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Summary

Fasciolosis is a worldwide spread parasitosis mainly caused by the trematode Fasciola hepatica. 

This disease is particularly important for public health in tropical regions but it can also affect the 

economies of many developed countries due to large infections in domestic animals. Although 

several studies have tried to understand the transmission by studying the prevalence of different 

host species, only a few have used population genetics approaches to understand the links 

between domestic and wildlife infections. Here we present the results of such genetic approach 

combined with classical parasitological data (prevalence and intensity) by studying domestic and 

wild definitive hosts from Camargue (southern France) where fasciolosis is considered as a 

problem. We found 60% of domestic hosts (cattle) infected with F. hepatica but lower values in 

wild hosts (nutria, 19%; wild boars, 4.5%). We explored nine variable microsatellite loci for 1,148 

adult flukes recovered from four different populations (non-treated cattle, treated cattle, nutria 

and wild boars). Populations from the four groups differed, though we found a number of 

migrants particularly non-treated cattle and nutria. Overall, we detected 729 different multilocus 

genotypes (from 783 completely genotyped individuals) and only 46 genotypes repeated across 

samples. Finally, we experimentally infected native and introduced intermediate snail hosts to 

explore their compatibility with F. hepatica and assess the risks of fasciolosis expansion in the 

region. The introduced species G. truncatula and P. columella attained the higher values of 

overall compatibility in relation to the European species. However, concerning the origin, 

sympatric combinations of G. truncatula were more compatible (higher prevalence, intensity and 

survival) than the allopatric tested. According to our results, we should note that the assessment 

of epidemiological risks cannot be limited to a single host-parasite system, but should focus on 

understanding the diversity of hosts in the heterogeneous environment through space and time.
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1. Introduction

Among the trematode species affecting domestic and wild mammals with major impacts in 

human populations worldwide, the liver fluke Fasciola hepatica displays the largest known 

altitudinal and latitudinal distribution (Mas-Coma, Bargues, & Valero, 2018). This parasite 

presents a heteroxenous life cycle including freshwater snails of the family Lymnaeidae as 

intermediate hosts (around 30 verified species; review in Correa et al., 2010; Vázquez et al., 

2018) and a wide range of mammals as definitive hosts (Hurtrez-Boussès, Meunier, Durand, & 

Renaud, 2001). At a global scale, F. hepatica is responsible for fasciolosis, a food and waterborne 

disease affecting an estimate range between 35 to 72 million people annually and over 180 

million at risk of infection (Nyndo & Lukambagire, 2015). Yet, it remains among the most 

Neglected Tropical Disease (WHO, 2007). This disease is also prevalent in temperate countries 

such as France where several outbreaks are usually linked to the consumption of contaminated 

watercress (Mailles et al., 2006)from cattle-rearing areas (Rondelaud, Dreyfuss, Bouteille, & 

Dardé, 2000). At veterinary level, fasciolosis infects around 600 million domestic animals and 

directly affects the national economies with about US $3 billion losses annually worldwide (Khan 

et al., 2013; Toet, Piedrafita, & Spithill, 2014). Although wild species are much less studied, some 

of them may maintain the circulation in non-domestic and domestic environments (e.g. Wild Red 

Deer and Wild Nutria: French et al., 2016; Kim, Kong, Kim, Yeon, & Hong, 2018). In any case, the 

risk of fasciolosis transmission usually relates to areas with some degree of anthropic incidence 

(e.g. management of hydrographic networks, husbandry practices using sensible breeds, 

introduction of exotic species, etc.; Sabourin, Alda, Vázquez, Hurtrez-Boussès, & Vittecoq, 2018). 

Such facts bring forward the need of knowing precisely the infective capacity of the circulating 

strains and the hosts they infect along with the circumstances that actually promote their 

infection.

For instance, the analysis of the population genetic structure of parasites helps to understand 

their circulation among their hosts (de Meeûs et al., 2007). Recent genetics studies using 

microsatellites markers on F. hepatica from different regions present most populations as highly 

diverse (Beesley, Williams, Paterson, & Hodgkinson, 2017; Cwiklinski, Allen, LaCourse, Williams, 

& Paterson, 2015). These results are usually explained through different hypothesis: (1) F. A
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hepatica is hermaphroditic but adults usually reproduce by cross-fertilization (Hurtrez-Boussès et 

al., 2004); (2) flukes infecting domestic animals (particularly bovines) are passively introduced 

into distant regions because of poor cattle managerial activities (Vázquez et al., 2016); and (3) 

introduction of non-native intermediate and definitive hosts in natural environments may 

prompt the transmission bridging the infecting wildlife genotypes with common domestic flukes 

(Beesley et al., 2017). Although there has been a handful of studies addressing F. hepatica 

variability within domestic animals (Beesley et al., 2017; Vázquez et al., 2016; Vilas, Vázquez-

Prieto, & Paniagua, 2012), to our knowledge none has considered a detailed analysis of its 

diversity within wild hosts. Here we propose a study that allows to explore precisely how the 

dynamics of a host-parasite system may rapidly evolve from a natural complexity (heteroxenous 

life cycle, multiple hosts, combination of sexual and asexual reproduction according to the host) 

increasing through local human activities (cattle management and introduction of invasive 

species).

