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Univ. de Buenos Aires & CONICET

ARGENTINA
krick@dm.uba.ar

Abstract. We extend to Gaussian distributions a result providing smoothed
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2010 Mathematics Subject Classification: Primary 65Y20, Secondary 65F35.

Keywords: Conic condition number. Smoothed analysis. Local analysis.

1 Introduction

In the 1990s D. Spielman and S.H. Teng introduced the notion of smoothed analysis,
in an attempt to give a more realistic analysis of the practical performance of an
algorithm than those obtained through the use of worst-case or average-case analy-
ses. In a nutshell, this new paradigm in probabilistic analysis interpolates between
worst-case and average-case by considering the worst-case (over the data) of the
average value (over possible random perturbations) of the analyzed quantity. See,
for instance, [7] for an overview.

An example of this analysis to the quantity lnκ(A), where A is a square matrix
and κ(A) := ‖A‖ ‖A−1‖, was provided by M. Wschebor in [10]. Wschebor showed
that

max
A∈S(Rn×n)

E
A∼N(A,σ2Id)

lnκ(A) ≤ ln
( n

min{σ, 1}

)
+O(1), (1)

where here, and in what follows, x ∼ N(x, σ2Id) indicates that x is drawn from
an isotropic Gaussian distribution centered at x with covariance matrix σ2Id. The
behavior of the bound H(n, σ) in the right-hand side of (1) shows two expected
properties of a smoothed analysis:
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(SA1) When σ → 0, H(n, σ) tends to its worst-case value (there are no random
perturbations of the input in this case).

(SA2) When σ →∞, H(n, σ) tends to the average value of the analyzed quantity
(the random perturbation is over all the input data in this case).

Indeed, the convergence of H(n, σ) to infinity when σ → 0 is clear, and with it (SA1).
And a result of A. Edelman [6] proves that EA∼N(0,σ2Id) lnκ(A) = lnn+O(1), thus
showing (SA2).

The main agenda of this paper is to introduce the notion of local analysis, which
aims to study locally at a base point x the average value over possible random
perturbations of the analyzed quantity, without taking then the worst-case over all
input data. The benefit of such analysis is that it provides information depending
directly on the base point instead of assuming a worst-case, as in the smoothed
analysis.

We illustrate this notion by developing it for a conic condition number. This is a
condition number satisfying a Condition Number Theorem. We next describe more
precisely this notion and its context.

In 1936 Eckart and Young [5] proved that for a square matrix A, κ(A) =
‖A‖/d(A,Σ) where Σ is the set of non-invertible matrices and d denotes distance.
This result came to be known as the Condition Number Theorem, even though it
was proved more than ten years before the introduction of condition numbers by
Turing [8] and von Neumann and Goldstine [9]. In 1987 J. Demmel observed (and
proved) that similar Condition Number Theorems hold true for the condition num-
bers of various problems [3]. More precisely, he showed that these condition numbers
were either equal to or closely bounded by the (normalized) inverse to the distance
to ill-posedness. That is, that for an input data x of the problem at hand, the
condition number of x for that problem is either equal to or closely bounded by

C (x) =
‖x‖

d(x,Σ)
, (2)

where Σ 6= {0} is an algebraic cone of ill-posed inputs. One year later, Demmel [4]
derived general average analysis bounds for those (conic) condition numbers. These
bounds depend only on the dimension N + 1 of the ambient space, the codimension
of Σ, and its degree. He carried out this idea for the complex case and stated it for
the real case (requiring Σ to be complete intersection) based on an unpublished (and
not findable anywhere) result by Ocneanu. The underlying probability distribution
is the isotropic Gaussian on RN+1 but it is easy to observe that the bounds hold
as well for the uniform distribution on the unit sphere SN (or, equivalently, on any
half-sphere, due to the equality C (−x) = C (x)).

In [2] Demmel’s idea was extended to perform a smoothed analysis of the conic
condition number C (x) in the case that Σ is the zero set of a single real homogeneous
polynomial F in N +1 variables. For this analysis one considers the centers x of the
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distributions in SN (as in (1)) and there are two natural choices for the distribution
itself: a Gaussian supported in RN+1 or a uniform on a spherical cap in SN . The
uniform case is studied in [2], where the following bound is obtained for θ ∈ [0, π/2]:

max
x∈SN

E
x∈BS(x,θ)

ln C (x) ≤ ln
Nd

sin θ
+ 2(ln 2 + 1) (3)

where d is the degree of F and BS(x, θ) is the spherical cap of radius θ centered at x
which we endow with the uniform distribution. This bound H(N, d, θ) recovers an
average analysis in the particular case that the spherical cap is a half-sphere. That
is,

(SA2’) H(N, d, π/2) = ln(Nd) +O(1), is the average value of ln C (x) for x ∈ SN ,
see [4].

A smoothed analysis of the conic condition number C (x) in the Gaussian case
N(x, σ2Id) was still lacking, and it is one of the results we present in this paper,
since it is strongly linked with our local analysis as we will see below. Theorem 4.1
shows that

max
x∈SN

E
x∼N(x,σ2Id)

ln C (x) ≤ H(N, d, σ)

where H(N, d, σ) is an explicit bound that satisfies (SA1) and (SA2). That is

lim
σ→0

H(N, d, σ) =∞ and lim
σ→∞

H(N, d, σ) = ln(Nd) +O(1).

With respect to local analysis, the gist is to obtain bounds for the quantities

E
x∼D(x)

ln C (x)

where x ∈ SN and D(x) is either the uniform distribution on the spherical cap
BS(x, θ) or the Gaussian N(x, σ2Id).

These bounds will be expressions H(N, d, ν,C (x)) where ν is either θ or σ de-
pending on the underlying distribution, which should coincide with smoothed anal-
ysis bounds when C (x) =∞. More precisely, if we denote by H∞(N, d, ν) the result
of replacing C (x) by ∞ in H(N, d, ν,C (x)) then we want the following:

(LA0) H∞(N, d, ν) has the same behavior as the smoothed analysis bound
H(N, d, ν).

