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a Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina 
b Instituto de Ciencias de la Computación, CONICET-UBA. Buenos Aires, Argentina 
c Constantine the Philosopher University in Nitra, Slovakia 
d Institute of Informatics, Slovak Academy of Sciences, Slovakia   

A R T I C L E  I N F O   

Keywords: 
Dialogue 
Prosody 
Slovak 
English 
Spanish 
Machine learning 

A B S T R A C T   

In dialogue, speakers produce and perceive acoustic/prosodic turn-taking cues, which are fundamental for 
negotiating turn exchanges with their interlocutors. However, little of the temporal dynamics and cross-linguistic 
validity of these cues is known. In this work, we explore a set of acoustic/prosodic cues preceding three turn- 
transition types (hold, switch and backchannel) in three different languages (Slovak, American English and 
Argentine Spanish). For this, we use and refine a set of machine learning techniques that enable a finer-grained 
temporal analysis of such cues, as well as a comparison of their relative explanatory power. Our results suggest 
that the three languages, despite belonging to distinct linguistic families, share the general usage of a handful of 
acoustic/prosodic features to signal turn transitions. We conclude that exploiting features such as speech rate, 
final-word lengthening, the pitch track over the final 200 ms, the intensity track over the final 1000 ms, and 
noise-to-harmonics ratio (a voice-quality feature) might prove useful for further improving the accuracy of the 
turn-taking modules found in modern spoken dialogue systems.   

1. Introduction 

Corpus-based computational linguistics studies have opened new 
opportunities for answering questions about how human dialogue flows. 
In addition to more recent state-of-the-art prediction techniques, data- 
based studies have allowed us not only to study complex speech phe
nomena, but also to use the resulting knowledge in the creation of more 
natural spoken dialogue systems. Turn-taking management is a very 
good area for exploring these issues in depth. 

Research articles over the last decades have shown that information 
about what the next turn-transition is going to be seems to be present not 
only in what we say, but also in how we say it. In addition to the textual 
cues (lexical, syntactic, pragmatic), prosodic cues also play a role in 
perceiving how the dialogue will unfold. In particular, Gravano and 
Hirschberg (2011) identify a group of seven turn-yielding cues and six 
backchannel-preceding cues in American English. They compute 
these cues through the use of statistics over certain acoustic/prosodic 
features that are automatically extracted from speech signals several 
hundreds of milliseconds before pauses in conversations. They also 

provide supporting evidence for the Duncan’s theory, which establishes 
that the sum of turn-taking cues impact on the subject’s agreement on 
how the dialogue will unfold (Starkey and Fiske, 1977). 

Nevertheless, more research is needed to better understand the 
amount of information these cues contain and the dynamics over 
time of these acoustic/prosodic cues – i.e., how informative each cue is 
and how its informativeness varies over time. Additionally, we know 
little about the cross-linguistic validity of these findings. Revealing 
aspects of how turn-taking cues affect human-human conversations in 
different languages may not only help the community understand the 
underlying process of communication, but also allow improvements in 
human-computer interfaces in languages in which annotated data may 
not be available. 

In the present article, we study the similarities and differences of how 
acoustic/prosodic turn-taking cues are produced in three typologically 
different Indo-European languages: Slovak (Slavic), American English 
(Germanic), and Argentine Spanish (Romance). We address this task in a 
data-driven approach in which we use machine learning techniques to 
model turn transitions based on hours of labeled, naturally-spoken 
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dialogue from the Objects Games Corpus collection – a series of 
conversations with no visual contact in which 38 pairs of subjects 
collaborate in simple object-positioning games. We expect to validate 
our findings by modeling data taken from the same experimental setup, 
and by using the exact same methodology, in all three languages. 
Therefore, the contribution of this work is twofold: 1) it brings novel 
evidence regarding the variation of turn-taking cues over time and their 
comparison across different languages, and 2) it provides insights about 
the use of machine learning as a tool for describing speech corpora. 

1.1. Turn taking cues 

Studies in turn-taking have traditionally been interested in the way 
interlocutors engage in dialogue and the dynamics of speaker change. In 
a seminal work, Sacks et al. (1974) propose that turn-taking allocation is 
controlled by a set of fixed but flexible rules that allow an indeterminate 
number of participants into a conversation with no interruptions or 
overlaps. Starkey and Fiske (1977), suggest that participants produce a 
number of prosodic, syntactic and even gestural cues that, in combina
tion, contribute to the flow and naturalness of turn-taking in conversa
tions. While some studies argue the non-relevance of acoustic/prosodic 
cues and claim that lexical and syntactic information are sufficient for 
turn-management, others (Duncan, 1974; Ford and Thompson, 2010; 
Ferrer et al., 2002; Wennerstrom and Siegel, 2003; Gravano and 
Hirschberg, 2011; Hjalmarsson, 2011; Bögels and Torreira, 2015; Ward, 
2019, inter alia), including the aforementioned studies, show evidence 
suggesting that acoustic/prosodic cues based on pitch and duration, and 
syntactic features such as the position of a word in an utterance play a 
key role in the turn-allocation mechanism. 

While many, especially earlier, studies analyze English, turn-taking 
management has been explored also in other languages. In Hjalmars
son (2011), the author performs a series of experiments for under
standing how turn-taking cues affect the perception of the interlocutor 
in Swedish conversational dialogues. She reinforces the importance of 
the additive effect of cues on the perception of turn-transitions about to 
come. Even though some studies claim that cultures strongly deviate in 
different turn-taking systems (Watson-Gegeo et al., 1976), others argue 
that some kind of ‘universals’ exist (Schegloff, 2006). For instance, in 
Stivers et al. (2009), the authors analyze ten different languages and 
explore the variability in the response offsets in turn transitions. They 
arrive to a series of cross-culturally valid observations; for example, in 
all of the analyzed languages, speakers provide answer responses to 
questions significantly faster than non-answer, and confirmation an
swers are delivered faster than non-confirmation ones. In a 
cross-linguistic study in the perception of prosodic cues in Slovak and 
Argentine Spanish, Gravano et al. (2016) test the subjects’ predictions 
regarding turn-taking transitions in the two languages and show that 
some prosodic cues provide similar information in both languages, thus 
contributing to the aforementioned turn-taking ‘universals’. Closely 
following them, the present study contributes to this line of work and 
helps filling the gap of knowledge in turn-taking behavior though 
comparing Germanic and non-Germanic languages. 

From a modeling perspective, recent research has shown that 
acoustic/prosodic features can be used for the construction of turn- 
transition predictive models (Skantze, 2018; Maier et al., 2017; Hara 
et al., 2018; Roddy et al., 2018, inter alia). For instance, in Skantze 
(2018) the author predicts the future speech activity in dialogues using 
LSTMs – recurrent neural network models especially designed to learn 
contextual representations from temporal series. They use both in
terlocutors’ pitch, intensity, and spectral stability tracks together with a 
voicing mask every 50 ms; and, also present a system for detecting 
turn-taking transitions (in particular turn continuation and switches) by 
following heuristics for automatically labeling turn transitions based on 
speech activity labels. However, these techniques are still not easy to 
analyze in terms of what they learn, thus making the underlying 
knowledge base for these aspects of human-human turn-taking 

management inaccessible for the moment. Contrary to these approaches, 
we intend to use machine learning as a descriptive tool to obtain 
information about a complex phenomenon through the exploration of 
models built from data. In this way, we intend to facilitate further ad
vances in the research community in discovering and validating new 
findings. 