Understanding host-parasite relationships is fundamental in the attempt of preventing and 

controlling the transmission of infection diseases (Hawley & Altizer, 2011). However, laboratory 

approaches can only approximate reality to a certain point (e.g. revealing alleles or genotypes 

will rely upon the number of sampled individuals and the random probability of having higher or 

lower diversity). Moreover, field studies oblige to deal with some undesirable constraints (e.g. 

finding infected snails has proved to be challenging due to usually low prevalence; Sabourin, 

Alda, Vázquez, Hurtrez-Boussès, & Vittecoq, 2018; Vázquez, Sánchez, Alba, Pointier, & Hurtrez-

Boussès, 2015). In an attempt to have a closer glance to the genetics and infection patterns in 

this system, we have combined field and experimental approaches in order to study different 

intermediate and definitive hosts susceptible to F. hepatica. To this end, we carried out our study 

within the Camargue Regional Park. In this region, fasciolosis transmission is long reported (de 

Rivière, 1826) and largely affected by human activities (PNRC, 2014), and thus, ideal to the study 

of this system. The objective is to provide a better knowledge on the epidemiology of F. hepatica 

in wild and domestic animals and its ability to infect different lymnaeid species. We characterized 

the population genetic structure of the parasite within each host using microsatellites markers in 

order to unveil the potential roles of each species as reservoirs and disseminators. Finally, we 

conducted experimental infections to test the compatibility of the circulating strain of F. hepatica A
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with some native and introduced lymnaeid species and to assess the risks of transmission beyond 

the study area.

2. Materials and Methods

2.1. Study area and F. hepatica sampling in domestic and wild definitive hosts

The study was carried out in the domain of Tour du Valat (TdV), a territory within the Regional 

Natural Park of Camargue (Provence-Alpes-Côte d’Azur region, France) including lands classified 

as Regional Natural Reserve (Figure 1). The domain covers about 2,650 ha intended for the study 

and protection of wetlands including the typical natural habitats of Camargue such as temporary 

marshes, dunes and extensive halophile meadows. Although being a protected area, the territory 

have some managed resources activities including cattle farming. Cattle in this place belongs to 

the rustic race “Raço di Biòu” (Bos taurus) adapted to the harsh conditions of Camargue. Because 

of the natural reserve regulations, the use of anthelmintic drugs definitively stopped in 2005 in 

all animals belonging to the TdV herd (hereafter considered as ‘non-treated cattle’). However, 

some private cattle farms rent the surrounding lands off the limits of the Natural Reserve within 

TdV and use the flukicide Nitroxinil as anthelmintic drug (hereafter considered as ‘treated 

cattle’). Treatment in this case occurs every once a year in November/December. Among wild 

mammals, the domain harbors the native wild boar (Sus scrofa) and the introduced nutria 

(Myocastor coypus). Both species are known to be susceptible to F. hepatica infection (Ménard 

et al., 2001; Mezo et al., 2013).

We explored the infection with F. hepatica in the domestic and the two wild species from 2013 

to 2019. Cattle from TdV (non-treated, n = 210) and surrounding farms (treated, n = 15) were 

slaughtered for meat consumption in the nearby abattoirs of Tarascon (Bouches-du-Rhône) and 

Pézenas (Hérault). Veterinary authorities kindly allowed us to exhaustively dissect the livers and 

sample adult flukes from recently slaughtered cattle strictly following the particular hygiene and 

best practices guidelines of the abattoir. Liver examination was performed by cutting the whole 

liver in 2 cm perpendicular slices and pressing the biliary ducts. Concomitantly with liver 

examination, the content of the bile vesicle was examined (see exact methodology in section 2.3) 

and either recovering the adults from the ducts or the eggs from the bile confirmed the 

prevalence. Wild boar samples (n = 156) were kindly donated by private hunters during the A
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hunting season whereas nutrias (n = 42) were obtained through the conservation program 

carried out to reduce this invasive species in the area (order approving the departmental hunting 

management scheme for Bouches-du-Rhône, 2014 –available at: http://www.bouches-du-

rhone.gouv.fr/content/download/9416/57472/file/ARRETE_SDGC.pdf). As with cattle, all 

received wild individuals were also thoroughly dissected and their liver examined following the 

same methodology as in cattle. All liver-infecting trematodes were recovered and stored in 

ethanol 80% for further molecular analysis. Parasite prevalence and intensities were noted 

following Reiczigel, Marozzi, Fábián, and Rózsa (2019). Data on sex and age were also recorded 

for non-treated cattle from TdV herd.

2.2. Molecular studies of F. hepatica (DNA extraction, microsatellite amplification, genotyping 

and data analysis)

We used a random sample of adult flukes from each definitive host (range 1–30 upon availability 

according to individual intensities) for molecular studies in an attempt to include a maximum 

number of infected individuals. A small piece of tissue (2 mm²) from the posterior end of each 

adult F. hepatica (n = 1,148) was used for DNA extraction using the Chelex extraction technique 

adapted for 96-well plates after Estoup and Martin (1996). Briefly, the tissue was dried and 

placed in a well (one well per individual) containing a mix of 5 µL of proteinase K (Promega) and 

100 µL of 5% Chelex® (Bio-Rad Laboratories, California, USA). The plates were vortexed and 

incubated overnight at 56 °C followed by vortex again and incubated 10 min at 95 °C. Afterwards, 

the plates were centrifuged at 10,000 x g for 5 min and the supernatant containing the DNA was 

collected and stored at -20 °C until use.