Furthermore, when C (x) <∞ we seek the following limiting behavior:

(LA1) lim
ν→0

H(N, d, ν,C (x)) = ln(C (x)) +O(1), the local complexity at x.

(LA2) lim
σ→∞

H(N, d, σ,C (x)) = ln(Nd) + O(1) in the Gaussian case, the average

complexity.
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(LA2’) H(N, d, π/2,C (x)) = ln(Nd) +O(1) in the uniform case, the average com-
plexity.

Indeed, we show that this is the case in Theorem 3.1 (uniform case) and Theo-
rem 4.8 (Gaussian case).

Acknowledgments. We are grateful to Pierre Lairez for many useful discussions.
In particular, for pointing to us an argument in Proposition 4.2. We also thank
Martin Lotz for making us notice, during the refereeing procedure, that there is a
nice alternative proof of Theorem 4.1.

2 Notations and preliminaries

In all what follows we consider the space RN+1 endowed with the standard inner
product 〈 , 〉 and its induced norm ‖ ‖. Within this space we have the unit sphere
SN = {x ∈ RN+1 : ‖x‖ = 1}, and for x ∈ SN we denote by B(x, r) = {x ∈ RN+1 :
‖x− x‖ ≤ r} the closed ball centered at x ∈ RN+1 with radius r ≥ 0, and by

BS(x, θ) = {x ∈ SN : 0 ≤ ^(x, x) ≤ θ} = {x ∈ SN : 〈x, x〉 ≥ cos θ}

the spherical cap in SN centered at x ∈ SN with radius 0 ≤ θ ≤ π, that is the closed
ball of radius θ around x in SN with respect to the Riemannian distance in SN .

We will also refer to the sine distance dsin in RN+1 \ {0} given by dsin(x, x) :=
sin(^(x, x)). Let Bsin(x, ρ) := {x ∈ SN : dsin(x, x) ≤ ρ} denote the closed ball of
radius ρ with respect to dsin around x ∈ SN . This is the union of BS(x, θ) with
BS(−x, θ) where θ ∈ [0, π/2] is such that ρ = sin θ.

We will denote by ON = vol(SN ) the volume of SN . We recall (see [1,
Prop. 2.19(a)]) that

ON =
2π

N+1
2

Γ(N+1
2 )

(4)

as well as [1, Cor. 2.20]

vol(B(0, 1)) =
ON
N + 1

(5)

and, for x ∈ SN and θ ∈ [0, π2 ], the bound (see [1, Lem. 2.34])

ON√
2π(N + 1)

(sin θ)N ≤ vol(BS(x, θ)) ≤ ON
2

(sin θ)N . (6)

The main object in this paper is a conic condition number on RN+1, i.e. a
function given by

C : RN+1 → [1,∞], C (x) =
‖x‖

d(x,Σ)
,
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where Σ 6= {0} is the set of ill-posed inputs in RN+1, which we assume closed under
scalar multiplication. We note that C (x) ≥ 1 for all x since 0 ∈ Σ. As C is scale
invariant we may restrict to data x lying in SN where C can also be expressed as

C (x) =
1

dsin(x,Σ ∩ SN )
.

3 The uniform case

We endow Bsin(x, ρ) with the uniform probability measure. A smoothed analysis for
this measure is given in [1, Th. 21.1]. Assume that Σ is contained in a real algebraic
hypersurface, given as the zero set of a homogeneous polynomial of degree d. Then,
for all θ ∈ [0, π2 ] and ρ := sin θ, we have

E
x∈BS(x,θ)

ln C (x) = E
x∈Bsin(x,ρ)

ln C (x) ≤ ln
Nd

sin θ
+K (7)

and

E
x∈SN

ln C (x) ≤ ln(Nd) +K, (8)

where K = 2(ln 2 + 1). Here ln denotes Neperian logarithm. We observe that
the equality above is due to the fact that C (x) = C (−x) for all x ∈ SN and that
volBsin(x, ρ) = volBS(x, θ) + volBS(−x, θ).

The same observation applies to the following result.

Theorem 3.1. Let C ba a conic condition number on RN+1 with set of ill-posed
inputs Σ. Assume that Σ is contained in a real algebraic hypersurface, given as the
zero set of a homogeneous polynomial of degree d. Let x ∈ SN and 0 ≤ θ ≤ π. Then,
for ρ := sin θ,

E
x∈BS(x,θ)

ln C (x) ≤


ln

Nd

ρ+ 1−ρ
C (x)

+ ln 12 + 2 if ρ >
1

2 C (x) + 1

ln
1

ρ+ 1−ρ
C (x)

+ ln 4 if ρ ≤ 1

2 C (x) + 1
.

In particular, there is a uniform explicit bound H(N, d, θ,C (x)) –defined in (10)
below– such that

E
x∈BS(x,θ)

ln C (x) ≤ H(N, d, θ,C (x)).

This bound satisfies satisfies (LA0), since H∞(N, d, θ) = ln Nd
sin θ+O(1) as H(N, d, θ)

in (3), (LA1) and (LA2’).

Proof. Assume first that
1

2 C (x) + 1
< ρ ≤ 1. In this case, we have

ρ(2 C (x) + 1) > 1 ⇐⇒ 2ρ C (x) + ρ > 1 ⇐⇒ 2ρ C (x) > 1− ρ ⇐⇒ 2ρ >
1− ρ
C (x)
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and we can decompose

ρ =
1

3
ρ+

1

3
(2ρ) >

1

3

(
ρ+

1− ρ
C (x)

)
, i.e

1

ρ
<

3

ρ+ 1−ρ
C (x)

.

