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SUMMARY

Telomere-led rapid chromosome movements or
rapid prophase movements direct fundamental
meiotic processes required for successful haploid-
ization of the genome. Critical components of the
machinery that generates rapid prophase move-
ments are unknown, and the mechanism underlying
rapid prophase movements remains poorly under-
stood. We identified S. cerevisiae Mps2 as the outer
nuclear membrane protein that connects the LINC
complex with the cytoskeleton.We also demonstrate
that the motor Myo2 works together with Mps2 to
couple the telomeres to the actin cytoskeleton.
Further, we show that Csm4 interacts with Mps2
and is required for perinuclear localization of Myo2,
implicating Csm4 as a regulator of the Mps2-Myo2
interaction. We propose a model in which the newly
identified functions of Mps2 and Myo2 cooperate
with Csm4 to drive chromosome movements in
meiotic prophase by coupling telomeres to the actin
cytoskeleton.

INTRODUCTION

Meiosis involves highly regulated and coordinated chromosome

movements. Homologous chromosomes must pair and recom-

bine in the first meiotic prophase to ensure proper segregation

at anaphase. Defective segregation leads to phenotypes ranging

from sterility to aneuploid offspring with developmental abnor-

malities [1–5].

Chromosome interactions and meiotic recombination in

prophase are accompanied by prominent telomere-led chro-

mosome movements or rapid-prophase movements that

are widely conserved in organisms from yeast to mammals

[6–22]. Rapid-prophase movements have been proposed to

assist homologous chromosome interactions (i.e., homologous

chromosomes pairing and synapsis) [20, 23–30], reduce and/or

resolve heterologous interactions [9, 16, 24, 25, 31, 32],

and help resolve chromosome interlocks [33, 34]. This
indicates the participation of rapid-prophase movements in

critical meiotic events required for normal progression of

gametogenesis.

In all organisms studied so far, meiotic prophase chromosome

movements are driven by the connection of telomeres to the

cytoskeleton via the LINC complex: a protein complex that

bridges the intact nuclear envelope [35]. The LINC consists of

inner nuclear envelope SUN (Sad1-UNC84) domain proteins

and outer nuclear membrane KASH (Klarsicht, Anc-1, and

Syne homology) domain proteins. Telomeres associate with

the intranuclear domain of the SUN proteins, and the extranu-

clear portion of the KASH protein connects to the cytoskeleton

(reviewed in [36–38]).

In S. cerevisiae, it is indicated that rapid-prophasemovements

are dependent on the actin cytoskeleton [17, 39] and require the

proteins Ndj1, Mps3, and Csm4 at the nuclear membrane.

Although we know Ndj1 is a meiosis-specific telomere protein

that binds the N terminus (nucleoplasmic domain) of the inner

nuclear envelope SUN domain protein Mps3 [16, 40–42], a

KASH5-like protein and motor proteins connecting Ndj1-Mps3

with cytoskeleton components have not been identified

[43, 44]. In this work, we show evidence that the Mps2 protein

acts as a meiotic KASH-like protein. Mps2 interacts with Mps3

[44] and localizes at the end of chromosomes (this study) in cyto-

logical preparation of yeast chromosome spread in a manner

that supports its role as a KASH protein in meiosis. Deletion of

the KASH-equivalent domain of Mps2 weakens its interaction

with Mps3 and interferes with rapid-prophase movements.

We have also identified the type V myosin Myo2 as the cyto-

plasmic motor that interacts with Mps2 and contributes to

rapid-prophase movements.

In S. cerevisiae, Csm4 is tail anchored to the nuclear envelope

and its deletion impairs rapid-prophase movements [16, 45–48].

However, the mechanism of Csm4 function within the LINC

complex is not understood. We found that Csm4 physically

interacts with Mps2, is dependent on Mps2 for association

with end of chromosomes via nuclear envelope, and is required

for the perinuclear localization of Myo2. In sum, we propose a

model in which Mps2, Csm4, and Myo2 cooperate to provide

the primary engine for chromosome movements in meiotic

prophase in budding yeast by coupling telomeres to the actin

cytoskeleton via a LINC complex.
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Figure 1. Mps2, a KASH-like Protein, Localizes at Chromosome Ends

(A) Schematic: GFP-Mps2 fusion protein; TM represents the transmembrane domain (see Figure S1). Examples of nuclei at pachytene as determined by the level

of chromosome condensation are shown (white: DNA labeled with DAPI; green: GFP-Mps2 fusion protein; Wt: wild-type strain; ndj1D: ndj1 mutant strain).