1.2. Chosen languages 

The three chosen languages provide a good testing ground for 
studying which prosodic features (and their development over time) 
might be cross-linguistically valid and which might present language- 
specific cues in turn-taking management. On the one hand, the proso
dic systems of the three languages differ. For example, according to 
Hualde (2013), the most important difference between the intonation 
system of Spanish (and of other Romance languages) and that of English 
(and of other Germanic languages) is the flexibility found in this second 
group of languages in the placement of the nuclear accent. In English, 
the position of the nuclear accent can move to indicate focus on various 
constituents. In Spanish, on the contrary, the position of the nuclear 
accent is practically fixed, and, except in cases of narrow focus, it falls on 
the last syllable with a lexical accent. Slovak is a prototypical example of 
a hybrid system, that is characteristic of the Slavic languages (e.g. 
Jasinskaja (2016)), and that combines the Romance and Germanic ones 
above: the information structure is expressed jointly by intonation and 
movable nuclear accent (like in Germanic) as well as by a flexible 
word-order and the tendency to move the focused element to the end of 
utterances (like in Romance). Since the location and type of pitch ac
cents influence prosodic contours to a great extent, these differences 
might also participate in the predictions the contours have in turn-taking 
management. 

On the other hand, the three languages share many characteristics in 
how prosody participates in information structure signalling the in
tentions and mutual beliefs of the speakers. Graham (1978) argues that 
Spanish and English share certain intonation patterns such as rising 
pitch at the end of (polar) questions, which is certainly common in 
Slovak as well. However, some narrow-focus Slovak polar questions 
might also be realized with a plateau, or gradual fall, following the 
nuclear rising pitch. Additionally, the notion of the ‘continuation (rise)’ 
in the literature on English intonation is related to the notion of 
‘incompleteness’ in the Romance and Slavic traditions of intonation 
descriptions. Hence, rising pitch followed by a pause should be inter
preted in a forward-looking fashion that either the speaker wishes to 
continue or that a response from the interlocutor is expected. While 
continuations in English are typically related to pitch rises, incom
pleteness in Slovak/Spanish has been linked to more variability in 
contours (e.g. Quilis, 1993; Král, 1988). 

1.3. Machine learning as a descriptive tool 

Typically, in the literature of turn-taking, studies that use confir
matory data analysis require a hypothesis to be specified before the 
design of the dataset and also need assumptions about the generation of 
the data by a given stochastic data model. Nevertheless, as described in 
Lin et al. (2007, p. 243), interpreting the results of methods outputting 
p-values or R-scores in high dimensional data can be difficult and 
misleading. For example, in the case of time series, researchers typically 
study specific pre-selected time frames or collapse the data dimension by 
averaging over time. In this way, they gain statistical power and avoid 
multiple comparisons problems at the expense of losing temporal detail 
and other information. 

In contrast with classical statistics, machine-learning algorithmic 
models are built assuming data generation mechanisms are unknown. 
Methods such as random forests, support vector machines, and neural 
networks, among others, are known to produce powerful predictive 
models, are designed to handle variable interactions, and generally 
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capture non-linearities in high-dimensional data. 
Nevertheless, the vast majority of machine learning-based models 

are currently used as a powerful tool for achieving state-of-the-art re
sults in predicting turn exchanges. To our knowledge, only a small 
number of studies observe and analyze information to allow the scien
tific community to explain the reasons of why a prediction is made. In 
this work, we focus our attention on an approach in which models are 
created to provide new evidence that may help reject or reinforce lin
guistic hypotheses, sometimes to the detriment of the models’ prediction 
power. 

In the past, when model interpretability was needed, simple and 
transparent models such as linear regression or decision trees have been 
used to understand complex phenomena. Yet, it is essential to clarify 
that up to this day, interpretable models tend to be less powerful than 
fully black-box models, such as neural networks, especially when 
enough labeled data is available. Simple models usually suffer from high 
bias or high variance problems. That is, models underfit or overfit the 
data due to their design characteristics, which leads to low predictive 
power or low stability in the obtained results. 

However, as explained in Breiman (2001b), transparency is not the 
only way of getting information from machine learning models. Methods 
such as Trees Impurity Importance (Breiman, 2001a), Permutation Feature 
Importance (Breiman, 2001a), Partial Dependence Plots (Friedman, 2001), 
LIME (Ribeiro et al., 2016), and Shapley Additive Explanations (Lundberg 
and Lee, 2017) have allowed the exploration of fully black-box models 
to a certain level. The goal of these methods is exploring not the internal 
structure of the model but how the model generates predictions. Un
fortunately, especially in the area of speech processing — in which 
models predict based on processing and combining high-dimensional 
temporal series — the interpretation of complex models still remains 
an open problem. 

In this work we explore the use of a random forest classifier, a robust 
and competitive supervised classifier along with a modified version of 
the permutation feature importance method. First proposed by Breiman 
(2001a), the random forest algorithm proposes to build an ensemble of 
decision trees classifiers whose predictions are individually produced 
and then combined for a final decision. This algorithm has shown 
competitive prediction power with almost no tuning effort. It manages 
complex and non-linear relations between inputs and outputs while 
avoiding overfitting at the same time. Random forests are not as simple 
and transparent as linear models or decision trees; therefore, some effort 
must be put into how they are explored. See Biau and Scornet (2016) for 
a full description of the method. 

1.4. About this article 

The article is divided into two experiments. The first one addresses 
question Q1, how do the acoustic/prosodic features of speech compare 
in Argentine Spanish, Slovak, and American English just before a turn 
transition? The second one addresses question Q2, how much informa
tion do acoustic/prosodic features carry and what is their relative 
contribution when preceding a turn-taking transition? 

Section 2 introduces the speech corpora on which we based the ex
periments, with particular detail on the annotations we created. In 
Section 3, we analyze the corpora by visualizing different acoustic/ 
prosodic features over time and across languages; we compare the re
sults with previous works and show the difficulties of working in high 
dimensional data. In Section 4, we address the problem of automatically 
classifying turn-taking events, paying special attention to revealing 
which features contain the most relevant information over time. We also 
test the stability of our results by varying the way features are extracted. 
Finally, in Section 5 we discuss the research results and present the 
outlines of future work. 

2. Materials: the object games corpora 

We used three versions of the Objects Games Corpus (first described 
in Gravano and Hirschberg (2011)), in American English, in Argentine 
Spanish, and in Slovak. In each, a collection of spontaneous 
task-oriented dyadic conversations elicited from native speakers playing 
OBJECTS GAMES was gathered. Subjects were paid to play a series of 
collaborative computer games requiring verbal communication. Exper
iments took place in soundproof booths, each participant using a 
different laptop computer, and separated from the other by an opaque 
hanging curtain. The subject’s speech was not restricted in any way and 
it was emphasized that the game was not timed. 

During the game, each subject’s laptop displayed a game board with 
5–7 objects. Both players saw the same set of objects at the same position 
on the screen except for one, the target. For one player, the Describer, 
the target appeared in a random location on the screen; for the other, the 
Follower, it appeared at the bottom. The Describer was instructed to 
describe the position of the target object on her screen to make the 
Follower match the position perfectly on his own. 

Subjects could discuss freely about the location of the target object. 
After the negotiation, they were awarded 1–100 points based on how 
well the location of the target object on the Follower’s screen matched 
its location on the Describer’s. Each session consisted of a minimum of 
10 and a maximum of 14 instances of the Objects Game, with subjects 
alternating in the Describer and Follower roles. At the end of the session, 
subjects were paid a fixed amount of money for their participation, plus 
a bonus based on the number of awarded points. 

The English Corpus was collected and annotated jointly by the 
Spoken Language Group at Columbia University and the Department of 
Linguistics at Northwestern University. A total of 13 subjects (6 female, 
7 male), ages between 20 and 50 (M = 30.0, SD = 10.9), participated in 
the study in New York City in October 2004. Eleven of the subjects 
participated in two sessions on different days, each time with a different 
partner. All subjects were native speakers and lived in the New York City 
area at the time of the study. A total of 4.5 h of dialogue were recorded in 
the English corpus. 

The Spanish Corpus was recorded at the Laboratorio de Investigaciones 
Sensoriales (Hospital de Clínicas, Universidad de Buenos Aires)1, in 
November-December, 2012. A total of 14 subjects (7 female, 7 male), 
ages 19 to 59 years (M = 28.6, SD = 12.7), participated. All subjects 
were native speakers of Argentine Spanish, lived in the Buenos Aires 
area at the time of the study. The Spanish corpus contains a total of 6.4 h 
of dialogue. 