Individual DNA extracts were diluted 1:10 for PCR amplification of nine microsatellite loci 

following the protocols of Hurtrez-Boussès et al. (2004) and Cwiklinski et al. (2015). Used markers 

(GenBank accession numbers) were FH15 (AJ508371), FH25 (AJ508373), FH222CBP (AJ003821), 

Fh_2 (LN627942), Fh_5 (LN627876), Fh_6 (LN629193), Fh_7 (LN635535), Fh_10 (LN628015) and 

Fh_12 (LN628360). Each locus was amplified using 1 µL of diluted DNA (1:10) in a 10 µL final 

reaction volume containing 2 µL buffer 5X (Promega, Wisconsin, USA), 1.2 µL 25 mM MgCl2, 2 µL 

2 mM deoxynucleoside triphosphates (dNTPs) (Invitrogen/Life Technology, Massachusetts, USA), 

1 µL of each primer (10 pmol) and 0.2 µL of 1U Taq DNA polymerase (Promega). Thermocycling A
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was performed in a 96-well MJ-Research PTC 100 (MJ Research, California, USA) and consisted of 

an initial denaturation at 94 °C for 4 min; 30 cycles of 94 °C for 35 s, annealing temperature 

(FH15 = 48°C; Fh_2, Fh_5, Fh_6, Fh_7, Fh_10, FH222CBP = 55 °C; FH25 = 57 °C; Fh_12 = 60 °C) for 

30 s, and 30 s at 72 °C; and a final elongation step of 72 °C for 10 min. Primers were fluorescently 

labelled to be used in an ABI automated sequencer (ABI-Prism 310 Genetic Analyzer, Applied 

Biosystems, Perkin-Elmer, California, USA). Each PCR product was diluted 1:100 and 1 µL was 

used to prepare a mix containing 0.5 µL of internal size standards (GENESCAN 500 LIZ, Applera 

France) and 15 µL of Hi-Di Formamide (20 µL qsp) for the automated electrophoreses. All allele 

lengths were read using GeneMapper® v. 4.0 software (Applied Biosystems, California, USA).

We estimated current parameters of population genetics such as mean number of alleles (Ar), 

observed (HO) and expected (HE) heterozygosities, departure from Hardy-Weinberg equilibrium 

(FIS) and pairwise differentiation between populations (FST). We considered all individuals 

sampled within a particular host group (non-treated cattle, treated cattle, nutria and wild boar) 

as different F. hepatica populations. Estimations were computed using the software FSTAT 

v2.9.3.2 (Goudet, 2001) and Bonferroni corrections were applied for multiple tests (Rice, 1989). 

We identified identical multilocus genotypes (MLGTs) only in flukes with all nine loci amplified 

and tested the probability of observing n copies of a given MLGT as the result of random mating 

(Psex values) using RCLone (Bailleul, Stoeckel, & Arnaud-Haond, 2016). Individuals with 

statistically significant Psex values (P < 0.05) were considered the result of clonal amplification 

(Vilas et al., 2012). Genotypic diversity (D) was also calculated using the Simpson index. The 

average number of migrants between populations (Nm) was estimated with GENEPOP v. 4.2.1 

(Rousset, 2008) using the private allele (Apriv) method developed by (Slatkin, 1985) for which 

parasites were grouped by definitive hosts. We used a Bayesian algorithm to determine the most 

appropriate number of genetic clusters (K). Twenty independent iterations of 200 000 burn-in 

length were followed by 100 000 Markov chain Monte Carlo repeats at each level for K = 1–30. 

ΔK was determined using the method proposed by Evano, Regnaut, and Goudet (2005) 

computed in Structure Harvester (Earl & vonHoldt, 2012). We performed a discriminant analysis 

of principal components (DAPC) using the package adegent in R (Jombart, Devillard, & Balloux, 

2010) to explore the relatedness of MLGTs observed in each population F. hepatica. All MLGTs A
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were reduced to one instance for the DAPC analysis and for the construction of the genetic 

distance matrix.

2.3. Experimental infection of lymnaeid snails

Six populations of four lymnaeid species (two introduced and two native in Europe; see details in 

table 1) were exposed to the circulating F. hepatica isolate from TdV collected during the 2019 

campaign (Camargue) and served as experimental models.

From these field populations, we reared two successive generations in the laboratory using 

plastic cages. Snails were fed with boiled minced lettuce ad libitum and maintained at constant 

temperature (22°C) and relative humidity (55%) conditions. Three-week old snails were used for 

experimental infections. A pool of F. hepatica eggs from non-treated cattle (n = 25) was selected 

to obtain miracidia (the larvae that infect the intermediate host) to expose the snails as it 

resulted the most genetically diverse parasite isolate (see section 3.2). Briefly, we collected the 

content of the bile vesicle from cattle obtained in the abattoir (see section 2.1) for mass egg 

retrieval. The bile was sift using pore size-decreasing set of sieves and continuous washing with 

saline solution (0.85%) to isolate the eggs that were stored in tubes containing saline solution at 

4 °C in the dark until use (Vázquez et al., 2019). When the snails were one-week old, we changed 

the eggs to spring water and incubated for 15 days in darkness at 27 °C. The experimental 

infection methodology was followed as in Vázquez et al. (2019) individually exposing 30 snails of 

each population to a dose of five F. hepatica miracidia.