Quantitation of GFP-Mps2 signal at the end of chromosomes per cell is also shown. GFP-Mps2 foci in wild-type (mean ± standard deviation; 29.4 ± 3.5; n = 36)

versus ndj1D is shown (2.7 ± 1.9; n = 51; t test p < 0.0001).

(B) Co-immunoprecipitation of Mps3-HA and Mps2-GFP from total meiotic yeast extract using anti-HA antibodies for pull-down. This yeast strain co-expressed

Mps3-HA and Mps2-GFP, and blots were probed with anti-HA (left panel) and anti-GFP (right panel) antibodies.

(C) Schematics: GFP-Myc-Mps2 fusion protein and GFP-Myc-Mps2D6C, which lacks 6 amino acids from the Mps2 C terminus. Examples of nuclei at pachytene

stage showGFP-Myc-Mps2 and GFP-Myc-Mps2D6C localization at the end of chromosomes in the wild-type strain. Antibodies against GFPwere used to reveal

the protein fusions in chromosome spreads. Quantitation of GFP fluorescent signal at the end of the chromosomes per cell is also shown. GFP-Myc-Mps2 versus

GFP-Myc-Mps2D6C foci 28.1 ± 3.7, n = 56 versus 8.4 ± 2.6, n = 14; unpaired t test; p < 0.0001.

(D) The western blot shows similar expression of strains expressing GFP-Myc-Mps2 and GFP-Myc-Mps2D6C. Myc antibodies were used to visualize both Mps2

and Mps2D6C, which contain Myc tags. Pgk1 was used as loading control.
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RESULTS

Mps2 Is Membrane Associated and Its Localization to
the End of the Chromosomes Requires an Intact LINC
To uncover the LINC complex protein that connects to the

cytoskeleton, we examined proteins known to bind Mps3. The

SUN domain of Mps3 interacts with the C terminus of Mps2 in

mitotic cells, where this Mps3-Mps2 interaction is required for

spindle pole body duplication and viability [44]. Mps2 is a single

pass integral membrane protein of the nuclear envelope, ori-

ented with residues 1–311 in the cytoplasm and residues 327–

387 in the lumen of the nuclear envelope [44, 49, 50] (Figure S1).

Mps2, like Mps3, is highly concentrated at the spindle pole

body and, at lower levels, in the nuclear membrane [43, 44].

KASH proteins within the LINC complex are typically tail-

anchored membrane proteins, containing a transmembrane

domain near the C terminus generally followed by 30–40 amino

acids [28]. Mps2 does not contain a typical KASH domain based

on its amino acid sequence, but it has a 60-amino-acid domain

distal to the transmembrane domain. This is sufficiently long to

allow Mps2 to be inserted co-translationally and exceeds that

expected for a tail-anchored protein [45, 51, 52] (Figure S1 and

schematic, Figure 1A). Together, these data suggest that Mps2
2 Current Biology 30, 1–10, April 6, 2020
could function as a transmembrane protein as part of the LINC

complex, connecting Mps3 with the cytoskeleton to generate

rapid-prophase movements.

In meiotic cells, Mps3 localizes to telomeres via interactions

with Ndj1, the meiosis-specific telomere protein [40]. We pre-

dicted that, if Mps2 interacts with Mps3 within the LINC

complex, then Mps2 should also be localized to chromosome

ends via its interaction with Mps3. To investigate this, we per-

formed chromosome spread in which condensed meiotic chro-

mosomes are spread with chemical/mechanical forces and

probed with antibodies to study the proteins of interest. As yeast

conducts meiosis with an intact nuclear envelope, ends of chro-

mosomes in chromosome spreads contain part of the nuclear

envelope. Proteins associated with nuclear envelope, especially

those capable of accumulating at high concentration, can easily

been identified using this method and appear as localized at

the end of the chromosomes. Indeed, in strains containing

Mps2-GFP, we observed an average of 28–31 GFP foci localized

at the end of pachytene chromosomes (Figure 1A). This is near

to the number expected for the total number of bivalent

chromosomes (32) in wild-type and similarly to that observed

for Ndj1, Mps3, and Csm4 [16, 40, 41] (Figure 1A). The localiza-

tion of Mps2 at the end of chromosomes required Ndj1
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(Figure 1A), presumably through Mps3 at the inner nuclear enve-

lope. We confirmed that Mps3 and Mps2 form part of the

same complex in meiotic cells by immunoprecipitation. We

used a yeast strain expressing both Mps2-GFP and Mps3-hem-

agglutinin (HA) after 4 h in sporulation media. Using HA anti-

bodies, we observed that Mps3-HA was able to pull down itself

and Mps2-GFP (Figure 1B).