Therefore, by (7),

E
x∈BS(x,θ)

ln C (x) ≤ ln
Nd

ρ
+ ln 4 + 2

< ln
3Nd

ρ+ 1−ρ
C (x)

+ ln 4 + 2 = ln
Nd

ρ+ 1−ρ
C (x)

+ ln 12 + 2.

We next assume 0 ≤ ρ ≤ 1

2 C (x) + 1
. In this case,

1

2 C (x) + 1
=

1

4

( 1

2 C (x) + 1
+

3

2 C (x) + 1

)
≥ 1

4

(
ρ+

1− ρ
C (x)

)
since

3

2 C (x) + 1
≥ 1

C (x)
≥ 1− ρ

C (x)
. Equivalently,

2 C (x) + 1 ≤ 4

ρ+ 1−ρ
C (x)

.

We also use here that for all x ∈ BS(x, θ),

1

C (x)
= dsin(x,Σ) ≥ dsin(x,Σ)− dsin(x, x) ≥ 1

C (x)
− ρ

≥ 1

C (x) + 1
2

− 1

2 C (x) + 1
=

1

2 C (x) + 1
, (9)

and therefore

C (x) ≤ 2 C (x) + 1 ≤ 4

ρ+ 1−ρ
C (x)

which implies

ln C (x) ≤ ln
1

ρ+ 1−ρ
C (x)

+ ln 4.

This shows the first statement. We now derive the expression of a bound
H(N, d, θ,C (x)).

Let ϕ : [0, 1]→ R be the function defined by

ρ 7→ 2(Nd− 1)ρ
log

1
2 C(x)

1
2

+ 1
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where the exponent of ρ in the numerator is the logarithm in base
1

2 C (x)
of

1

2
,

which, by continuity, we take to be 0 when C (x) =∞. We note that ϕ is concave,
monotonically increasing, and satisfies ϕ(0) = 1, ϕ(1) = 2Nd−1, and when C (x) =
∞, ϕ(ρ) = 2Nd− 1. Moreover, by monotonicity,

ϕ
( 1

2 C (x) + 1

)
≤ ϕ

( 1

2 C (x)

)
= 2(Nd− 1)

1

2
+ 1 = Nd.

This implies, since

ln
1

ρ+ 1−ρ
C (x)

+ ln 4 ≤ ln
ϕ(ρ)

ρ+ 1−ρ
C (x)

+ ln 12 + 2 for 0 ≤ ρ < 1

2 C (x) + 1

and using also concavity,

ln
Nd

ρ+ 1−ρ
C (x)

+ ln 12 + 2 ≤ ln
ϕ(ρ)

ρ+ 1−ρ
C (x)

+ ln 12 + 2 for
1

2 C (x) + 1
≤ ρ ≤ 1,

that

E
x∈BS(x,θ)

ln C (x) ≤ ln
ϕ(ρ)

ρ+ 1−ρ
C (x)

+ ln 12 + 2.

That is,

H(N, d, θ,C (x)) = ln
2(Nd− 1)ρ

log
1

2 C(x)

1
2

+ 1

ρ+ 1−ρ
C (x)

+ ln 12 + 2. (10)

Finally, it is trivial to verify, from the specific values taken by ϕ mentioned previ-
ously, that H(N, d, θ,C (x)) satisfies (LA0), (LA1) and (LA2’).

4 The Gaussian case

We keep the same conic condition number C but now consider a Gaussian measure
N(x, σ2Id) in RN+1 centered at x ∈ SN and with covariance matrix σ2Id for 0 <
σ <∞, that is with density function given by

1

(2πσ2)
N+1

2

exp
(−‖x− x‖2

2σ2

)
.

Since our local analysis will rely on a smoothed analysis in this case, which is not
yet known, we begin by studying a general smoothed analysis for the Gaussian case.
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4.1 Smoothed analysis

Let x ∈ SN . We recall that, for any 0 ≤ θ ≤ π
2 ,

BS(x, θ) = {x ∈ SN : 0 ≤ ^(x, x) < θ},

and in the particular case θ = π
2 we denote

SN+ (x) := BS

(
x,
π

2

)
=
{
x ∈ SN : 0 ≤ ^(x, x) <

π

2

}
=
{
x ∈ SN : 〈x, x〉 > 0

}
,

the open half-sphere centered at x.

The main result of this section is the following smoothed analysis for the Gaus-
sian distribution.

Theorem 4.1. Let C be a conic condition number on RN+1 with set of ill-posed
inputs Σ. Assume that Σ is contained in a real algebraic hypersurface, given as the
zero set of a homogeneous polynomial of degree d, and that N ≥ 5. Then, there
exists an explicit bound H(N, d, σ) –defined in (13)– such that

max
x∈SN

E
x∼N(x,σ2Id)

ln C (x) ≤ H(N, d, σ).

This bound satisfies

(SA1) lim
σ→0

H(N, d, σ) =∞, the worst-case value.

(SA2) lim
σ→∞

H(N, d, σ) = ln(Nd) + 2(ln 2 + 1), the average value, in remarkable

coincidence with (8).

The following map plays a central role in all what follows,

Ψ : RN+1 \ x⊥ → SN+ (x), x 7→

{
‖x‖−1x if 〈x, x〉 > 0

−‖x‖−1x otherwise.
(11)

The main stepping stone towards the proof of Theorem 4.1 is the following.

Proposition 4.2. Let x ∈ SN . There exists a probability density f : [0, π2 ]→ R≥0 of
a random variable θ ∈ [0, π2 ], associated to x, σ and N , such that for all measurable
function F : RN+1 → R≥0 satisfying F (x) = F (λx) for all λ ∈ R×, one has

E
y∼N(x,σ2Id)

F (y) = (1− e−
1

2σ2 ) E
θ∼f

(
E

x∈BS(x,θ)
F (x)

)
+ e−

1
2σ2 E

x∈SN+ (x)
F (x).