Mortality was recorded daily. All snails that died after the first week post-exposure were 

dissected and those individuals that showed the intramolluscan stage of F. hepatica, the rediae, 

were marked as infected. Those snails dying during the first week post-exposure were considered 

as non-infected since the early stages are very difficult to detect and would introduce 

uncontrollable bias. After 30 days post-exposure all remaining snails were dissected under a 

stereoscope following Caron, Rondelaud, and Losson (2008) and all living F. hepatica rediae 

(irrespective of their size or generation; Rondelaud, Belfaiza, Vignoles, Moncef, & Dreyfuss, 2009) 

were counted. We kept 30 individuals of each population unexposed but submitted to the same 

experimental manipulation as negative controls. Compatibility was evaluated using three 

parasitological variables according to Reiczigel et al. (2019): (1) prevalence (%) i.e. proportion of A
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infected individuals from all the exposed within the host sample; (2) mean parasite intensity as 

the average of intensity values –rediae/snail– calculated for a sample with 95% confidence 

intervals (CI); and (3) survival (%) as the percentage of alive individuals in the sample (exposed or 

unexposed population). To that end, a one-way ANOVA followed by a post hoc Tukey test was 

used to compare parasite intensities among trials after normality and homogeneity of variance 

were verified by the Shapiro-Wilk and Levene tests. Differences in survivorship among trials were 

statistically assessed through a log-rank test of Kaplan-Meier curves built from day 0 to day 30 

post-exposure. All statistical tests were performed in Statistica v.12 (StatSoft. Inc., Tulsa, OK, USA 

2014) and differences were considered significant at values of P < 0.05.

3. Results

3.1. Trematode liver infections in domestic and wild definitive hosts

The total prevalence of F. hepatica in cattle (domestic definitive hosts; N = 225) was 60% but 

with higher values in non-treated cattle (85%; mean intensity 15.7 ± 2.3 CI) than in treated cattle 

(67%; mean intensity 16.3 ± 7.4 CI), although non-significant (Chi-square = 3.36, P = 0.06) (Table 

2). Intensities among all combinations of non-treated (young/adult/male/female) and treated 

cattle (ANOVA results: F = 0.583; P = 0.67) were not significant. In non-treated cattle, prevalence 

was higher in females (91.6%) than in males (81%) (Chi-square = 5.06, P = 0.02). Both sexes 

combined, prevalence in young individuals (1-3 years old) were higher than in adults (Chi-square 

= 4.03, P = 0.04). We observed a slight trend of increasing intensity with age but it was non-

significant (P = 0.24). Prevalence was lower in wild definitive hosts with 19% in nutria (N = 42) 

and 4.5% in wild boars (N = 156) (Table 2). During liver dissection, we also noted the infection 

with the trematode Dicrocoelium dendriticum (Lancet liver fluke) in some individuals from all 

examined host species. Overall D. dendriticum prevalence was higher in non-treated cattle (76%) 

and nutria (50%) compared to treated cattle (25%) and wild boars (11%). Co-infection occurred in 

cattle (non-treated, 70%; treated 25%) and in nutria (38%) but it was not detected in wild boars.

3.2. Genetic diversity and population structure of F. hepatica from definitive hosts

We attempted the genetic characterization at nine microsatellite loci for 1,148 recovered adult 

liver flukes from non-treated cattle (949), treated cattle (100), nutria (81) and wild boar (18). The 

characterization of all examined loci among the four definitive host species of F. hepatica from A
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TdV is presented in Table 3. We did not find significant associations (Spearman correlation) 

between the number of analyzed flukes and the number of alleles per locus for all loci among the 

parasites found in the definitive host species.

Overall, all loci resulted polymorphic with non-significant deviations from the Hardy–Weinberg 

equilibrium in any of the examined groups of hosts (Table 4). Globally, F. hepatica populations 

from domestic hosts presented significantly higher values of allelic richness (5.7 alleles per locus; 

range: 4–25 alleles) and expected heterozygosity (P < 0.05) than those from wild hosts (mean: 5 

alleles per locus; range: 2 – 19) (P < 0.001, Wilcoxon rank sum test). The populations from the 

four definitive host species shared 42 alleles (32%, N = 131). However, private alleles (Apriv) were 

observed only in cattle populations (Table 4). These unique alleles attained a maximum of six per 

locus.

3.3. Genetic differentiation in F. hepatica

All populations from the four definitive host species appeared slightly differentiated but still 

differed significantly (overall FST = 0.024 ± 0.013 SD; P < 0.05). Actually, we detected a number of 

migrants among populations (mean 13.9 ± 7.4) particularly between non-treated cattle and 

nutria (Table 5).

Overall, we found 729 different MLGTs among 783 liver flukes with the nine loci amplified and 47 

MLGTs repeated across the sample. However, the number of MLGTs found in each definitive host 

species was dependent of the sample size (Pearson correlation r = 1, P < 0.001). All identical 

MLGTs were the result of clonal amplification (Psex < 0.05) with a global high genotypic diversity 

(Table 5). We found 41 MLGTs repeated in two flukes, five MLGTs repeated in three flukes and 

only 1 MLGT repeated in four flukes. Overall, 21 MLGTs were shared by different host individuals 

but only in non-treated cattle and five were recovered at different years (2014-2015). None 

MLGT was found shared by different host species.