The C Terminus of Mps2 Is Required for Its Connection
to End of Chromosomes via LINC Complex (Mps3) and
for Normal Rapid-Prophase Movements and Meiosis
If Mps2 is part of the machinery generating rapid-prophase

movements, disturbing Mps2 localization and/or interaction

with the LINC complex is expected to result in deficient

rapid-prophase movements. To test this hypothesis, we

deleted six amino acids from the C terminus of Mps2, which

are required for Mps2 to interact with the SUN domain of

Mps3 in vitro [44]. Indeed, a wild-type strain expressing

GFP-Mps2DC6 (Mps2 amino acids 1–381) displayed only

weak GFP signals at a few chromosome ends in meiotic chro-

mosome spreads compared to control expressing GFP-Mps2

(Figure 1C), suggesting that disruption of the Mps2-Mps3

interaction precludes the association of Mps2 with the end

of the chromosomes. GFP-Mps2 and GFP-Mps2DC6 show

similar expression level monitored by western blots in total

cell extract after 4 h in sporulation media (Figure 1D). Our

data suggest that Mps2 is a LINC complex component that

localizes to the end of the chromosomes via Mps3.

To investigate the physiological function of Mps2 as a LINC

complex component, we measured rapid-prophase move-

ments in an mps2DC6 strain. Specifically, we analyzed time-

lapse images of GFP-lacI bound to an array of lacO sequences

integrated near the right telomere of chromosome lV [16] and

measured the maximum speed, average speed, and bias (this

is �0 for random movement, <0 for tendency to remain in

place, and >0 for tendency to move away from the starting

position). The bias term is adapted from measures of bacterial

motility of both unpaired and paired telomeres. Detailed

methods regarding through-focus microscopy and semi-auto-

matic quantification and analyses were published in [16]. csm4

deletion mutant served as a control for near-absent telomere

movement. We found that telomeres moved significantly

slower in wild-type compared to the mps2DC6 strain in

maximum and average speed analyses at 4 h (Video S1) and

5 h (Figures 2A–2C and S2) after cells were transferred to

sporulation media. Similarly, measurement of bias (Figure S2),

which describes the ability for a spot to move away from its

starting point, is reduced respect to wild-type. Meiotic pro-

gression was impaired in mps2DC6 strain. Sporulation and

spore viability were also reduced in the mps2DC6 strain, and

progression through meiotic prophase is affected (Figure S3).

These findings are consistent with a deficiency in rapid-pro-

phase movements, though they could also reflect defective

spindle body duplication, as observed in mps2DC6 mitotic

cells [44].

Overall, our data suggest that the impaired interaction of

an Mps2 carboxyl terminal mutant and Mps3 [44] affects the

integrity of the LINC complex, leading to defective rapid-pro-

phase movements (Figure 2D). Thus, Mps2 fulfills structural
and functional predictions of a KASH-like protein within the

LINC complex, bridging the Mps3/Ndj1/telomere complex to

cytoplasm and cytoskeleton.

Mps2 Interacts with Myo2 Cytoplasmic Molecular Motor
According to our model, the Mps2 C terminus contacts Mps3

within the lumen of the nuclear envelope, whereas theN terminus

is located in the cytoplasm (Figure 2D). To identify proteins that

interact with the cytoplasmic domain of Mps2, we performed

a yeast two-hybrid screen, anticipating that we would find

interactions with cytoskeletal elements. Specifically, we used

amino acids 1–310 of Mps2 as bait to screen a prey library of

yeast genomic DNA fragments [53]. We isolated clones express-

ing previously reportedMps2 interactors, including Yaf9, Spc24,

and Bbp1 [49, 54], validating the screen (Table S1).

Intriguingly, we identified Mps2-interacting clones that

encode amino acids 943–1,574 of myosin 2 (Myo2), an essential

type V myosin that was not previously linked with Mps2/LINC.

This region of Myo2 contains the cargo binding region, which

in mitotic cells interacts with adaptor proteins on the vacuole,

secretory vesicles, peroxisomes, mitochondria, and astral mi-

crotubules to promote their transport along actin cables [55].

