to R. Thus, using
the reduction property of Leray—Schauder degree [11,19] we obtain:

degLS(I - (PJF QNF)aBts(O)aO)
= degp (I— (P + QNF) \5;mmg » Bs(0) NR, 0)
= degB(fQNFv(fd 5)30)

Using the definition of F' and setting ¢ > ||&||oo, || 8]|cc We obtain QNg(d) > 0 and
QNp(—9) < 0 which, in turn, implies

degB(_QNFa (_57 6)7 0) =-1

Then, deg, (I — M(1,-), B5(0),0) = —1. Hence, there exists u € Bs(0) such that
M(1,)(u) = Mp(u) = u, which is a solution for (3.1) and, by Theorem 3.3, (1.1)—(1.4)
has at least one solution. O

Remark 3.8. If @ and 8 in Theorem 3.7 are strict, then reasoning as in Theorem 3.3
it is seen that in fact a(t) < u(t) < B(¢) for all ¢ € [p(0), o(T)]r.

Fixing 0 > 0 and taking n > 0 small enough, using the addition-excision property
of the Leray—Schauder degree, it is seen hat

degLS(I — MF,QQ)g,O) = degLS(I— MF,Bg(O),O) = —17

where Q45 := {u € C': @ < u < B}. Furthermore, as the operator M, associated
o (1.1), (1.4) is equal to Mp on £, g, we deduce that deg; (I — My, Qq 3,0) = —1.

The choice of constant lower and upper solutions in Theorem 3.7 leads to the
following existence result.

Corollary 3.9. Let f(t,x) be continuous on [p(0),o(T)]r x R. If there exists R > 0
such that f(t,R) > 0> f(t,—R) for allt € [0,T|r, then the problem (1.1), (1.4) has
at least one solution.

Proof. Let a(t) = —R and 5(t) = R for all t € [p(0),o(T)]r. It is easy to check that «
and 3 are strict lower and upper solutions of (1.1), (1.4) such that a(t) < 5(t) for all
t € [p(0),0(T)]r. Thus, using Theorem 3.7, we deduce that (1.1), (1.4) has at least
one solution. O
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Example 3.10. Let T be any time scale such that 0 € T is left scattered or right
dense and 10 € T is left dense or right scattered. We consider the following boundary
value problem:
_ v
(|uA|p ? uA> =e " 41+ 6ue® ),
( <1o>>, (8.10)

where p € (1,00). As f(t,z) = e=™ + 14 6z ") is continuous with f(t,1) > 0
and f(t,—1) < 0 for all ¢ € [0,10]r, then by Corollary 3.9, we deduce that (3.10) has
at least one solution u with

—1<u(t) <1, forallte [p(0),0(10)]r.

3.3. MULTIPLICITY RESULT

In this section we establish the existence of at least three solutions to problem
(1.1), (1.4).

Theorem 3.11. Fori = 1,2, assume there exist o; and (; strict lower and upper solu-
tions of (1.1), (1.4), respectively, such that «;(t) < B;(t), a1(t) < as(t), f1(t) < Ba(t)
for allt € [p(0),o(T)]r, and {t € [p(0),a(T)]r : az(t) > B1(t)} # 0. Then (1.1), (1.4)

has at least three different solutions uy,us,us such that
al(t) < U3(t) < ﬁg(t), ai(t) < uz(t) < Bi(t),

for allt € [p(0),0(T)]T and i =1,2.

Proof. Let 71,72 and =3 be the functions associated to the pairs of lower and upper
solutions (a1, 1), (a2, B2) and (aq, B2), respectively. Consider Mp,, M, and Mp,
the operators associated to the pairs (ay, 81), (@2, B2) and (aq, B2), respectively, with
7 > 0 small enough according to Lemma 3.4 and Remark 3.5. As before we deduce,
for 6 > 0, that Mp, has no fixed points in Bs(0)\£2;, with

O = Qa1,[‘31 = {u € ct: ) <u< ﬁl},
Oy = Qa2752 = {U € ct: sy <u< BQ},
Q3= Qo ={ueC' iy <u<fBa}.

Hence, by Remark 3.8,
degLS(I — MFUQlaO) = degLS(I— MF2,QQ70) = degLS(I — MF3,Qg,O) =—1.