The Slovak Corpus was recorded at the sound-treated room at the 
Institute of Informatics, Slovak Academy of Sciences over several 
months in 2012. A total of 11 subjects (5 females 6 males), ages 21–67 
years (M = 32.6, SD = 15.7) participated. 7 of the subjects played the 
game twice, each time with a different partner and 4 subjects only 
played once. All subjects were native Slovak speakers and lived in Bra
tislava at the time of the study, but their dialects varied. A total of 6.3 h 
of dialogue were collected in the Slovak corpus. 

The collection process was the same in all three languages, and we 
observed no remarkable differences in the resulting corpora. 

2.1. Annotations: Interpausal units and turn transitions 

A team of trained annotators orthographically transcribed the ses
sions at the word level and manually time-aligned each word to the 
speech signal. False starts, filled pauses and speech errors were also 
marked. Words were automatically transformed into phonetic tran
scriptions through the use of phonetic dictionaries in all three languages. 

We define an INTER-PAUSAL UNIT (IPU) as a maximal sequence of words 
surrounded by silence longer than 50 ms. IPUs were generated by 

1 http://www.lis.secyt.gov.ar 
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joining contiguous chunks of words without intermediate silences of the 
expected size. Next, we define a TURN as a maximal sequence of IPUs from 
one speaker, such that between any two adjacent IPUs there is no speech 
from the interlocutor. Turns were automatically delimited on the time- 
aligned orthographic annotations. 

Finally, TURN TRANSITIONS were manually labeled. In each language, 
two trained annotators separately labeled the whole corpus following a 
set of instructions as shown in Fig. 1. Levels of agreement were high, 
reaching a Cohen’s κ score (Cohen, 1960) of 0.81, 0.88, and 0.912 for 
Slovak, Spanish and English respectively. Fig. 2 shows a compact rep
resentation of the different labeled turn-exchanges. 

In this work, we focus on three specific types of turn transitions, HOLD 

TRANSITIONS (H); when the current speaker continues talking after a short 
pause; SWITCH TRANSITIONS (S); when the interlocutor takes the floor after 
the speaker finishes the turn; and, BACK-CHANNELS (BC); short utterances 
such as yeah or uh-huh used to display attention and invite the current 
speaker to continue. Table 1 shows the amount of IPUs extracted from 
each corpus for each of the turn transition types under study. We see that 
BC, S and H transitions represent approximately 5%, 20% and 50% of all 
turn transitions respectively with a larger presence of BC on the Spanish 
data. 

3. Study 1: visualization of acoustic/prosodic features 

In this first study, we address the question of how the acoustic/ 
prosodic features of speech compare in Argentine Spanish, Slovak, and 
American English just before a turn transition. 

To this end, we perform for each language a series of exploratory 
analyses with descriptive visualizations on how a number of acoustic/ 
prosodic features behave on IPUs immediately preceding each turn- 
transition condition – namely, a turn exchange or switch (S), a turn 

continuation or hold (H), or a backchannel (BC) from the interlocutor. 
Corpus-based studies on turn-taking, beyond variations in focus, tend 

to share a common set of prosodic and non-prosodic features. In this 
work, acoustic features were chosen closely following the work in 
Gravano and Hirschberg (2011). These include pitch, intensity, jitter, 
shimmer, and noise-to-harmonics ratio; and prosodic features include 
previous IPU’s duration and speech rate. To our knowledge, only a few 
new features have been reported in recent articles on turn-taking and 
turn-ending prediction. For example, Truong et al. (2010) include pause 
information, Morency et al. (2010) investigate the use of multi-modal 
features such as gaze and transcribed speech in combination with 
prosody. In languages like Finnish and German, characteristics of creaky 
voice and glottal stops are included in Szczepek Reed (2014). From a 
more general perspective, Eyben et al. (2016) argues against the pro
liferation of brute-force parameter sets in the field. Instead, and to share 
standards, they propose a minimalist set of features. 

However, whereas Gravano and Hirschberg (2011) model data 
points extracted from a given portion of the signal, this study focuses on 
the temporal aspect of such features. Our goal is to use modern visu
alization techniques for making a contribution to our understanding of 
turn-taking cues present in the acoustic signal. Also, we will explore the 
novel relationships between features and turn-transition types and test 
their cross-linguistic validity. 

3.1. Whole-IPU and momentary acoustic features 

We first extracted from the IPUs preceding each turn transition in our 
corpora two features that we call whole-IPU features: IPU DURATION, 
measured in milliseconds, and IPU SPEECH RATE, measured in phones per 
second.3 

Skantze (2018) uses a set of “momentary” features: voice activity, 
pitch, intensity, and spectral stability. Following this nomenclature, we 
extracted what we call momentary acoustic features: time series (or 
tracks) of different acoustic/prosodic features. These features include 
INTENSITY, measured as the mean of squared signal values multiplied by a 
Hamming window; PITCH, calculated as the smoothed fundamental fre
quency contour; SHIMMER, the amplitude deviations between pitch pe
riods; JITTER, the deviations in the pitch period length; and LOGHNR, the 
logarithm of the Harmonics-to-Noise ratio. Shimmer, Jitter and logHNR 
are computed only on voiced frames. To make results comparable, we 
normalized each feature through z-scores. The normalization process 
was performed for each speaker-session pair in our dataset, instead of 

Fig. 1. Turn-taking labeling guidelines, as presented in Gravano and Hirschberg (2011).  

Fig. 2. Turn-transition types. Black segments represent speech; white seg
ments, silence. The arrows show three different types of turn transitions: (i) 
Hold, when speaker A keeps the turn after a short pause; (ii) switch, pause 
interruption and backchannel, when speaker B produces a speech segment after a 
pause from speaker A; and (iii) overlap, backchannel with overlap, interruption or 
butting-in, when speaker B starts while the current speaker is still taking. 

2 The English κ score does not include the identification of backchannels, 
performed by different annotators as described in Gravano et al. (2007). 
Including the identification of backchannels is expected to reduce the agree
ment to numbers near the Spanish or Slovak level. 

3 It is important to note that, when an IPU has 1–3 short words, this definition 
of speech rate is problematic, because the effect of intrinsic phone durations 
might greatly affect the overall rate. In this analysis we decided not to take this 
problem into account in favor of having comparable data to Gravano and 
Hirschberg (2011). 
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isolated speakers, to avoid environmental conditions. For each feature, 
mean and standard deviation were computed from all the speech pro
duced by a speaker in a particular session. 

All momentary acoustic features were automatically computed using 
the openSMILE open-source toolkit (version 2.2) (Eyben et al., 2013). 
We used part of the INTERSPEECH 2010 Paralinguistic Challenge feature 
set, which contains feature tracks extracted from overlapping windows 
of 50 ms every 10 ms. The specific configuration file can be found at htt 
ps://git.io/JvSg1. See Eyben et al. (2016) for a detailed explanation of 
how features are extracted under this configuration. 

3.2. IPU Duration and speech rate 

In this section, we examine how the set of whole-IPU features (IPU 
duration and IPU speech rate) compare across languages. We focus on 
the characteristics of IPUs preceding each turn-transition under study 
(H, S, BC). 

Fig. 3 shows probability density approximations for IPU duration 
(left panel) and IPU speech rate (right panel) for each language.4 The left 
plots in the figures show that IPUs preceding BC tend to be longer than 
IPUs preceding S; and that IPUs preceding S, in average, tend to be 
longer than IPUs preceding H (as shown in the vertical line). Moreover, 
differences in length between BC and the others get more pronounced in 
English and Slovak than in Spanish. The results show similarities in 
mean and distribution across languages, providing support for the uni
versal hypothesis introduced in Stivers et al. (2009), and adding to their 
findings. 

Fig. 3. Approximated probability density functions of z-scored duration and speech rate of IPUs preceding different turn-transition types. The vertical lines indicate 
the average value for each type. See Table 1 for the amount of data points available. 

Table 1 
Amount of IPUs preceding each turn-transition type. The other category includes 
overlapping transitions (O, I, BI and BC_O), non-overlapping interruptions (PI), 
and transitions in which there was no agreement among the annotators.   