The ΔK values were very low indicating low structuration among the analyzed flukes but still 

three clusters (K = 3) were found. To gain deeper insight into the genetic structure of F. hepatica 

populations and obtain a clearer view of the genotypic variation, we performed a DAPC that 

identifies clusters of genetically related individuals only for individuals with the nine loci 

amplified. Although most MLGTs are closely related we still are able to observe three clusters A
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separating treated cattle, non-treated cattle/nutrias and wild boars. MLGTs from nutrias and 

non-treated cattle could not be differentiated (Figure. 2), however, it should be noted that only 

individuals with all nine loci amplified were kept for this analysis.

3.4. Infection of different lymnaeid species with F. hepatica

All four snail species and populations were susceptible to F. hepatica infection (Figure 3A). 

Overall, the introduced species presented higher values of prevalence (G. truncatula from TdV, 

70%; P. columella, 57%) than native lymnaeids. The allopatric population of G. truncatula from 

Rieu Massel attained 30% prevalence with lower values of parasite intensities and survival than 

the rest of analyzed populations. Overall, parasite intensities were significantly different (ANOVA 

results: F = 20.3; P < 0.001), particularly G. truncatula from Pesquier (TdV) with the highest values 

(mean 36 ± 6 CI) (Figure 3B). However, similar values were observed among P. columella, L. 

stagnalis and G. truncatula (Anciennes Vignes, TdV) after the post hoc Tukey test. The species 

with the lowest values of prevalence and parasite intensities was R. balthica. Survival was 

globally higher than 60% (Figure 3C) for most species and populations, reaching 100% in G. 

truncatula from TdV. Only G. truncatula from Rieu Massel attained low survival rate (13.3%). All 

control groups attained zero mortality (data not shown).

4. Discussion

4.1. High transmission of liver trematodes in domestic and wild definitive hosts in TdV

The overall prevalence of F. hepatica in cattle from TdV (>60%) is considerably higher than in 

other regions such as central France (13% to 25%; Mage, Bourgne, Toullieu, Rondelaud, & 

Dreyfuss, 2002) but similar to certain endemic regions elsewhere (Nepal >70%; Yadav, 

Ahaduzzaman, Sarker, Sayeed, & MA, 2015; Cuba >70%; Vázquez et al., 2016; Zambia >60%, 

Nyirenda et al., 2019). The absence of differences in prevalence or intensity between treated and 

non-treated cattle may suggest a failure of grazing management and/or treatment strategy by 

either wrong appliances or the existence of resistance to the used flukicide Nitroxinil. In this 

region, cattle is treated once a year in November-December (breeder’s communication) and the 

exposure to the fluke would be potentially all-year-round. Given that flukes from the non-treated 

herd were recovered usually in late December, a failure of the drug can be a plausible 

explanation. Elsewhere, Nitroxinil has been used successfully in Triclabendazole-resistant flocks A
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(Romero et al., 2019) but it is known to lower its efficacy in 7- to 9-weeks old liver fluke’s 

juveniles (Martínez-Valladares et al., 2010).

Although the probability of infection may increase with age (i.e. definitive hosts have more time 

to encounter the parasite cysts in the field; Khan et al., 2013), we found no direct link between 

age and parasite intensity (calculated as the burden of flukes within a single host). Our non-

significant trend (analyzed individuals ranged from 1 to 18 years old) could be understood as a 

similar risk of infection every year associated with a natural parasite turnover during the lifespan 

of the host (flukes usually live for less than 2-3 years in cattle). This maintained risk of infection 

could be supported by a very high prevalence of field-occurring cysts of F. hepatica supporting 

reinfection. Given that females and males graze together in the studied area, the proportionally 

more infected females could be due to a lower immune competence by stress during pregnancy 

and parturition (Spithill, Smooker, & Copeman, 1999), or by a differential pattern of grazing areas 

because of particular management practices in this region.

The infection observed in wild hosts was not negligible and agrees with studies elsewhere. 

Ménard et al. (2001) found an overall 8.7% prevalence in nutria from Loire-Atlantique (western 

France) although it increased up to 40% when nutria were sampled from areas containing farms 

with infected cattle. In the case of wild boars, a study from Galicia (Spain) recorded over 11% 

prevalence suggesting a role as secondary reservoir of fasciolosis (Mezo et al., 2013). In addition 

to cattle, both wildlife species are particularly interesting in fasciolosis epidemiology. Nutrias are, 

however, probably more relevant in maintaining fasciolosis in a given small area due to their 

territoriality (Carter & Leonard, 2002) and typical habitats that usually overlaps with those of 

intermediate hosts snails (e.g. irrigation and drainage channels). On the contrary, wild boars are 

known to use over 100 ha of effective territory (Boitani, Mattei, Nonis, & Corsi, 1994) and thus, 

would be able to use different non-connected biotopes. For instance, both species would be key 

players in disseminating different liver fluke’s genotypes among intermediate hosts that could 

entangle the genetic background of the overall metapopulation. This hypothesis is supported by 

the fact that all alleles observed in both wild hosts were shared in domestic hosts, particularly 

between non-treated cattle and nutrias. Whatever the case may be, we should note that 

transmission in the studied area is mainly due to cattle (higher prevalence and genetic diversity) A
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and that they are generally responsible for raising the probability of infection in wildlife or 

eventually humans (Vázquez et al., 2016).