We begin by proving the following lemma.
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Lemma 4.3. For any measurable function F : RN+1 → R+ satisfying F (λy) =
F (y), ∀λ ∈ R×, one has

E
y∼N(x,σ2Id)

F (y) =

∫
SN+ (x)

Gx(^(x, x))F (x)dx

where Gx : [0, π2 ]→ R>0 is a decreasing function of α defined by

Gx(α) =
1

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(
− λ2 + 1− 2λ cosα

2σ2

)
|λ|Ndλ.

Proof. We have

E
y∼N(x,σ2Id)

F (y) =
1

(2πσ2)
N+1

2

∫
RN+1

F (y) exp
(−‖y − x‖2

2σ2

)
dy

=
1

(2πσ2)
N+1

2

∫
SN+ (x)

(∫ ∞
−∞

F (λx) exp
(−‖λx− x‖2

2σ2

)
|λ|Ndλ

)
dx

=

∫
SN+ (x)

F (x)

[
1

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(−‖λx− x‖2

2σ2

)
|λ|Ndλ

]
dx

=

∫
SN+ (x)

F (x)G(x)dx

where the second equality follows from the transformation formula [1, Thm. 2.1]
applied to the diffeomorphism

Φ : RN+1 \ x⊥ → SN+ (x)× R \ {0}, x 7→

{
(Ψ(x), ‖x‖2) if 〈x, x〉 > 0

(Ψ(x),−‖x‖2) otherwise,

and

G(x) :=
1

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(−‖λx− x‖2

2σ2

)
|λ|Ndλ

does not depend on F . Now, for x, x ∈ SN+ (x),

‖λx− x‖2 = λ2 − 2λ cos(^(x, x)) + 1.

Therefore, G(x) =: Gx(^(x, x)) where for 0 ≤ α ≤ π
2 ,

Gx(α) =
1

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(
− λ2 + 1− 2λ cosα

2σ2

)
|λ|Ndλ,

which is a continuously differentiable decreasing function of α.

Proof of Proposition 4.2. By Lemma 4.3,

E
y∼N(x,σ2Id)

F (y) =

∫
SN+ (x)

Gx(^(x, x))F (x)dx. (12)
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Now, by the fundamental Theorem of Calculus for 0 < α < π
2 ,

Gx(α) = Gx

(π
2

)
−
∫ π

2

α
G′x(θ)dθ = Gx

(π
2

)
−
∫ π

2

0
1l{α≤θ}G

′
x(θ)dθ.

Replacing this in (12) and changing the order of integration, we obtain

E
y∼N(x,σ2Id)

F (y) = Gx

(π
2

)∫
SN+ (x)

F (x)dx−
∫ π

2

0

(∫
SN+ (x)

F (x)1l{^(x,x)≤θ}dx
)
G′x(θ)dθ.

Now, since

E
x∈SN+ (x)

F (x) =

∫
SN+ (x)

F (x)dx

vol(SN+ (x))
and E

x∈BS(x,θ)
F (x) =

∫
BS(x,θ)

F (x)dx

vol(BS(x, θ))
,

we obtain

E
y∼N(x,σ2Id)

F (y) = Gx

(π
2

)
vol(SN+ (x)) E

x∈SN+ (x)
F (x)

−
∫ π

2

0

(
vol(BS(x, θ)) E

x∈BS(x,θ)
F (x)

)
G′x(θ)dθ.

We now denote

f(θ) := −vol(BS(x, θ))G′x(θ)

1− e
−1

2σ2

,

which is a non-negative function since Gx is decreasing, and rewrite the equality
above as

E
y∼N(x,σ2Id)

F (y) = H(N, σ) E
x∈SN+ (x)

F (x) + (1− e
−1

2σ2 )

∫ π
2

0

(
E

x∈BS(x,θ)
F (x)

)
f(θ)dθ,

where

H(N, σ) = Gx

(π
2

)
vol(SN+ (x)) = vol(SN+ (x))

1

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(
− λ2 + 1

2σ2

)
|λ|Ndλ.

We now prove that H(N, σ) = e−
1

2σ2 : Changing variables ν = λ
σ we have

H(N, σ) =
vol(SN+ (x))

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(
− λ2 + 1

2σ2

)
|λ|Ndλ

=
vol(SN+ (x))

(2πσ2)
N+1

2

∫ ∞
−∞

exp
(
− ν2

2
− 1

2σ2

)
|ν|NσN+1dν

= e−
1

2σ2

[
vol(SN+ (x))

(2π)
N+1

2

∫ ∞
−∞

e−
ν2

2 |ν|Ndν

]
.
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To estimate the quantity between the square brackets we use the known equality∫ ∞
0

νNe−
x2

2 dν = Γ
(N + 1

2

)
2
N−1

2

together with (4) to obtain

vol(SN+ (x))

(2π)
N+1

2

∫ ∞
−∞

exp
(
− ν2

2

)
|ν|Ndν =

vol(SN+ (x))

(2π)
N+1

2

Γ
(N + 1

2

)
2
N+1

2

=
π
N+1

2

Γ
(
N+1

2

)
(2π)

N+1
2

Γ
(N + 1

2

)
2
N+1

2

= 1.

Therefore

E
y∼N(x,σ2Id)

F (y) = e
−1

2σ2 E
x∈SN+ (x)

F (x) + (1− e
−1

2σ2 )

∫ π
2

0

(
E

x∈BS(x,θ)
F (x)

)
f(θ)dθ.

This implies, by taking F = 1, that

1 = e
−1

2σ2 + (1− e
−1

2σ2 )

∫ π
2

0
f(θ)dθ,

i.e. ∫ π
2

0
f(θ)dθ = 1.

Therefore f is a density on [0, π2 ], and∫ π
2

0

(
E

x∈BS(x,θ)
F (x)

)
f(θ)dθ = E

θ∼f

(
E

x∈BS(x,θ)
F (x)

)
.