Spanish Slovak English 

BC 842 (7.6%) 272 (2.9%) 393 (4.6%) 
S 1935 (17.5%) 1937 (20.7%) 1659 (19.6%) 
H 5299 (47.8%) 4976 (53.2%) 4283 (50.6%) 
other 3008 (27.1%) 2175 (23.2%) 2123 (25.1%) 
total 11,084 9360 8458  

4 Densities were estimated through Kernel Density Estimation (KDE) — a 
non-parametric technique that estimates the unknown probability distribution 
of a random variable based on a sample of points taken from that distribution. 
This method is known as a continuous version replacement for discrete histo
grams. For a more detailed explanation see Silverman (2018). 
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When analyzing speech rate, we see an increase for IPUs preceding S 
and BC with respect to H, with very similar distribution shapes across 
languages. This means that, before a H, speakers tend to speak slower. 
When listening to the data we perceive that, similar to BC, H seems to 
appear mostly at the end of a phrase or in points of syntactic incom
pleteness, but, contrary to BC, in places where speakers seem to be still 
planning what’s coming ahead. Simply put, it is observed in all three 
languages that planning slows down speech right before holds. 

This may be explained as a consequence of the type of interactions in 
play. We examine task oriented dialogues where conversations are 
highly structured and roles and goals are clear beforehand. On the one 
hand, to participate, speakers need to convey large amounts of infor
mation, such as lists of instructions and long descriptions within a more 
or less shared context and no access to non-verbal communication. 
Hence a specific pattern of language rises in which expressions tend to 
be fully descriptive and syntactically long making IPUs before BC longer, 
and BC a frequent strategy from the listener to show support to the 
speaker without interrupting long interventions. On the other hand, 
fluently switching roles and making short pauses are golden rules in 
verbal interactions. In fact, pauses between turns lasting more than 200 

ms are considered to carry negative connotations (Sacks et al., 1974; 
Stivers et al., 2009; Levinson, 2016). Moreover, task oriented dialogues 
are hierarchically divided into units of action and incrementally con
structed towards a goal (Tolins and Fox Tree, 2014). From this stand
point word lengthening before H, seems to appear as a strategy from the 
speakers to hold the floor and keep the rhythm of the conversation while 
planning how to continue in terms of conversational goals. 

3.3. Pitch analysis 

We continue to analyze what we call momentary acoustic features. In 
particular, how they vary over time. First, we analyze the pitch tracks 
taken from the last second of IPUs. 

Fig. 4 shows what we call track’s shadow plots and average plots. A 
shadow plot (a variant of the bitmap clustering method as presented in 
Heldner et al. (2008)) shows the last second of z-scored pitch tracks from 
1000 randomly selected IPUs preceding each turn-transition category. In 
the case of BC, we plot all IPUs (393 for English, 272 for Slovak and 842 
for Spanish). The rightmost plots show the averages over the whole 
corpus, without any type of sampling. 

Fig. 4. Shadow plots of z-scored pitch tracks extracted from the final second of all IPUs preceeding each turn-transition type. These plots were built using a maximum 
of 1000 randomized samples. All pitch tracks are aligned to IPU ending. The average plots on the right hand side show the pitch mean and standard deviation 
over time. 
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A closer look at average plots shows unusual falls and raises in the 
final portion (last 10 ms) of every line. We attribute these falls to the fact 
that at the end of the IPU, the number of unvoiced frames increases, 
therefore, making the averages less reliable. To validate this observation 
we performed an additional experiment in which we aligned the IPUs to 
the last voiced frame, and observed the same general patterns without 
extreme falls or raises in the last frames. 

A first glance at the plots shows no distinguishable patterns between 
1.0 and 0.5 seconds before the IPU ending. Nevertheless, the last hun
dred milliseconds contain some interesting common patterns to be 
analyzed. Examining separately each category, we see that (a) most IPUs 
preceding BC finish in high-rising pitch, except in Spanish where a 
bimodal distribution appears and IPUs end either in a high rise or in a 
plateau; (b) IPUs before S end in falling pitch in Spanish, high-rising 

pitch in English, and a bimodal pitch shape in Slovak; (c) for H in 
Spanish, most of the IPUs end in a falling shape with a fair amount of 
rises, while in Slovak and English they end primarily in a plateau. 

Intonation conveys relationships between the propositional content 
of previous and subsequent utterances, and segments discourse as well. 
For example, according to Pierrehumbert and Hirschberg (1990), in 
English, a rising boundary tone may indicate that the speaker wishes the 
hearer to interpret the utterance with particular attention to the 
following ones; and, by doing it in a prominent way, may elicit a 
response from the interlocutor.5 In our analysis, we see indeed that the 
presence of high boundary tones work as a turn-ending indicator and, 

Fig. 5. Average plots for intensity, shimmer, jitter and logHNR tracks. The lines and their shadows represent the mean value and the corresponding standard de
viation at each time point. All tracks are aligned to the last voiced frame. 

5 Patterns that we also observe in Spanish and Slovak. 
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thus, allow for S and BC especially in Slovak and English; while sus
tained signals or plateau, indicate the speaker’s intention to continue 
talking and results in H. 

In Spanish, IPUs preceding S end mostly in falls. This may be 
explained as a consequence of a typical strong falling intonational 
pattern present in Argentine Spanish (Vidal de Battini, 1964). Regarding 
BC, Quilis (1993) (p. 460–475) classifies declarative utterances in 
Spanish as either complete or incomplete. Within the latter, three final 
intonations are possible: two ascending and one plateau. The first 
ascending configuration is coincidental with those found in questions; 
the second, preceded by a circumflex movement (ascending-descending), 
is used for emphasis; and the third, the plateau, occurs whenever the 
speaker doubts or does not know how to finish. If we understand 
task-oriented dialogues as a collection of semantically incomplete ut
terances within a hierarchically structured goal, this classification may 
serve to explain the emerging bimodality. 

3.4. Intensity and voice quality features 

Fig. 5 shows average plots for all tracks; this time, aligned to the last 
voiced frame to avoid the previously mentioned artifacts at the end of 
the figures. As for Intensity, it can be seen that, for all three languages, 
the average for S is consistently lower than for BC and H. Also, there is a 
small increase followed by a decrease near the utterance end for Spanish 
and Slovak BC, and also for Spanish H. Intensity is a way of measuring 
how loud a person’s speech is. Together with pitch rises, it serves to 
establish focus over specific portions of an utterance. In the context of 
turn-taking/turn-yielding it may be a way of capturing the interlocutor 
attention and, thus, maintaining the turn either in H and BC. 

In the case of voice quality features, jitter shows differences in the 
last 150 ms where the H signal goes below the others, especially in 
Slovak; shimmer shows no clear patterns in each category; and logHNR, 
shows a distinction between H and the rest of the signals, especially in 
Spanish and Slovak. Although the described voiced quality patterns 
alone are not very clear, in Gravano and Hirschberg (2011) it is 
explained that a combination of these seems to have relevant informa
tion that is not seen individually. More recently, in Heldner et al. (2019) 
the authors conclude that higher level features, such as cepstral peak 
prominence smoothed (CPPS), may be better suited for capturing voice 
quality than jitter, shimmer and HNR. 

3.5. Summary of study 1 

The first approach to this study shows that the three analyzed lan
guages share remarkably similar aspects in the acoustic/prosodic reali
zation of turn-yielding cues. The results are consistent with previous 
ones in the literature and with the theory of universality that states that 
minimal cultural variability exists in turn-taking systems. In English, as 
reported in Gravano and Hirschberg (2011), our results show that IPU 
duration works not only as a turn-yielding cue but also as a 
backchannel-inviting cue, where IPUs preceding BC have higher dura
tion than in the other type of turn transitions. Also, we show that speech 
rate is higher before S than before H and even more so before BC than 
before any of the other conditions. Our experiments not only validate 
these previous findings but also extend the analysis to Argentine Spanish 
and Slovak in which these results replicate. 