On the other hand, the observed co-infection between F. hepatica and D. dendriticum (e.g. 70% 

in non-treated cattle) is particularly interesting as both trematode species target the liver of 

definitive hosts. In fact, this particular co-infection event is commonly reported (Ducommun & 

Pfister, 1991; Khanjari et al., 2014). The observed prevalence in this study reveals that D. 

dendriticum is also highly prevalent in both domestic and wild mammals. Contrary to F. hepatica, 

D. dendriticum uses land snails and ants as first and second intermediate hosts, respectively, and 

the existence of humid conditions or lasting waterbodies is not needed for transmission to occur. 

Indeed, alkaline and carbonate-rich soils are the most important conditions for their 

intermediate hosts (Manga-González, González-Lanza, Cabanas, & Campo, 2001) whilst parasite 

eggs can last long periods in pastures (Taylor, 2012). These facts would suggest that the infection 

by D. dendriticum might be higher than that by F. hepatica and that it might affect the 

establishment of F. hepatica. Notwithstanding, this was not the case here and a plausibly 

explanation could be that the studied territory is a wetland harboring lymnaeid populations 

highly compatible with the local strains of F. hepatica (see section 3.4). In a potential scenario of 

strong interspecific competition inside the definitive hosts, F. hepatica seems able to resist and 

survive. Future studies should model the outcome of such competition by examining the 

intensities of both interacting trematode species since it could overall affect the transmission 

epidemiology.

4.2. High polymorphism in F. hepatica populations from different hosts

The allelic sizes found in this study fall within the reported range elsewhere (Cwiklinski et al., 

2015; Hurtrez-Boussès et al., 2004). However, here we found less alleles per locus for most 

explored loci (except Fh_7) compared to those observed by Beesley et al. (2017). In Cuba, for 

example, where F. hepatica is endemic in cattle (Alba et al., 2016), a population genetic study 

using FH15, FH25 and FH222CBP markers from eight different cattle isolates, showed similar 

values with a mean of 7.5 alleles per locus and up to 30 alleles among the three loci (Vázquez et 

al., 2016). Other studies that have attempted to explore F. hepatica using haplotype diversity 

also show high variability. For instance, studies using Nad1 gene found 24 haplotypes from 79 A
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individuals in Brazil (Schwantes, Quevedo, D'Avila, Molento, & Graichen, 2019) and 37 

haplotypes from 130 individuals in Iran (Bozorgomid, Rouhani, Harandi, Ichikawa-Seki, & Raeghi, 

2020).

We found an absence of deviations from the Hardy-Weinberg equilibrium and high genetic 

diversity of F. hepatica that could be explained by cross-fertilization among parasites and high 

migration rate thanks to definitive host movements. In fact, private alleles were only found in 

non-treated (14%) and treated (3%) cattle. In Spain, a study showed that structuration might 

occur between flukes from sheep and cattle (Vilas et al., 2012). Here, after analyzing three 

different host species we can only think of an established flow of parasites among them, 

particularly in non-treated cattle and nutrias that may explain the results observed in the DAPC 

analysis. In the case of the more evident differentiation between treated and non-treated cattle, 

we should keep in mind that although farms are adjacent to one another, cattle from both herds 

never mix. However, we still observe some overlaps indicating that genetic distances are not very 

high. This raises concerns on breeding and managing practices that may promote year-round 

infections and the encountering of distant flukes through passive dissemination by definitive 

hosts. Host movements may act as ‘bridging agents’ playing an important role in homogenizing 

the metapopulation of F. hepatica. As a result, the random emergence of resistant genes to 

anthelmintic treatment may mix in the metapopulation through these migration events and 

complicate the eventual control of fasciolosis. For instance, clonal expansion of resistant 

genotypes to the flukicide Triclabendazole within the snails have been highlighted in G. 

truncatula (Hodgkinson et al., 2018). Usually, important genetic bottlenecks are expected in 

populations routinely treated with anthelmintic (Vázquez et al., 2016) but here we still find a high 

genotypic diversity. It would be nevertheless interesting to develop tests aimed at exploring the 

existence of resistant genes to the different used anthelminthic drugs. Such genes would explain 

the prevalences observed in treated cattle or expose hazardous management of grazing patterns 

here and elsewhere.

4.3. Field transmission and risks of fasciolosis expansion in Camargue

We should note that 40 repeated genotypes were observed in cattle. Some of these genotypes 

were recovered not only from different host individuals but also from different years. Two A
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different explanations can be given: (1) F. hepatica may live at least over two years inside their 

mammal host (Takeuchi-Storm et al., 2018); and (2) metacercariae cysts are capable of resisting 

for several months before being ingested by the definitive hosts (Andrews, 1999). In either case, 

the field contamination with metacercarie should be sufficiently large to infect different 

individuals with the same MLGT.

Overall, we found 687 MLGTs in cattle of which 647 were recorded once. Although snails are 

susceptible to be infected with more than one miracidium (see Rondelaud, Vignoles, & Dreyfuss, 

2004), if we accept, theoretically, that one MLGT equals one infected lymnaeid snail (infection 

more commonly occur by only one miracidium that will expand asexually), there should had been 

up to as many infected snails as observed MLGTs in the studied period. This result suggests the 

existence of multiple sources of field infection for the definitive hosts allowing for such high 

genotypic diversity. This is particularly important if we understand that natural prevalence in the 

snails are usually low (Dreyfuss, Vignoles, & Rondelaud, 2003; Mekroud, Benakhla, Vignoles, 

Rondelaud, & Dreyfuss, 2004; Vázquez et al., 2015). Susceptible populations of lymnaeid snails 

should then be scattered throughout the grazing areas at TdV and managerial activities should 

recognize the location of intermediate hosts populations as a predictor for fasciolosis infection.