Additional yeast two-hybrid analyses revealed that the interac-

tion with Myo2 required amino acids 125–310 of Mps2, a region

that contains two predicted coiled-coil domains (Figure 3A). The

cargo-binding domain of Myo2 (1,087–1,574 amino acids)

comprises a complex fold of 15 antiparallel helices [55, 56] and

contains a number of coiled-coil domains that could interact

with similar domains on Mps2. To confirm the interaction, we

expressed Myo2-HA and Mps2-Myc fusion proteins in yeast

and performed co-immunoprecipitation. Antibodies specific for

HA immunoprecipitated Myo2-HA and Mps2-Myc from wild-

type cells undergoing meiosis (Figures 3B and S4). However,

Myc antibodies did not co-immunoprecipitate Myo2-HA with

Mps2-Myc, possibly due to competition from other Myo2

interacting partners. Overall, our data suggest that Mps2 inter-

acts with the cytoplasmic molecular motor Myo2.

Myo2 Interacts with the LINC Complex and Requires
Mps2 for Perinuclear Localization
We hypothesized that the myosin motor protein acts at telo-

meres to promote rapid-prophase movements via Mps2. We

analyzed the cellular localization of various myosin family

members by GFP fusion to Myo1, Myo2, Myo4, and Myo5 in

yeast meiotic chromosome spreads. We detected significant

accumulation of Myo1-GFP, Myo2-GFP, and Myo4-GFP, but

not Myo5-GFP, at the end of chromosomes (Figure S5A). Not

every telomere in a given spread was labeled, suggesting that

the interactions may be transient.

In mitotic cells, Myo2 is concentrated at the tip of the

emerging bud and at the bud neck of large buds as well as

at the shmoo tip of mating cells [57, 58]. In contrast, live imag-

ing of meiotic whole cells revealed that Myo2-GFP can concen-

trate as foci on the nuclear envelope, which has not been re-

ported for mitotic cells (Figure 3C). We also observed a

diffuse distribution of Myo2 around meiotic nuclei (Figure 3C,

‘‘diffuse’’ versus ‘‘foci’’). The perinuclear Myo2-GFP foci moved

rapidly around the nucleus (Video S2), in a manner comparable

to the behavior of Mps3-GFP [16]. Notably, the ‘‘diffused’’ and
Current Biology 30, 1–10, April 6, 2020 3
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Figure 2. Mps2 Promotes Rapid-Prophase Movements in Budding Yeast

(A) The image frames in the pictures provide an illustration of how speed was measured in cells with paired (left) and unpaired (right) chromosomes 4 right

telomeres. These images were acquired with through-focusmicroscopy, every 1 s, for a total of 61 frames (detailed description for through-focusmicroscopy and

its quantification and semi-auto analyseswere published in [16]; see Video S1). In different frames, the same color arrowsmark the same lacO256/lacI-GFP spots.

(B) Histograms display meiotic rapid-prophase movements activity in zygotene by measures of maximum and average speed for unpaired and paired chro-

mosomes (see Figure S2) inmps2D6Cmutant,wild-type, and csm4D strains. In our strain background, for strains that are not delayed in meiotic progression, 4 h

post-shift into sporulation medium roughly correlates with zygotene and 5 h post-shift correlates with pachytene (see Figure S3). For csm4D, a mutant known for

prolonged delay, 4.5 h post-shift roughly correlates with zygotene [16], is used as a control for near absence of rapid-prophasemovements. All measurements are

for lacO256/lacI-GFP spots adjacent to the 4R telomere, and each profile is the result of a total of three independent experiments (250–300 cells scored per

strain), where there are 2 spots (unpaired, top) or 1 spot (paired, lower panel).

(C) Example of traces (spots in 61-frame time-lapse series) of paired and unpaired telomere movement in wild-type, mps2D6C, and csm4D in zygotene cells.

(Black line marks the spindle pole body movement. Figures with red line only mark paired telomere and with both red and blue lines mark unpaired telomeres.)

Represented are projection images of telomere movement in 61 s. Cell 1 and cell 2 are examples of cells with paired and unpaired telomeres, respectively.

(D) Schematic of wild-type Mps2 and Mps2D6C association to other components of the LINC complex.
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‘‘foci’’ perinuclear pattern of Myo2-GFP were absent in

mps2DC6 (Figure 3C; Video S2). These data suggest that

Mps2 is required to recruit Myo2 to the nuclear envelope during

meiosis.