Since C (x) = C (λx) for all λ ∈ R×, we can now focus on F (x) := ln C (x).

Proposition 4.4. With the notation in Proposition 4.2, we have

E
y∼N(x,σ2Id)

ln C (y) ≤ (1− e
−1

2σ2 ) E
θ∼f

(ln
( 1

sin θ

)
) + ln(Nd) + 2(ln 2 + 1).
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Proof. Replacing the expectations in the right-hand side of the equality in
Proposition 4.2 by their bound in (7) for ρ = sin θ and ρ = 1 = sin π

2 , we obtain

E
y∼N(x,σ2Id)

ln C (y) = (1− e
−1

2σ2 ) E
θ∼f

(
E

x∈BS(x,θ)
ln C (x)

)
+ e−

1
2σ2 E

x∈SN+ (x)
ln C (x)

≤ (1− e
−1

2σ2 ) E
θ∼f

(ln
Nd

sin θ
+K) + e−

1
2σ2 E

x∈SN+ (x)
(ln(Nd) +K)

≤ (1− e
−1

2σ2 )
(

E
θ∼f

(ln
( 1

sin θ

)
+ ln(Nd) +K)

)
+ e−

1
2σ2 (ln(Nd) +K)

≤ (1− e
−1

2σ2 ) E
θ∼f

(ln
( 1

sin θ

)
) + ln(Nd) +K,

where K = 2(ln 2 + 1). The result follows from the last equality in Proposition 4.2.

Our next goal is to estimate the right-hand side in Proposition 4.4.

Lemma 4.5. Let 0 ≤ t ≤ π
4 . Then∫ π

2

t
ln
( 1

sin θ

)
f(θ)dθ ≤ ln

√
2 +

∫ √
2
2

sin t

(∫ arcsin s

t
f(θ)dθ

)1

s
ds.

Proof. Write∫ π
2

t
ln
( 1

sin θ

)
f(θ)dθ =

∫ π
4

t
ln
( 1

sin θ

)
f(θ)dθ +

∫ π
2

π
4

ln
( 1

sin θ

)
f(θ)dθ.

Since 1
sin θ ≤

√
2 for θ ∈ [π4 ,

π
2 ], the second term satisfies∫ π

2

π
4

ln
( 1

sin θ

)
f(θ)dθ ≤ ln

√
2

∫ π
2

π
4

f(θ)dθ.

We analyze the first term. Let A = {(θ, r) ∈ [t, π4 ] × [0, ln
(

1
sin t

)
] : r ≤ ln( 1

sin θ )},
and Ar = {θ ∈ [t, π4 ] : r ≤ ln( 1

sin θ )}. By Fubini’s Theorem we have both∫
(θ,r)∈A

f(θ)d(θ, r) =

∫ π
4

t

(∫ ln( 1
sin θ

)

0
dr
)
f(θ)dθ =

∫ π
4

t
ln
( 1

sin θ

)
f(θ)dθ

and∫
(θ,r)∈A

f(θ)d(θ, t) =

∫ ln( 1
sin t

)

0

(∫
θ∈Ar

f(θ)dθ
)

dr

=

∫ ln
√

2

0

(∫
θ∈Ar

f(θ)dθ
)

dr +

∫ ln( 1
sin t

)

ln
√

2

(∫
θ∈Ar

f(θ)dθ
)

dr

= ln
√

2

∫ π
4

t
f(θ)dθ +

∫ ln( 1
sin t

)

ln
√

2

(∫
sin t≤sin θ≤e−r

f(θ)dθ
)

dr,

12



since t ≤ π
4 implies ln

√
2 ≤ ln

(
1

sin t

)
and when r ≤ ln

√
2, then Ar = [t, π4 ]. There-

fore, ∫
(θ,r)∈A

f(θ)d(θ, r) = ln
√

2

∫ π
4

t
f(θ)dθ +

∫ √
2
2

sin t

(∫ arcsin s

t
f(θ)dθ

)1

s
ds,

by taking s = e−r. Finally,∫ π
2

t
ln
( 1

sin θ

)
f(θ)dθ ≤ ln

√
2

∫ π
2

π
4

f(θ) + ln
√

2

∫ π
4

t
f(θ)dθ +

∫ √
2
2

sin t

(∫ arcsin s

t
f(θ)dθ

)1

s
ds

≤ ln
√

2

∫ π
2

t
f(θ)dθ +

∫ √
2

2

sin t

(∫ arcsin s

t
f(θ)dθ

)1

s
ds

≤ ln
√

2 +

∫ √
2

2

sin t

(∫ arcsin s

t
f(θ)dθ

)1

s
ds

since
∫ π

2
t f(θ)dθ ≤ 1.

Lemma 4.6. Assume N ≥ 5. For all t ∈ [0, π4 ], one has∫ t

0
f(θ)dθ ≤ min

{
1,

1

1− e
−1

2σ2

(1

2
(sin(2t))N +

(sin t)N

σN+1

)}
.

Proof. For t ≤ π
2 ,∫ t

0
f(θ)dθ = E

θ∼f
(1l{θ≤t}) ≤ E

θ∼f

(
E

BS(x,θ)
1l{^(x,x)≤t}

)
)

≤ 1

1− e
−1

2σ2
E

y∼N(x,σ2Id)
(1l{^(Ψ(y),x)≤t})

=
1

1− e
−1

2σ2

Prob
y∼N(x,σ2Id)

{
^(Ψ(y), x) ≤ t

}
,

for Ψ defined in (11). The first inequality holds because for θ ≤ t, ^(x, x) ≤ θ implies
^(x, x) ≤ t, and the second by Proposition 4.2 applied to F = 1l{

^(Ψ(y),x)≤t
}. It is

then enough to bound the right-hand expression.
We observe that for 0 ≤ t ≤ π

2 , the set K =
{
y ∈ RN+1 : ^(Ψ(y), x) ≤ t

}
is a

pointed cone with vertex at 0, central axis passing through x and angular opening
α := 2t. In addition, one can prove by the cosine theorem that this cone is included
in the union of the pointed cone K with vertex at x, central axis passing through 2x
and angular opening 2α with the intersection K∩B(x, 1) (see Figure 1). Hence, the
measure of K (with respect to N(x, σ2Id)) is bounded by the sum of the measures
of K and K ∩B(x, 1).