Here, we proved that the isolate of F. hepatica from TdV is capable of infecting several species of 

lymnaeid snails. Overall, we found differences in compatibility regarding their susceptibility, 

capacity of the parasite to expand inside the snails and survival of the latter after the exposure. 

The compatibility showed by sympatric G. truncatula is in agreement with the existence of local 

adaptation in this system (Vázquez et al., 2019). Inversely, the allopatric population of G. 

truncatula showed low compatibility with F. hepatica. This population was recovered from a non-

transmission region in a commonly drought-floodable habitat (side route ditch). Genetic drift 

might have rendered those individuals highly incompatible through a continuous series of genetic 

bottlenecks that make them impossible to sustain the infection. Similar results were obtained by 

Dreyfuss, Vignoles, & Rondelaud (2012) when testing local adaptation in G. truncatula to F. 

hepatica. 

Anyhow, although G. truncatula appears as the best suitable intermediate host (at least the 

sympatric populations), we should not disregard the results from the other species, even if we A
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did not allowed for cercarial shedding in our experiments. This is particularly the case of P. 

columella, an invasive species known for its ability of inserting itself into the epidemiological 

scenario of fasciolosis after recent incidental introductions worldwide (Lounnas et al., 2017). In a 

world-changing climate, conditions may shift to render more suitable the establishment of this 

species in southern Europe and consequently promote fasciolosis transmission. For instance, P. 

columella is already introduced into many artificial habitats in many European countries (Glöer, 

2019) and has already been found living in the wild in France (Pointier, Coustau, Rondelaud, & 

Théron, 2007). Moreover, native species such as those tested here (L. stagnalis and R. balthica) 

would be capable of facilitating the transmission in nearby areas not yet colonized by G. 

truncatula or P. columella. In fact, both lymnaeids species are known to transmit F. hepatica in 

several European countries (Vázquez et al., 2018).

4.4. Concluding remarks

These results highlight the importance of studying the epidemiology of an infectious trematode 

disease by taking into account the diversity of occurring definitive and intermediate hosts. 

Indeed, this kind of approach helps in the implementation of efficient integrated management 

programs to prevent and/or control the transmission. For instance, in the case of fasciolosis, 

human activity has proved to be a key factor in promoting the transmission (Sabourin, Alda, 

Vázquez, Hurtrez-Boussès, & Vittecoq, 2018). Herd density and grazing management coupled 

with topographic features and environmental conditions that favor the occurrence of snail hosts 

would influence prevalence and parasite intensity of F. hepatica. Thus, limiting access to high-risk 

pastures and implementing good anthelmintic treatments are key aspects in reducing the 

transmission in regions such as Camargue. In addition, addressing the epidemiological risks 

cannot be limited to a single host-parasite system, but should focus on understanding the 

diversity of hosts in the heterogeneous environment through space and time. The existing 

polymorphism of compatibility in the snail host and F. hepatica has revealed that different 

species may play different roles and that certain combinations are particularly dangerous 

(Vázquez et al., 2019). Although not very well studied, something similar may occur at the 

definitive host level. For example, rapid evolution can take place through human activities and 

the introduction of new host species or the replacement of rustic breeds may facilitate the A
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transmission. Surveillance is, therefore, mandatory if we are to meet the challenge of tackling the 

emergence or re-emergence of such infectious diseases.
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Table 1. Populations of lymnaeid snail species occurring in France used in the infection trials with 

the circulating strain of Fasciola hepatica from Tour du Valat (TdV), Camargue.

Code Species Status Origin Commune Department Relation to the

F. hepatica isolate

Gt.AVS Anciennes Vignes

(43.5017°N; 4.6789°E)

Le Sambuc 

(TdV)

Bouches-du-

Rhône

sympatric

Gt.PES Pesquier

(43.4573°N; 4.6640°E)

Le Sambuc 

(TdV)

Bouches-du-

Rhône

sympatric

Gt.RMA

Galba truncatula introduced

Rieu Massel

(43.6556°N; 3.8122°E)

Grabels Hérault allopatric

Pc.PZA Pseudosuccinea 

columella

introduced Montpellier Zoo

(43.6393°N; 3.8740°E)

Montpellier Hérault allopatric

Ls.BLA Lymnaea 

stagnalis

native Bagne Loup

(43.8623°N; 3.9632°E)

Brouzet-lès-

Quissac

Gard allopatric

Rb.SJA Radix balthica native Saint Jean stream

(43.6785°N; 3.7373°E)

Combaillaux Hérault allopatric
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Table 2. Prevalence (number of examined hosts, n) and mean parasite intensity (± 95% 

confidence intervals, CI) of Fasciola hepatica for each definitive host from 2013 to 2019 in Tour 

du Valat.