In addition, as we observed for the BC category, Spanish 
backchannel-preceding cues present a clear bimodality between a high- 
rising final intonation and a plateau. Nevertheless, the strong multi
modal pattern in the pitch track does not occur in English or Slovak, thus 
suggesting a difference in the signaling of BC produced by Spanish 
speakers. 

Clear differences are found for the mean value of the temporal series 
for pitch, jitter, shimmer, and logHNR between S and H (i.e., turn- 
yielding cues), and also for intonation, pitch and intensity levels, IPU 
duration, and logHNR between BC and H (i.e., backchannel-inviting 

cues), as described in Gravano and Hirschberg (2011). Still, we 
consider these results to be incomplete and, sometimes, misleading. 
Analyzing averages over time (as we are showing) or the mean value of a 
200, 300 or 500 ms-window at the end of the IPU (as the mentioned 
work does) in a univariate fashion, may lead to inaccurate conclusions. 
As seen in the pitch analysis, using simple averages for exploring 
possibly-bimodal temporal series may turn out to be insufficient. 

In those cases, it may be useful to isolate the different signals that 
match with one type of pattern and explore if the signals belong to 
different turn-transition categories. This way, categories will be divided 
into more specific ones. For example, in the case of back-channels, two 
different patterns might be detected through listening. 

Nevertheless, this issue exposes the problem of using univariate 
analysis in isolation. In the study described in the following section, we 
take a different approach. We train learning algorithms to model the 
instant decision a person makes with only a couple of seconds of partial 
information — the acoustic and prosodic information present in turn- 
transition preceding IPUs. This way, we are able to explore the rela
tive influence of turn-taking cues when used in combination on the 
decision of the next turn-transition. 

4. Study 2: learning turn-transitions 

We know from Starkey and Fiske (1977) and from quantitative 
measures in Gravano and Hirschberg (2011), that turn-transition cues 
have an additive effect. Turn-yielding and turn-holding cues do not 
occur in an isolated way: the more cues signaling turn-hold or turn-yield, 
the higher the agreement among the listeners in identifying the subse
quent turn type. Analyzing these cues separately does not give us the full 
picture. Additionally, it is not clear to what degree these patterns are 
indispensable and which can be replaced with others in relation to the 
information needed by the interlocutor to anticipate the next 
turn-transition. 

This second study addresses the questions of the amount of infor
mation carried by acoustics and prosody, and the relative contribution 
of these features when preceding a turn-taking transition. Through a 
series of machine learning experiments, we build models capable of 
learning the relation between features (duration, speech rate, pitch, 
intensity, shimmer, jitter, and logHNR) and the subsequent turn- 
transition type (hold, switch, and back-channel). In particular, we 
train and inspect multi-class random forest classifiers for each of the 
three languages under study (Spanish, Slovak, and English). By finding 
and examining accurate models, we aim at describing with greater depth 
the interactions that the selected features have on the production of 
turn-transition cues. 

The two main goals of this second study are a) to model the acoustic 
information available to a person when listening to IPUs before turn 
transitions; and b) to find out which aspects of the features and which 
time intervals are informative and essential for a system to predict the 
type of turn transition. 

As an important remark, in this study, we only measure how the 
acoustic information relates with the subsequent turn transition. We do 
not claim that people use the same information these models do. The 
human auditory system and brain may capture information dispreferred 
by or even unavailable to the models, and classifiers may use informa
tion that human brains tend to discard. To understand the relative 
importance of the incidence of these cues, perceptual studies need to be 
conducted such as in Hjalmarsson (2011) where utterances are synthe
sized to understand how different prosodic cues affect the decision of the 
interlocutor. In the following sections, we describe how we build, train 
and inspect our machine learning models. 

4.1. Model choice 

As pointed out by Skantze (2018), a common approach in the 
turn-taking literature is to calculate a brief window of interest just 
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before each pause. In this paradigm, the dynamic of features and the 
contextual information in previous events in conversation need to be 
represented as numbers through the introduction of heuristics and 
careful feature engineering. Skantze points out that this way of treating 
features constitutes a clear drawback since context (i.e., previous speech 
activity) or signal dynamics (i.e., rapid changes on the pitch track) is lost 
if not taken explicitly into account. In that direction, he proposes to use 
LSTM networks for processing input vectors on a frame-by-frame basis. 
These state-of-the-art models take context into account and capture the 
dynamics of multivariate signals. 

Unfortunately, today’s techniques for interpreting deep learning 
models remain immature. LSTMs and other state-of-the-art techniques 
are considered to be obscure in the way they process information. Un
derstanding how such models predict in terms of the original features, 
what information they pay attention to, and how features interact with 
each other is still a difficult task, especially over multivariate time series 
data. 

Consequently, we choose to experiment with random forest models 
which are considered accurate and simple enough in terms of 
complexity (understood as the amount of required training data, tuning 
effort, and computing power). This method has been widely-used as a 
means of understanding phenomena even in high-dimensional problems 
with complex interactions. For example, Lunetta et al. (2004) shows that 
random forests can be used to detect relevant genetic marker in
teractions more efficiently than univariate screening methods like Fisher 
Exact test. For these reasons, we consider these models to be well suited 
to our purpose of understanding in further detail how speakers produce 
turn-taking cues. 

4.2. Machine learning task definition 

The INSTANCES of our machine learning tasks are inter-pausal units 
(IPU, see Section 2.1). In particular, we keep IPUs preceding hold (H), 
switch (S) and backchannel (BC) transitions. From each instance, we 
compute a FEATURE VECTOR — a fixed-size vector used as input for the 
machine learning models. These vectors contain the normalized versions 
of the whole-ipu features (IPU duration and speech rate) and also a 
normalized representation of the momentary acoustic features (in
tensity, pitch, jitter, shimmer, and logHNR). 

To compute the representation of the momentary acoustic features, 
we align each time series to the end of the IPU and then slide a fixed-size 
window over the last second of it. If an IPU is shorter than a second, we 
left-pad the time series with NaN (not a number) values. Windows are 
50 ms wide, with a 50 ms step with no overlap.6 From each window, we 

compute each feature’s mean value given all available samples within 
the limits of the window and also their slope as an attempt to capture the 
dynamics of the features over time. Note that the time series of 
momentary acoustic features may contain missing values due to the 
presence of unvoiced frames in which pitch track and voice quality 
features are undefined. When fewer than two values are defined in the 
window, we set mean and slope values to be NaN. Fig. 6 serves as an 
illustration of the mean and slope values computed over the z-scored 
pitch track for a given instance of the datasets. 

By running the sliding window process, we obtain a 40-dimensional 
vector x(i)f that contains the mean and slope values of a given 
momentary acoustic feature f computed over the 20 intervals in the 
last second of the IPU. Finally, all vectors are concatenated 
along with the two whole-IPU features obtaining x(i) =

x(i)pitch ⊕ x(i)intensity ⊕ x(i)
logHNR ⊕ x(i)

jitter ⊕ x(i)shimmer ⊕ x(i)
wholeIPU, a 202-dimensional 

feature vector. 
After defining the instances and the feature extraction process, we 

proceed to build models ̂f (x) that, given a feature vector x(i), predict the 
turn-transition type y(i) that follows. The possible TARGET CLASSES are H, S 
and BC. 

The selected LEARNING ALGORITHM was the scikit-learn implementation 
of random forest (Pedregosa et al., 2011). We then ran the MODEL SELECTION 

step, in which we measured different hyperparameter combinations. For 
each language, we ran the scikit-learn randomized search procedure for 
100 different random combinations. Given a combination of hyper
parameters, we measure its performance by running a 10-fold 
leave-one-group-out cross validation using macro-averaged F1 score as 
the performance metric. A group consists of all the IPUs of at least one 
speaker, and all speakers belong to only one group. Appendix A shows 
how the hyperparameter search was made, the cross validation mech
anism, the selected model’s performance, and some other implementa
tion details. 