13



x

0

2α

α

K

K

Figure 1 The cones K (shaded) and K (line patterned).

As the vertex x of K coincides with the center of N(x, σ), the measure of K
with respect to N(x, σ) equals the proportion of the volume (in S(x, 1)) of the
intersection of K with S(x, 1) within this sphere. That is, the measure of K with
respect to N(x, σ) satisfies

Prob
x∼N(x,σ2Id)

{x ∈ K} =
vol(BS(x, 2t))

ON

where, we recall, ON := vol(SN ). Using (6) we deduce that, for t ∈ [0, π4 ],

Prob
x∼N(x,σ2Id)

{x ∈ K} ≤ 1

2
(sin(2t))N .

14



Also,

Prob
x∼N(x,σ2Id)

{x ∈ K ∩B(x, 1)} =

∫
x∈K∩B(x,1)

1

(2πσ2)
N+1

2

exp
(
− ‖x− x‖

2

2σ2

)
dx

≤ 1

(2πσ2)
N+1

2

∫
x∈K∩B(x,1)

1dx =
1

(2πσ2)
N+1

2

vol(K ∩B(x, 1))

≤ 1

(2πσ2)
N+1

2

vol(K ∩B(0, 2)) =
vol(BS(x, t))

(2πσ2)
N+1

2 ON
vol(B(0, 2))

≤
(6)

2N+1(sin t)N

(2πσ2)
N+1

2 · 2
vol(B(0, 1)) ≤

(4)(5)

2
N+1

2 (sin t)N

Γ(N+1
2 )(N + 1)σN+1

≤ 2N+ 1
2 e

N−1
2 (sin t)N

√
π(N − 1)

N
2 (N + 1)σN+1

.

Here we used the well-known lower bound Γ(N+1
2 ) >

√
2π
(
N−1

2

)N
2
e−

N−1
2 (see for

instance [1, Eq. 2.14]) for the last inequality. We finish the proof by noting that it
can be easily proven by induction, using for instance that NN+1 ≥ 2N(N − 1)N ,
that for all N ≥ 5, we have

2N+ 1
2 e

N−1
2

√
π(N − 1)

N
2 (N + 1)

≤ 1.

Lemma 4.7. Assume N ≥ 5. Then,

E
θ∼f

(ln
( 1

sin θ

)
) ≤ 1

N

(
1 + ln

(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)
.

Proof. We have by Lemma 4.5 with t = 0,

E
θ∼f

(ln
( 1

sin θ

)
) ≤ ln

√
2 +

∫ √
2
2

0

(∫ arcsin s

0
f(θ)dθ

)1

s
ds,

where by Lemma 4.6, since 0 ≤ arcsin s ≤ π
4 for 0 ≤ s ≤

√
2

2 ,∫ arcsin s

0
f(θ)dθ ≤ min

{
1,

1

1− e−
1

2σ2

(1

2
(sin(2 arcsin s))N +

(sin(arcsin s))N

σN+1

)}
≤ min

{
1,

1

1− e−
1

2σ2

(
2N−1sN +

sN

σN+1

)}
≤ min

{
1,

2N−1 + 1
σN+1

1− e−
1

2σ2

sN
}
.

15



We have

2N−1 + 1
σN+1

1− e−
1

2σ2

sN ≤ 1 ⇐⇒
(

2N−1 +
1

σN+1

)
sN ≤ 1− e−

1
2σ2 ⇐⇒ s ≤ c(N, σ),

where c(N, σ) :=
N

√
(1− e−

1
2σ2 )σN+1

1 + 2N−1σN+1
. In addition we observe that for all N ≥ 2,

c(N, σ) <

√
2

2
since

c(N, σ) <
1√
2
⇐⇒ (1− e−

1
2σ2 )σN+1

1 + 2N−1σN+1
<

1

2
N
2

⇐⇒ 2
N
2 (1− e−

1
2σ2 )σN+1 < 1 + 2N−1σN+1.

Rewriting c(N, σ)−N =
2N−1 + 1

σN+1

1− e−
1

2σ2

we get

E
θ∼f

(ln
( 1

sin θ

)
) ≤ ln

√
2 +

∫ c(N,σ)

0

(∫ arcsin s

0
f(θ)dθ

)1

s
ds+

∫ √
2

2

c(N,σ)

(∫ arcsin s

0
f(θ)dθ

)1

s
ds

≤ ln
√

2 +

∫ c(N,σ)

0
c(N, σ)−NsN−1ds+

∫ √
2

2

c(N,σ)

1

s
ds

≤ ln
√

2 +
1

N
+ ln

√
2

2
− ln c(N, σ)

=
1

N

(
1 + ln

2N−1 + 1
σN+1

1− e−
1

2σ2

)
=

1

N

(
1 + ln

(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)
.

Proof of Theorem 4.1. By Proposition 4.4 and Lemma 4.7,

E
y∼N(x,σ2Id)

ln C (y) ≤ (1− e
−1

2σ2 ) E
θ∼f

(ln
( 1

sin θ

)
) + ln(Nd) +K

≤ 1− e
−1

2σ2

N

(
1 + ln

(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)
+ ln(Nd) +K,

with K = 2(ln 2 + 1). We then define

H(N, d, σ) =
(1− e−

1
2σ2 )

N

(
1+ln

(
2N−1+

1

σN+1

)
−ln(1−e−

1
2σ2 )

)
+ln(Nd)+2(ln 2+1).