Since ay(t) < B1(t) < B2(t), ai(t) < as(t) < Ba(t) for all t € [p(0),0(T)]r and
{# € [0(0),0(T)]s + as(t) > (1)} # b, we have

QN =0, 9 UN C3 and 93\91 UQQ#@.
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Moreover, for i = 1,2 and u € §; it is clear that v;(u) = v3(u) = w and thus
Mp, (u) = Mp,(u). Hence, from the addition-excision property of the Leray—Schauder
degree we obtain

degLS(I - MFS, Qg\Ql U Qo, 0)

=deg; (I — Mp,,Q3,0) —deg; (I — Mp,,2,0) —deg; (I — Mp,,§1,0) = 1.
Then (1.1), (1.4) has at least three distinct solutions wuy, ug, us such that

Oél(t) <ugz < ﬁg(t), Oéi(t) < ul(t) < ﬁi(t),

for all t € [p(0),0(T)]r and i =1,2. O

Example 3.12. Consider the ¢-Laplacian version of the forced pendulum equation

((u™(t)Y +sin(u(t)) = p(t), t€[0,T]r,
u(p(0)) = u(a(T)),
u®(p(0)) = u(T),

where p is continuous. If —1 < p(t) < 1 for all ¢ € [0,T]r, then the problem has at
least two geometrically distinct solutions w, v, that is, such that v # u + 2k7. Indeed,
from the previous theorem, we deduce the existence of distinct uq, us, uz, with

—3—7T<u(t)<—ﬁ E<u(t)<3—7r —3—7T<u(t)<3—7r
2 ! 2’ 9 2 2 2 3 2

It may happen that us = u; 4+ 27, but in this case ug # ui, u; + 27.

3.4. MONOTONE ITERATIVE METHODS

Here, we shall extend the results from [22] to a problem for a p-Laplacian on time
scales. To this end, let us define the sector between two elements u, v in the Banach
space C' as follows:
[u,v], = {weC" ru<w<v}.

Definition 3.13. A function u* is a maximal solution (resp. u. is a minimal solution)
of (1.1), (1.4) in [o, B8], if it is a solution with a < u* < B on [p(0),0(T)]r (resp.
a < u, < f) and every solution w of (1.1), (1.4) verifies w < u* on [p(0),o(T)]r
(resp. usx < w).

The following result shows the existence of extremal solutions of (1.1), (1.4) under

a one-sided growth condition on f.

Theorem 3.14. Let f : [p(0),0(T)]; x R = R be continuous and let a(t) and B(t)
be lower and upper solutions of (1.1), (1.4) respectively, with oo < 8 on [p(0),o(T)]r.
Assume that there exists M > 0 such that for allt € [0,T]r and any u,w € R with
a(t) <w <u < B(t) it is verified that

ftu) — ft,w) < M(u—w). (3.11)

Then problem (1.1), (1.4) has a mazimal solution u* and a minimal solution u, in
the sector [a, B, with u, < u*.
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Proof. For any function z(t) which satisfies a(t) < z(t) < B(¢t) for ¢ € [p(0),o(T)]T,
consider the following boundary value problem on time scales

(A O)T = F(t, (1)) i= F(t, 2(6)) + M(u(t) — 2(1)), t€ [0,T]y.
u(o(T)), (3.12)

where (3.12) is equivalent to

u="T(2) = u(p(0)) + Q(NF(2))
+ Ha (97 [Ho(NE(2) = QINE(2)) = Qu(Hy (N5(2) = QINE(2)] ) -

Then u(t) is a solution of (1.1)—(1.4) if and only if T (u) = u.

We claim that if w,u € [a, §]; are such that w < u, then T (w) < T (u). Indeed,
let the functions u and w be such that a < w < u <  and denote u; = T (u)
and w; := T (w). By contradiction, suppose there exists a point where the function
v :=wuy — w; is negative and fix m € [p(0), o(T)|r such that

min  v(t) =v(m) < 0.
[p(0),0(T)]T ® (m)

For simplicity, we may assume that v(m) < v(t) for all t € [p(0), m)r and, consequently,
m < o(T). We distinguish between the following cases.

(i) Assume that m € (p(0),0(T))r is a left-dense point. Since the function v
achieves its minimum at m, then it follows as in the proof of Theorem 3.3 that
v®(m) = 0 and hence p(uf(m)) = @(w (m)). On the other hand, there exists t; < m
such that v(t) < 0 for all t € [t;,m]; and v(t;) > v(m). Taking into account the
definition of the operator T, it follows that

(p(ur ()Y = F(t,u(t) + M(ur(t) - u(t))

and
(p(wi ()Y = F(t,w(t)) + M(wi (t) = w(?))
for all ¢ € [t;, m];. By (3.11), we obtain

/ (p(u ()T Vs — / (o (5))) Y Vs

(f(s,u(s)) = f(s,w(s)) + M(ui(s) = u(s) — wi(s) +w(s))) Vs

IN

“\3 “\3

M(uq(s) —wi(s))Vs <0 forall t € [t1,m]y.
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Hence —p(uf(t)) + p(w

£(t)) < 0, which implies that w? < uf on [t;,m]. Thus,
vA(t) = (w *UM)A() >
at
(p

for all ¢ € [t1,m]y, so v is nondecreasing on [t1,m]q,

0
v(ty) > v(m).
(©

),a(T))r is left-scattered. From the minimality of v at m

contradicting the fact that
(ii) Assume that m €
it is seen that
v (p(m)) <0, v®(m) > 0.
Then
p(ut (p(m))) < p(wi(p(m))) (3.13)
and
p(ut(m) > e(wi (m)). (3.14)
Using (3.13) and (3.14) we obtain:

()™ (m) > ()™ (m).