Since the scikit-learn random forest implementation does not support 
undefined values, we substitute each missing value with a fixed number. 
For this, we choose a value lower than the feature’s overall minimum 
(after the normalization process). Given the way decision trees and 
random forests work, the learning algorithm should be able to auto
matically create specific sub-trees for feature-value combinations that 
are below or above a threshold. Therefore, replacing NaN with a value 
below the minimum should make it possible for trees to specifically deal 
with such cases.7 

This decision of imputing (i.e., filling in missing values) a constant 
number below the minimum, rather than the more standard approach of 

Fig. 6. Illustration of how mean and slope values are computed over z-scored pitch tracks for a given instance of our datasets. The dotted line represents the pitch 
track of the instance; the vertical lines delimit the different windows; the blue squares represent the mean value of each window; and the black lines show a shifted 
version of the linear fit to the points from which the slope is obtained. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

6 These values were selected based on a trade-off between temporal granu
larity (we want the time series to be informative) and feature robustness (we 
want to have enough measurements in each interval to be able to compute 
robust slopes). 

7 In practice, it is important to study how the algorithms search for the 
optimal cuts, since there are various heuristics. An heuristic that does not 
consider the specific cut that leaves the minimum values in a region, will not be 
able to distinguish these from other small values of the feature. 

P. Brusco et al.                                                                                                                                                                                                                                  



Speech Communication 125 (2020) 24–40

33

using the variable mean, is related to the fact that the existence itself of a 
missing value may comprise useful information. As an example, the lack 
of pitch at the end of an IPU may be part of a cue for the interlocutor to 
take the floor. Strategies such as discarding instances with missing 
values, interpolating values based on other features, or replacing 
missing values with a value with high probability (according to the 
feature’s distribution) may contribute to unrealistic and sub-optimal 
models not able to distinguish between real and synthetic values, thus 
introducing new, unwanted biases. Also, we discarded the idea of using 
dummy columns as indicators for imputed values. This approach not 
only doubles the number of features, but also introduces a conceptual 
issue related to the selection of features that the random forest algorithm 
performs at each node. Selecting features at random may result in the 
separation of the original variable from its dummy column, thus 
impeding trees from determining whether it is an imputed value or not. 

The last step of the process consists in re-fitting the selected models 
using all the available data for each language. In other words, after 
selecting the combination of hyperparameters, we train the models on 
all the data. This way, we exploit all the corpora at the expense of losing 
the ability to correctly estimate how models would perform in a real- 
world setting. Again, our goal is not to build competitive models, but 
interpretable ones to explore the dataset. 

4.3. Measuring feature contributions 

Once the models have been trained, we compute a variant of the 
permutation importance method for measuring the contribution of each 
feature to the model. Proposed by Breiman (2001a), the permutation 
importance method proposes to estimate the contribution of each 
feature by measuring the decrease in the performance of the model when 
that specific feature is not available. Since we are dealing with a mul
ticlass problem in which classes are unbalanced, we implement a vari
ation of the method that measures how predictions shift for instances of 
each class independently. The complete procedure is as follows. 

First, we compute the scores that each model assigns to each 
instance. In the case of a random forest, these scores are an estimated 
probability computed by averaging the prediction of each individual 
tree. For example, for instance i, the model may assign P(Y = H

⃒
⃒X = x(i))

= 0.3, P(Y = BC
⃒
⃒X = x(i)) = 0.05, and P(Y = S

⃒
⃒X = x(i)) = 0.55, mean

ing, in the first place, that the instance is likely to precede a switch 
transition and, in the second, to precede a hold. Fig. 7 shows how the 
three selected models assign scores for every instance of our corpora, 
colored by class. This figure summarizes the way models split the data. 
Points close to a vertex of the same color represent perfectly classified 
instances. Misclasification occurs when the distance of a point to its true 
vertex is greater than the distance to a different vertex. Despite not being 
perfect (F1-score between 0.7 and 0.73 on this data), these triangles 
visually show that instances were assigned with higher probabilities to 

the right class in most of the cases. See Appendix A for further details on 
the performance of the models. 

Second, we measure how the models behave when a feature is 
“removed”. Since when making a prediction a trained random forest 
model expects all features to be present, Breiman (2001a) proposes to 
mimic the deletion of a variable by replacing feature values with random 
noise drawn from the original feature’s distribution, breaking in this 
way the relationship that may exist between an instance feature value 
and the expected target value. Therefore, the last step consists in shuf
fling the column that contains a specific feature and computing how the 
assigned scores change. If the feature significantly contributes to 
determining the probability of certain classes, we will expect a sub
stantial decrease in the correct class score; otherwise, we will expect 
smaller shifts in scores. 

For measuring how much the scores shift, we computed what we call 
MEAN CLASS-PROBABILITY DECREASE (MCPD) defined as follows. Given a 
feature j and a label y, the feature’s MCPD is: 

MCPDj
y(X) =

1
Ny

∑

x(i)∈X(Y=y)

ProbDecreasej
y

(
x(i)

)

where ProbDecreasej
y(x(i)) = P(Y = y

⃒
⃒X = x(i)) − P(Y = y

⃒
⃒
⃒X = x(i)

πj ), and 

x(i)
πj corresponds to the ith instance of class y with the value for feature j 

replaced with a random value (drawn from all values in the jth column 
of X). In other words, this metric determines the mean decrease in 
posterior probabilities assigned to all instances of a given class when a 
feature value is replaced by other from the same distribution. 

Note that ProbDecrease is only used for instances of the class being 
evaluated. Therefore, it is expected that the result of this function is a 
positive number, and the more this attribute is used by the model, the 
greater its value. In any case, ProbDecrease might produce a very small 
or even negative number due to the method’s variance, the noise in the 
data, or the chance involved in the permutation of Xj. These small 
fluctuations should cancel each other out and, when experimenting, we 
did not observe important effects as a result of this property. In general, 
the true effects of important features were of a different order of 
magnitude.8 

We utilize MCPD as our measure of feature contribution and inter
pret higher values as an indicator of higher feature importance. Finally, 
we compute the MCPD for all whole-IPU and momentary acoustic fea
tures for the three selected models. 

Fig. 7. Posterior probabilities given by the selected models to the training data. Each plot summarizes the scores assigned by a model to all the training instances in a 
corpus. The three vertices of a triangle represent perfect predictions – the closer a point is to a vertex, the better its score given by the model. 

8 Also note that this issue is also present in the technique on which we based 
this method, Breiman’s permutation importance. 
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4.4. Results: Contribution of whole-IPU features 

The first three columns of Table 2 (M50) show how the whole-IPU 
features are ranked among all 202 features. In all three languages, 
speech rate and IPU duration appear among the 7 most contributing 
features. In particular, speech rate seems to be the feature most affecting 
H and S predictions. This pattern coincides with the analysis in study 1: 
at the acoustic level, features of IPUs preceding H and S are similar in 
most respects, except in speech rate, which is consistently lower before 
H in every language. Therefore, slow speech rate before a pause highly 
increases the likelihood of a turn continuation. 

It is important to point out that comparing scores assigned to the two 
whole-IPU features against scores assigned to the other 200 momentary 
acoustic features can be unfair — when a whole-IPU feature is removed, 
all of its information is lost; on the contrary, if a momentary acoustic 
feature is removed, its temporal neighbors plus the slope of the previous 
timepoint will still be contributing similar information. For a more fair 
comparison, we train two alternative models for each language, both 
identical to the previously detailed ones, but using a window width of 
100 or 200 ms instead of 50 ms for momentary acoustic features, thus 
exploring widths (and therefore feature sets) of different orders of 
magnitude. These new models handle fewer features at the expense of a 
lower temporal precision. For the sake of organization, we call them 
M50, M100 and M200 to indicate the width of the feature window. 

We now test how whole-IPU features rank based on these new 
models. Since the correlation effect is attenuated, we expect whole-IPU 
features to rank lower. Columns 4 to 10 in Table 2 show how whole-IPU 
features rank for models M100 and M200. Speech rate still maintains the 
highest positions in the ranking, again among the top 3 most important 
features for discriminating H and S. This indicates that word final 
lengthening and other factors that cause a decrease in speech rate before 
pauses contain crucial information for detecting if a H or S transition is 
about to occur. IPU duration also maintains its position among the top 8 
features for all three languages and turn taking types. 