(13)
We now verify that H(N, d, σ) satisfies (SA1) and (SA2):
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(SA1) lim
σ→0

H(N, d, σ) = lim
σ→0

( 1

N

(
1 + ln

(
2N−1 +

1

σN+1

))
+ ln(Nd) + 2(ln 2 + 1)

)
= lim

σ→∞

(N + 1

N
ln
Nd

σ
+O(1)

)
= ∞.

Note that actually the difference of the formula in the last line compared to
(7), with the dispersion parameter σ replacing sin θ, is negligible.

(SA2) lim
σ→∞

H(N, d, σ) = ln(Nd) + 2(ln 2 + 1), and we recover the well-known,

average-case analysis, bound for Ex∈SN ln(C (x)) (see [4] and [1, Theo-
rem 21.1]).

4.2 Local analysis

The main result of this section is the following.

Theorem 4.8. Let C be a conic condition number on RN+1 with N ≥ 6, with set
of ill-posed inputs Σ. Assume that Σ is contained in a real algebraic hypersurface,
given as the zero set of a homogeneous polynomial of degree d. Let x ∈ SN and
σ ≥ 0. Then, there is an explicit bound H(N, d, σ,C (x)) –defined in (23) below–
such that

E
x∼N(x,σ2Id)

ln C (x) ≤ H(N, d, σ,C (x)).

This bound satisfies (LA0), (LA1) and (LA2).

In order to prove Theorem 4.8 we need the following lemma.

Lemma 4.9. Assume N ≥ 2. For all t ∈ [0, π/2],∫ π
2

t
f(θ)dθ ≤ min

{
1,

2πσ
√
N + 1

(1− e−
1

2σ2 )t

}
.

Proof. The idea is to apply Markov’s inequality (e.g. [1, Corollary 2.9]) to the
density f to deduce that∫ π

2

t
f(θ)dθ = Prob

θ∼f
(θ ≥ t) ≤ 1

t
E
θ∼f

(θ)

Therefore we need to bound E
θ∼f

(θ). We first prove that

E
θ∼f

(θ) ≤
√

2π

1− e
−1

2σ2
E

y∈N(x,σ2Id)
(‖Ψ(y)− x‖), (14)

where Ψ is given by (11), and then that

E
y∈N(x,σ2Id)

(‖Ψ(y)− x‖) ≤
√

2σ
√
N + 1. (15)
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This implies

E
θ∼f

(θ) ≤ 2πσ
√
N + 1

1− e
−1

2σ2

.

To show (14) we apply Proposition 4.2 with F (y) = ‖Ψ(y)− x‖ and get

E
y∈N(x,σ2Id)

(‖Ψ(y)− x‖) ≥ (1− e
−1

2σ2 ) E
θ∼f

(
E

x∈BS(x,θ)
(‖x− x‖)

)
. (16)

We claim that

E
x∈BS(x,θ)

(‖x− x‖) ≥
√

2

2π
θ. (17)

Indeed, for 0 ≤ α := ^(x, x) ≤ π
2 , one has

2
√

2

π
α ≤ ‖x− x‖ ≤ α.

Therefore, writing v(θ) := vol(BS(x, θ)),

E
x∈BS(x,θ)

(‖x− x‖) ≥ 2
√

2

π
E

x∈BS(x,θ)
^(x, x)

=
2
√

2

π v(θ)

(∫
BS(x, θ

2
)
^[x, x]dx+

∫
BS(x,θ)\BS(x, θ

2
)
^[x, x]dx

)

≥ 2
√

2

πv(θ)

∫
BS(x,θ)\BS(x, θ

2
)

θ

2
dx =

θ
√

2

π

(
v(θ)− v( θ2)

v(θ)

)
.

Now, for 0 ≤ θ ≤ π
2 , we have

sin θ = 2 sin
θ

2
cos

θ

2
≥
√

2 sin
θ

2
,

which implies

sin
θ

2
≤ sin θ√

2
.

Using (6) twice we have, for N ≥ 6,

v
(θ

2

)
≤ ON

2

(
sin

θ

2

)N
≤ ON

2

1

2
N
2

(sin θ)N ≤ ON
2

1√
2π(N + 1)

(sin θ)N ≤ v(θ)

2

and we deduce that
v(θ)−v( θ

2
)

v(θ) ≥ 1
2 . With this,

E
x∈BS(x,θ)

(‖x− x‖) ≥
√

2

2π
θ

18



which shows (17). From (16) and (17) it follows that

E
y∈N(x,σ2Id)

(‖Ψ(y)− x‖) ≥
√

2(1− e
−1

2σ2 )

2π
E
θ∼f

(θ),

which shows (14). We now show (15). We let Ψ∗(y) be the closest point to x on the
line through 0 and y (see Figure 2) and have

E
y∈N(x,σ2Id)

(‖Ψ(y)− x‖) ≤
√

2 E
y∈N(x,σ2Id)

(‖Ψ∗(y)− x‖)

≤
√

2 E
y∈N(x,σ2Id)

(‖y − x‖) ≤
√

2σ
√
N + 1,

where the last inequality is a consequence of [1, Prop. 2.10 & Lem. 2.15].

x

0

y

Ψ∗(y)

Ψ(y)

Figure 2 The point Ψ∗(y).

This shows (15). Therefore,

E
θ∼f

(θ) ≤ 2πσ
√
N + 1

1− e
−1

2σ2

.

as desired, and hence, ∫ π
2

t
f(θ)dθ ≤ 2πσ

√
N + 1

(1− e
−1

2σ2 )t
.