Using again the definition of the operator 7 and (3.11) it follows that

0 < ()" (m) = (p(w)" (m) < M(us(m) —wi(m)) <0,

a contradiction.
(iii) Assume that m = p(0), then v achieves its absolute minimum also at o(T).
Observe also that v (T') = v2(p(0)) > 0. Next, consider the following two possibilities:

1. If T is right-scattered, then v”(T) < 0 and we conclude that v (T") = 0. Conse-
quently, v(T) = v(o(T)) and hence v achieves its absolute minimum also at T'.

2. If T is right-dense, then v achieves its absolute minimum at ¢ = 7. Due to
condition (2.1), it follows that v®(7) < 0 which, in turn, implies v2(7T") = 0.

In both situations, a contradiction follows as in cases (i) and (ii) replacing m by T

We conclude that T (u) — T (w) = u; —wi > 0 on [p(0), o(T)]r, that is, the operator
T is monotone nondecreasing over the sector [, 3];.
Next, define
ag=a, apt1 =T (a,) forn >0,

and

Bo =0, Bn+1=T(Bn), forn>0.
Similarly, it can be shown that

Lo <<. . Ko< <3, K < B < BL < By =6

In other words, the sequences (ay),cy and (8,),cy are bounded and monotone.
Using the Arzela—Ascoli theorem, it is seen that 7 is completely continuous. This,
together with the boundedness of the defining sequences, implies that there exist some
subsequences and functions u, < u* such that

Qp, = Uy and [, —u*
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uniformly on [p(0), o(T")]r. But the monotonicity of (), <y and (B,),,cy implies that
o, — ux, and S, — u",

uniformly and it is readily verified that u, and u* are extremal solutions of (1.1)—(1.4).
O

An immediate consequence of Theorem 3.14 is the following.

Corollary 3.15. Assume that f(t,x) is continuous, nonincreasing in x € R, and
that there exists a lower solution «(t) and an upper solution B(t) of (1.1), (1.4)
such that a(t) < B(t) for allt € [p(0),0(T)]r. Then the problem (1.1), (1.4) has at
least one solution in the sector [, ().

Corollary 3.16. Assume that % exists and is continuous on [p(0),0(T)]r x R
and that there exists a lower solution «(t) and an upper solution 5(t) of (1.1), (1.4)
such that a(t) < B(t) for all t € [p(0),0(T)]r. Then the problem (1.1), (1.4) has
at least one solution in the sector |, B];.

Proof. 1t is readily verified that condition (3.11) holds, with

M = max{‘af(t’x)

| t € [p(0),0(D)]r, a <z < b} ,

where a = ming, ) o (1)), @(t) and b = max(,o),« (1), B(t)- O
Example 3.17. Consider the following boundary value problem:
(’uA’p*Q A)V _ sin(u—&-l)—1—}-4Lue“2t
- 1+¢2 ’
u(~}) = u(3). (8.15)
(7i) (%)7

where T is a time scale such that —1 € T is left scattered or right dense and % eT

1
right scattered or left dense and p € (1,00). It is easy to check that the functions
a(t) = —1 and S(t) = 1 are respectively a lower and an upper solution of (3.15).

Thus, by Corollary 3.16, we deduce that (3.15) has at least one solution u such that
—1<u(t) <1forallte[—1, L.

Remark 3.18. All the results of the previous section hold for Dirichlet and Neumann
boundary conditions. In order to verify this, it suffices to define the fixed point

operators

(i) for the Dirichlet boundary condition (1.2):

My(u) = Ha (7" [Hy(Ny(u) — Qp(Hy (Ny()))])

(ii) for the Neumann boundary condition (1.3):

Mjg(u) = P(u) + Q(Ny(u)) + Ha (¢~ [He (N (u) — Q(Ny(u)))]) -
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In the Dirichlet case, it is seen that the range of the corresponding operator My is
bounded; thus, by Schauder’s Theorem the problem (¢(u®(t)))V = F(t,u(t)) has
at least one solution satisfying (1.2) which, in turn, implies the existence of a solution
of (1.1), (1.2) between « and S.

If furthermore o and [ are strict, then the addition-excision property of the
Leray—Schauder degree implies that deg;q(I — Mp, Bs(0),0) = 1 for § > 0. and
the multiplicity of solutions is proved as in Theorem 3.11.

For the Neumann conditions, the results (and their proofs) are completely analo-
gous to the periodic case. We remark that the difference between the Dirichlet and
Neumann/Periodic conditions relies on the fact that, in the first case, the associated
operator is invertible. In other words, the problem ¢(u®)V = h has, for each h,
a unique solution satisfying (1.2). This is clearly not the case under conditions (1.3)
and (1.4), for which the operator p(u®)V is a (nonlinear) zero-index Fredholm operator,
namely, the problem ¢(u®)V = h has family of solutions {u + ¢ : ¢ € R} satisfying the
respective boundary conditions if and only if Qh = 0.
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