4.5. Results: contribution of momentary acoustic features 

In the next paragraphs we direct our attention to the contributions of 
momentary acoustic features over time. We compare their relative 
importance against each other. Fig. 8 shows, for model M50, the 
contribution of each turn transition type in each language. Each small 
square represents the MCPD value for a given feature in a given time 
interval using a chromatic scale. The darker the color, the more salient 
the contribution of a feature to the prediction of the subsequent tran
sition. Additionally, we use Fig. 9 to compare the contribution of each 
feature in the M100 model, as defined in the previous section. 

We first observe the contribution of pitch in the M50 model. In all 
three languages, it seems essential, especially, on the last 200 ms. In 
Slovak, the major importance appears to be in the last 50 ms, while in 
Spanish and English it goes further back around 100 ms before silence. 
Recalling the Slovak plots of Fig. 4, we notice that BC shows similar 
patterns in pitch to S and H, except for a high rise in the last hundreds of 
milliseconds. This difference makes the BC pattern very specific and, 
therefore, discriminative of the category. In English and Spanish, softer 

and less discriminative distinctions emerge. The contribution of features 
in the M100 case shows similar patterns. 

Second, we focus on pitch slope. In English and Slovak, its contri
bution is comparable to that of pitch itself while in Spanish the pitch 
feature keeps the majority of the information. This is somehow expected 
since, as showed in Study 1, Spanish pitch presents a bimodality and, 
therefore, a near-zero slope does not contribute enough to determine 
whether the IPU precedes BC, H or S transitions. In Slovak and English, 
on the contrary, the slope seems to contribute complementary 
information. 

Third, the intensity track. In English and Slovak a peak can be seen 
around 150 ms before silence. In the case of Spanish this pattern is not as 
clear in the M50 model, as it is in the M100 model. This information 
matches the observed changes in intensity analyzed in the previous 
study, where clear patterns before S (low plateau shape) and before BC 
and H (higher values with some rises and falls near the end) could be 
seen in the average plots (Fig. 5) in the last 200 ms. Moreover, this 
feature shows higher contributions across time than the rest of the fea
tures, especially in the case of English and Spanish. Again, looking at the 
average plots, we observe that S intensity seems to keep a near constant 
distinguishable value across time in English and Spanish. The intensity 
slope does not seem to be as important as the intensity level showing 
that the dynamics of this feature do not affect the results as much as the 
overall level. 

Fourth, we look at logHNR. This feature shows high contribution for 
H in the last hundred milliseconds before pauses in the three languages. 
In the case of Spanish, the contribution is spread in the interval between 
− 400 and − 100 ms before silence. In the case of Slovak and English, it 
concentrates between 100 and 200 ms before silence. Model M100 con
firms these patterns. The average plots in Study 1 showed strong pat
terns of separation across the entire 500 ms under analysis in Spanish 
and Slovak, and in English to some extent. In contrast, the newly 
measured contribution seems to concentrate on a specific portion of the 
signal showing that complex interactions may be taking place when 
capturing the information provided by this feature. 

Finally, shimmer and jitter show little contributions to the model 
predictions. An exception can be seen near the last 150 ms in which jitter 
in English and Spanish contributes to some extent. Regarding jitter and 
shimmer slope, some contribution is seen towards the end especially in 
English for the M100 model. To our knowledge, there is no linguistic 
reason for jitter and shimmer slopes to contain meaningful information 
and no clear patterns emerged in the previous study. We leave the 
exploration of these features open for future studies. 

4.5.1. Feature correlations 
In Genuer et al. (2010), authors present a series of simulations that 

portray how the importance of a variable is not stable. They do so by 
generating small perturbations in the hyperparameters of the random 
forest algorithm and varying the number of noisy and correlated vari
ables. They then measure the impact this produces in the variable 
importance measures. Since the algorithm tends to select one variable 
over another by chance, the importance of the entire group of correlated 
variables decreases, sometimes making them indistinguishable from 
noisy variables. In Toloşi and Lengauer (2011) the authors define the 

Table 2 
MCPD ranking for whole-IPU features (IPU duration and speech rate) among all features. Results are shown for each model (M50, M100 and M200) in every language.    

M50 (202 features) M100 (102 features) M200 (52 features)   

Spanish Slovak English Spanish Slovak English Spanish Slovak English 

IPU Duration BC 4 4 3 4 4 3 3 4 3  
H 3 5 7 4 7 5 4 5 8  
S 4 4 5 5 5 5 4 4 6 

Speech Rate BC 1 5 7 2 6 6 2 5 6  
H 1 1 2 1 1 1 1 3 3  
S 1 1 1 1 1 1 1 1 2  
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term CORRELATION BIAS as the breach of specific desirable rules: (1) all 
variables in a correlated group should have the same importance; (2) the 
size of the group should not affect the importance of the individual 
variables and (3) the importance of the variables reflects the magnitude 
of the effect of the corresponding process on the outcome. They run 
simulations in which they show that random forest models suffer from 
correlation bias. If the way variable contribution is measured does not 
take the correlation bias problem into account, unstable results may be 
produced, affecting the generalizability and reproducibility of the re
sults under description. 

Our version of the permutation importance method, as well as most 

feature selection and feature importance techniques, suffers from the 
variable correlation problem. If several variables are correlated and the 
estimator uses them all equally, the importance of the permutation can 
be small for all these features. Also, the elimination of one of the features 
may not affect the result, since the estimator still has access to the same 
information from other features. 

In this work, we addressed this problem by choosing our features so 
that they would have small pairwise correlations. In preliminary ex
periments, we computed our features using overlapping windows and 
observed that each time we trained a model results differed significantly. 
After taking this problem into account, we concluded that non- 

Fig. 8. Importance of momentary acoustic features (using a 50 ms window). The color plots show the contribution over time of each feature in the M50 model, for 
each language. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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overlapping windows were the best solution. 
Fig. 10 shows the correlation matrix of all the features extracted from 

each of the corpora. In this 200 by 200 matrix, each value shows the 
correlation value between two momentary acoustic features in the 
different time intervals. For illustration purposes, we only used the 
momentary acoustic features of the Spanish M50 model, computed from 
a 50 ms sliding window with no overlap. This figure serves as an indi
cator of how much we can trust the permutation importance measure 
presented in the previous section. If features were highly correlated, it is 
more likely that the contribution will be lower and unstable across 
different model training steps. 

It can be seen for example that pitch is one of the most autocorrelated 

features over time. Also, it has a considerable correlation with intensity. 
On the other hand, pitch against its slope and intensity against its slope 
also have high correlations. Finally, logHNR, shimmer and jitter also 
seem to share information. These facts have to be taken into account 
when making claims about feature importance and about how features 
interact with each other. 

4.6. Summary of study 2 

In this second study we observed that, in all three languages, various 
features contribute to the production of different types of turn transi
tions in a similar way; and that these results are consistent across 

Fig. 9. Importance of momentary acoustic features (using a 100 ms window). The color plots show the contribution over time of each feature in the M100 model, for 
each language. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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different time windows. However, because features show correlation to 
some extent, the results need to be interpreted carefully. We used MCPD 
(Mean Class-Probability Decrease), a novel measure of feature impor
tance to estimate the contribution of what we call whole-IPU and 
momentary acoustic features. 

As a first result, we saw that whole-IPU features, speech rate and IPU 
duration, appeared among the seven most contributing features in all 
languages, speech rate being the one that most affects H and S pre
dictions. However, while the information present in a whole-IPU feature 
disappears as soon as it is removed, in a momentary feature such in
formation could be retrieved from its context. To attenuate these cor
relation effects we built and tested three different models for each 
language, with varying time windows. Again, results showed whole-IPU 
features, especially speech rate, to be among the most important features 
to discriminate H and S. 