% prevalence (n)

Host species
2013 2014 2015 2016 2017 2018 2019 Overall

Mean

Intensity

(± 95% CI)

Cattle (non-treated)

young males - - 0 (1) 100 (2) - - - 66.6 (3) 13.5 (± 4.9)

adult males 100 (6) 100 (11) 91.6 (24) 100 (4) 33.3 (18) - 69.2 (13) 81.6 (76) 13.4 (± 3.6)

young females 100 (3) - 100 (11) 100 (28) 100 (1) - 66.6 (3) 97.8 (46) 17.3 (± 4.5)

adult females 100 (2) - 88.9 (9) 96.8 (32) 81.8 (22) - 70 (20) 88.2 (85) 16.6 (± 4)

Overall 100 (11) 100 (11) 91.1 (45) 98.5 (66) 60.9 (41) - 69.4 (36) 84.8 (210) 15.7 (± 2.3)

Cattle (treated) - - 66.6 (15) - - - - 66.6 (15) 16.3 (± 7.4)

Nutria 16.6 (6) 20.8 (24) 0 (1) 14.3 (7) 25 (4) - - 19 (42) 3.2 (± 1.1)

Wild boar 2.9 (35) - 0 (15) 4.8 (42) 6 (50) 7.1 (14) - 4.5 (156) 6.6 (± 0.7)
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Table 3. Observed size range and number of alleles of all studied microsatellite loci of Fasciola 

hepatica.

Allele size range by population (alleles per locus)

Locus

Overall

allele size 

range (bp)

Alleles

per locus
Cattle (non-

treated)

Cattle

(treated)
Nutria Wild boar

FH15 230–243 8 230–243 (8) 230–243 (8) 230–241 (6) 233–237 (3)

FH25 272–282 6 276–282 (4) 272–282 (6) 278–282 (3) 280–282 (2)

FH222CBP 144–172 14 144–172 (14) 144–166 (9) 150–166 (9) 154–166 (5)

Fh_2 179–239 15 179–239 (15) 183–239 (11) 183–231 (11) 183–215 (5)

Fh_5 159–321 26 159–321 (24) 159–318 (19) 162–318 (12) 162–209 (8)

Fh_6 165–250 25 165–250 (25) 174–244 (18) 174–244 (19) 177–229 (8)

Fh_7 163–193 11 163–193 (11) 163–190 (8) 163–187 (8) 163–184 (4)

Fh_10 201–238 13 201–238 (13) 206–235 (11) 201–232 (11) 209–223 (5)

Fh_12 199–240 13 199–240 (13) 199–237 (11) 199–240 (10) 199–240 (8)
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Table 4. Mean number (± standard deviation) of alleles (Ar), observed (HO) and expected (HE) 

heterozygosities, FIS values (level of significance after Bonferroni correction) and private alleles 

(Apriv) of Fasciola hepatica populations from different domestic and wild definitive hosts.

F. hepatica

population

Analyzed

flukes
Ar HO HE FIS Apriv

Cattle (non-treated) 949 5.78 (±2.01) 0.66 (±0.26) 0.72 (±0.23) 0.082 (NS) 18 (13.7%)

Cattle (treated) 100 5.62 (±1.55) 0.68 (±0.23) 0.73 (±0.18) 0.061 (NS) 4 (3.05%)

Nutria 81 5.53 (±1.87) 0.69 (±0.24) 0.72 (±0.22) 0.032 (NS) 0 (0.00%)

Wild boar 18 4.51 (±1.58) 0.65 (±0.38) 0.65 (±0.26) -0.011 (NS) 0 (0.00%)

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Table 5. Number of multilocus genotypes (MLGTs), repeated MLGTs (all Psex values for repeated 

MLGTs are significant at a minimum n = 2 individuals), genotypic diversity (D) and mean number 

of migrants (Nm ± standard deviation, SD) for all the studied populations of Fasciola hepatica (N is 

the number of analyzed flukes after excluding individuals with at least one non-amplified locus).

F. hepatica

population
N

MLGTs 

(repeated)
D Nm

Cattle (non-treated) 709 662 (40) 0.999 17.8 ± 7.1 

Cattle (treated) 25 25 (0) 1.000 14.9 ± 6.7

Nutria 43 38 (5) 0.994 16.3 ± 7.2

Wild boar 6 4 (1) 0.800 6.8 ± 0.9
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Figure Captions

Figure 1. Map of Tour du Valat within the Camargue Regional Park with details of cattle farms 

and sampled wild host infected with Fasciola hepatica.

Figure 2. Population genetic structure of Fasciola hepatica sampled from different definitive 

hosts groups. Scatterplot of multilocus genotypes within the first two axes of a Discriminant 

Analysis of Principal Components (axis 1 and axis 2 represent 37.52% and 27.3% of total 

variance).

Figure 3. Results of experimental infections of different lymnaeid species with Fasciola hepatica 

from non-treated cattle at Tour du Valat (Camargue). A: prevalence of infection, B: parasite 

intensity (different letters mean statistical differences after a one-way ANOVA and Tukey test), C: 

survival curves for each combination (all curves differed statistically except indicated, NS). Codes: 

Gt=Galba truncatula, Pc=Pseudosuccinea columella, Ls=Lymnaea stagnalis, Rb=Radix balthica; 

AV=Anciennes Vignes, PE=Pesquier, RM=Rieu Massel, PZ=Parc Zoologique, BL=Bagne Loup, 

SJ=Saint Jean; A=allopatric, S=sympatric.
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