Proof of Theorem 4.8. Let t := arcsin 1
2 C (x) . Since C (x) ≥ 1, 1

2 C (x) ≤
1
2

and we have t ≤ π
6 . For all θ ≤ t and all x ∈ BS(x, θ) we have

1

C (x)
= dsin(x,Σ) ≥ dsin(x,Σ)−dsin(x, x) ≥ 1

C (x)
−sin θ ≥ 1

C (x)
− 1

2 C (x)
≥ 1

2 C (x)
,
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which implies ln(C (x)) ≤ ln(2 C (x)).
We apply Proposition 4.2 to F (y) = ln C (y) and use the previous inequality and the
bounds (7) and (8) to obtain

E
y∼N(x,σ)

ln C (y) = (1− e
−1

2σ2 ) E
θ∼f

(
E

x∈BS(x,θ)
ln C (x)

)
+ e−

1
2σ2 E

x∈SN+ (x)
ln C (x)

≤ (1− e
−1

2σ2 )
(

ln(2 C (x))

∫ t

0
f(θ)dθ +

∫ π
2

t

(
ln
( Nd

sin θ

)
+K

)
f(θ)dθ

)
+ e−

1
2σ2 (ln(Nd) +K)

≤ ln C (x)(1− e
−1

2σ2 )

∫ t

0
f(θ)dθ + (1− e

−1

2σ2 )

∫ π
2

t
ln
( 1

sin θ

)
f(θ)dθ

(18)

+ ln(Nd)
(
e−

1
2σ2 + (1− e

−1

2σ2 )

∫ π
2

t
f(θ)dθ

)
+K,

since

(1− e
−1

2σ2 )
(

ln 2

∫ t

0
f(θ)dθ +K

∫ π
2

t
f(θ)dθ

)
+Ke−

1
2σ2 ≤ K.

We next bound each of the first three terms in the right-hand side.
Applying Lemma 4.6 and the inequality sin(2t) ≤ 2 sin t we obtain

(1− e
−1

2σ2 )

∫ t

0
f(θ)dθ ≤ min

{
1− e−

1
2σ2 ,

1

2
(sin(2t))N +

(sin t)N

σN+1

}
≤ min

{
1− e−

1
2σ2 ,

1

2(C (x))N
+

1

(2 C (x))NσN+1

}
= min

{
1− e−

1
2σ2 ,

1

(2 C (x))N

(
2N−1 +

1

σN+1

)}
.

This bounds the first term in (18) by

ln C (x) min
{

1− e−
1

2σ2 ,
1

(2 C (x))N

(
2N−1 +

1

σN+1

)}
. (19)
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Second, by Lemma 4.5 since t ≤ π
6 , Lemma 4.9 and t ≥ sin t = 1

2 C (x) ,

∫ π
2

t
ln
( 1

sin θ

)
f(θ)dθ ≤ ln

√
2 +

∫ √
2

2

1
2 C(x)

(∫ arcsin s

t
f(θ)dθ

)1

s
ds

≤ ln
√

2 +

∫ √
2

2

1
2 C(x)

min
{

1− e−
1

2σ2 ,
2πσ
√
N + 1

t

}1

s
ds

≤ ln
√

2 + min
{

1,
2πσ
√
N + 1

(1− e−
1

2σ2 )t

}(
ln
(√2

2

)
− ln

1

2 C (x)

)
= ln

√
2 + min

{
1,

4πσ C (x)
√
N + 1

1− e−
1

2σ2

}
ln(
√

2 C (x))

≤ min
{

1,
4πσ C (x)

√
N + 1

1− e−
1

2σ2

}
ln C (x) + ln 2. (20)

Also, as t ≥ 0, we have by Lemma 4.7 that∫ π
2

t
ln
( 1

sin θ

)
f(θ)dθ ≤ 1

N

(
1 + ln

(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)
≤ 1

N

(
ln
(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)
+ ln 2.

Putting together this inequality and (20) we deduce that the second term in (18) is
bounded by

min

{
(1− e−

1
2σ2 ) ln(C (x)), 4πσ C (x)

√
N + 1 ln(C (x)),

(1− e−
1

2σ2 )

N

(
ln
(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)}
+ ln 2. (21)

Finally, using again Lemma 4.9 and t ≥ sin t = 1
2 C (x) we obtain

e−
1

2σ2 + (1− e−
1

2σ2 )

∫ π
2

t
f(θ)dθ ≤ e−

1
2σ2 + min

{
1− e−

1
2σ2 ,

2πσ
√
N + 1

t

}
≤ min

{
1, e−

1
2σ2 + 4π C (x)σ

√
N + 1

}
which bounds the third term in (18) by

ln(Nd) min
{

1, e−
1

2σ2 + 4π C (x)σ
√
N + 1

}
. (22)
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Combining (19), (21) and (22) with the bound in (18), we obtain

H(N, d, σ,C (x)) = ln C (x) min
{

1− e−
1

2σ2 ,
1

(2 C (x))N

(
2N−1 +

1

σN+1

)}
+ min

{
(1− e−

1
2σ2 ) ln(C (x)), 4πσ C (x)

√
N + 1 ln C (x), (23)

(1− e−
1

2σ2 )

N

(
ln
(
2N−1 +

1

σN+1

)
− ln(1− e−

1
2σ2 )

)}
+ ln(Nd) min

{
1, e−

1
2σ2 + 4π C (x)σ

√
N + 1

}
+K,

where K = ln 2 + K = 3 ln 2 + 2. We now verify that H(N, d, σ,C (x)) satisfies
(LA0), (LA1) and (LA2).

(LA0) When C (x) =∞ we get

H∞(N, d, σ) =
(1− e−

1
2σ2 )

N

(
ln
(
2N−1+

1

σN+1

)
−ln(1−e−

1
2σ2 )

)
+ln(Nd)+O(1),

which is that of (13) (with a slightly bigger constant) as required in (LA0).

(LA1) When σ → 0, we have

lim
σ→0

H(N, d, σ,C (x)) = ln(C (x)) +K,

as required.

(LA2) Also, when σ →∞, we get

lim
σ→∞

H(N, d, σ,C (x)) = ln(Nd) +K,

and we recover the average-case analysis bound for Ex∈SN ln(C (x)).
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