Regarding momentary features, pitch was the most important, 
especially on the last 200 ms of speech in all languages, only followed by 
pitch slope, which turned to be more important in English and Slovak 
than in Spanish. Intensity, showed the bigger contribution over time, 
concentrating its effect on the (− 200 ms, -100 ms) interval for all lan
guages. LogHNR showed to be important for discriminating H and S in 
the last hundred milliseconds before pauses. Finally, shimmer and jitter 
showed scarce contributions to the model predictions, with an exception 
in English and Spanish over the last 400 ms. 

This analysis contains lots of condensed information that make 
comparisons somewhat difficult to summarize. Therefore, we release a 
folder containing all feature importance calculations for the reader to 
explore: https://github.com/pbrusco/turn-taking-SPECOM. 

5. Conclusions 

We conducted a number of experiments to explore similarities and 
differences between American English, Slovak and Argentine Spanish in 
the production of acoustic/prosodic cues before turn exchanges. We 
analyzed the speech in three corpora of spontaneous dyadic conversa
tions, first through a series of visual explorations, and second by using 
machine learning techniques to predict turn transitions based on fea
tures from pause-preceding units. 

In the first study, we saw in detail how IPU features (pitch, intensity, 
duration, speech rate, and voice quality features) vary over time and 
comparably across the three languages. Also, we considered the prob
lems associated with the use of averages instead of raw signals. In the 
second study, we defined a new metric to measure feature importance 
per class, by simulating the deletion of a feature in a chosen model and 
analyzing its effects on its predictions. 

After the experiments, we found that, generally speaking, the three 
languages under study share acoustic/prosodic resources to signal turn 
transitions. We were also able to rank the features in each language by 
their contribution to the separation of turn transition classes. We 
consider this information as useful for both the linguistics community 
and the spoken dialogue systems community alike. If one builds a pre
diction system, a good approach is to start with the most informative 
features. In particular, we recommend: 

1. To use speech rate as a feature. This feature showed to be funda
mental to distinguish turn-holdings from turn-yieldings. Word 
lengthening, too, shows to be important in the domain of 

Fig. 10. Correlation matrix for momentary acoustic features for the Spanish corpus (50 ms window).  
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collaborative dialogue and may be important as well in more general 
dialogue systems. 

2. To include the entire pitch track (especially the last 200 millisec
onds) in the feature set. Pitch is well known to be essential as a turn- 
yielding and backchannel-inviting cue. In particular, pitch slope over 
time has shown to provide useful complementary information in 
cases where models do not automatically take into account the dy
namics of the signal.  

3. To include the entire intensity track in the feature set. Intensity level 
itself, rather than its dynamics, has shown to contain useful infor
mation for hold, switch and backchannel predictions. In particular in 
English and Spanish, where the model showed a contribution 
through time for longer periods than in Slovak. 

4. To use logHNR as a feature. This feature showed particular impor
tance between 200 and 100 ms before pauses, especially for switch 
and hold predictions. We advise to include at least the last 200 ms of 
information to capture these cues. 

There are several possible directions for future research. The first one 
is to understand to what extent a spoken dialogue system may use 
contextual cues such as turn-initial prosodic cues. For example, Sicoli 
et al. (2015) show that speakers use a boosted initial pitch to signal 
questions. Yet, our models only explore turn-final IPUs, and turn-initial 
prosodic information might be missing. For a better understanding of 
these phenomena further experiments need to be conducted. 

Second, there seems to be some margin for improving the models and 
exploring what information could be missing to reach a prediction 
performance as perfect as possible. We also plan to redesign the MCPD 
metric for taking into account the direction in which predictions shift 
and the original prediction value. 

A third direction may consist in testing the classifiers on data from a 
perception study. In the present study we only make claims about the 
information rendered important by the proposed algorithms to classify 
different types of turn transitions. We make no assumptions on how the 
human brain processes such information. However, it may be interesting 
to see the similarities or differences between the mistakes made by 

system and humans. 
Fourth, we plan to extend this work with the analysis of other types 

of turn transitions such as interruptions and overlaps; as well as explore 
further the already known, for example, make an in-depth analysis of the 
final pitch contours in IPUs preceding BC that seem to produce a 
bimodal distribution in Spanish. 
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Appendix A. Hyperparameter optimization 

A model hyperparameter is defined as an external configuration whose value is not estimated from the data. Generally speaking, hyperparameters 
define the model’s flexibility, and therefore play a central role in the bias-variance trade-off. Hyperparameters were selected by running a randomized 
search procedure with the following restrictions:  

• n_estimators: The number of trees in the forest (an integer number between 50 and 500).  
• max_depth: The maximum allowed depth for each tree (an integer number between 2 and 15).  
• max_features: The number of features that are randomly selected at each node split (a percentage between 1% and 100% of the total number of 

features). The higher, the more similar the resulting forest trees will be to each other.  
• balance method: We tried three different balancing strategies — oversampling (supplementing the training data with random samples of some 

of the minority classes); undersampling (restricting the amount of data from each class at each tree level); and unbalanced (in which no 
balancing is applied). 

Given a combination of hyperparameters, we measure its performance by conducting a 10-fold leave-one-group-out cross validation using macro- 
averaged F1-score as the performance metric. In this procedure, subsets of data (folds) are assigned either to train a model (9 folds) or to measure its 
validation performance (the remaining, unseen fold). Validation folds are rotated to get 10 values of performance for each hyperparameter combi
nation. Each fold contains a particular group of speakers that are not present in more than one fold. Therefore, by measuring the validation set score, 
we take into account the desired property of how the model generalizes to the new group of speakers without overestimating our results due to 
speaker-specific patterns. 

At the point in which we train our models, we are interested in balancing the data so that all trees learn patterns from the same amount of H, S, and 
BC instances; i.e., we remove prior information about turn-transition probabilities. Removing prior information may not be the best option when 
building a real state-of-the-art system for predicting in a “real setting” since turn-taking transitions are naturally unbalanced. However, our goal is to 
build a model that can be explored for understanding the data, rather than building a state-of-the-art model for making predictions on new corpora. In 
the same direction, we did not set the random forest class_weight attribute since the bias it produces on the forest does not help for being fair in the 
contribution each feature has. 

The metric we selected for measuring each model performance is the macro-averaged F-score. Given the posterior probabilities emitted by a model, 
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instances are assigned to a class based on the most likely value: prediction = arg maxk{P(Y = k
⃒
⃒X = x(i))}. Once all instances have been assigned, recall 

and precision are computed for each individual class (H, S and BC). Next, the F score (the harmonic mean of precision and recall) is computed as Fk =

2⋅ precisionk⋅recallk
precisionk+recallk

. Third, “macro average” is the result of computing the metric for each class, and then compute their unweighted mean: F = (FH + FBC 

+ FS)/3. Again, we do not consider label imbalance at this point, since we are not interested in making predictions in a real domain, in which 
imbalance is very likely to occur. This oversampling method is performed only over training folds after splitting the original data to avoid information 
leaking across folds. Training scores are also computed since they can help understanding how our model fits the data. 

After running the hyperparameter optimization process, we observe that the balancing method turned out to be the most determinant hyper
parameter in which the oversampling method outperformed almost all other combinations. The first two columns of Table A.3 show a summary of 
these results. Having selected the balance method, the max_depth hyperparameter was the second most determining setting. Fig. A.11 shows how the 
performance is affected when varying the max_depth hyperparameter. These plots show the known bias-variance trade-off, in which the deeper the 
trees are allowed to grow, the more likely it is for such trees to overfit to the training data, and thus to increase their training score, in detriment of their 
generalization power (i.e. the validation performance). Also, this figure shows a remarkable similarity between how different combinations perform in 
the three languages. This desired property allows us to choose similar settings for the three classifiers and as a consequence, allows fairer comparisons 
across languages. By analyzing the group of higher ranked combinations for each language (i.e combinations without significant difference versus the 
best one), we selected the following hyperparameter combination for all languages: number of trees in the ensemble: 300, max depth: 10, features to 
select at each split: 50% and oversampling of data as the balancing method. The last two columns of Table A.3 show how the selected models perform 
on each corpus. 
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