Expression of a Dominant-Negative Allele of Myo2
(Myo2DN) Delocalizes Myo2 from Nuclear Envelope,
Perturbs Rapid-Prophase Movements, and Delays
Meiotic Progression
We investigated the potential roles of myosin family proteins in

rapid prophase movements and meiotic progression. Myo2

is an essential gene, so we constructed an inducible domi-

nant-negative allele, MYO2DN. The Myo2 cargo-binding

domain (amino acids 1,087–1,574, without motor domain)

was placed under the control of the GAL1 promoter [58],

in a strain expressing a fusion of the human estrogen recep-

tor to the yeast Gal4 transcription factor [59]. Expression

of Myo2 cargo-binding domain protein serves as dominant

negative and competes with endogenous Myo2 for Mps2
4 Current Biology 30, 1–10, April 6, 2020
binding. We induced Myo2DN in meiotic cells by adding

b-estradiol 2 h after transferring to sporulation medium.

Expression of Myo2DN disrupted the perinuclear localiza-

tion of Myo2-GFP (Figure 4A) and led to a significant reduc-

tion in rapid-prophase movements, to levels slightly better

than those observed in csm4 deletion (Figures 4B and 4C;

Video S3). Anaphase I was delayed and spore viability

reduced in Myo2DN with or without estradiol, and sporula-

tion levels were affected in Myo2DN upon induction

(Figure S6).

To confirm the role of Myo2 in rapid-prophase movements, we

created a strain carrying Myo2DN in a ndt80D background. The

ndt80D allele block cells in pachytene with complete synaptone-

mal complexes [60]. We showed in a previous study [16] that

rapid-prophase movements sustain a 0.9 mm/s maximum

speed in ndt80D mutants. This system allows rapid-prophase

movements measurements after longer periods of Myo2DN

expression and competition to wild-type Mps2. Again, in these

conditions, Myo2DN expression in early meiotic prophase
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Figure 3. Myo2 Interacts with Mps2 and Is Required for Myo2 Localization at the Nuclear Envelope

(A) Schematic of predicted functional domains of Mps2 and Mps2 truncation mutants. Absence (�) or presence (+) of a two-hybrid interaction with Myo2 amino

acids 943–1,574 is indicated (see Table S1 for proteins that interact with the cytoplasmic domain of Mps2).

(B) Co-immunoprecipitation of Myo2-HA and Mps2-Myc from total yeast extract using anti-HA. This yeast strain co-expressed Myo2-HA and Mps2-Myc from

endogenous promoters, and blots were probed with anti-HA (left panel) and anti-Myc (right panel) antibodies (see Figure S4).

(C) Examples of GFP-Myo2 localization in vivo wild-type, mps2D6C nuclei, and mitotic dividing cells. Two patterns of Myo2-GFP signal identified as ‘‘foci’’ or

‘‘diffuse’’ (see Video S2). Percentage of nuclei with the indicated perinuclear GFP-Myo2 patterns is also shown (n = 100 nuclei scored in each mutant). The

describe pattern of Myo2-GFP in wild-type and absence of perinuclear signal in mps2DC6 is highly reproducible.
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severely impaired rapid prophase movements (Figure 4D).

We speculate that, although rapid prophase movements are

strongly inhibited, the residual rapid-prophase movements,

perhaps supported by additional Myo proteins, are sufficient to

achieve a level of pairing and recombination. Myo1 and Myo4

associate to a portion of chromosome ends (Figure S5A), and

the rapid-prophase movement histograms for maximum and

average speed for unpaired and paired chromosomes in wild-

type versus myo1, myo4, and myo 3/5 mutants are similar (Fig-

ure S5B; Video S4).

Nevertheless, the dominant-negative Myo2DN delocalizes

Myo2 and impairs rapid-prophase movements, showing that

Myo2 plays a critical function in supporting rapid-prophase

movements.

Csm4 InteractswithMps2, Is Required forMyo2Nuclear
Localization, and Regulates Mps2-Myo2 Rapid-
Prophase Movements Functions
Given our new perspective on the roles of Mps2 and Myo2, we

next investigated the role of Csm4 in rapid-prophase move-

ments. Csm4 is a meiosis-specific, tail-anchored membrane

protein [45] that localizes to the end of the chromosomes in

chromosome spreads, and it is essential for rapid-prophase

movements and normal meiotic progression [16, 45–48].
Csm4 has been proposed to be a meiotic KASH protein that

partners with Mps3 within the LINC complex. Consistent with

this hypothesis, deletion of the Csm4 transmembrane domain

creates a null allele [47] and significantly impairs rapid pro-

phase movements and homologous chromosome pairing [48].

However, only a minimal region of Csm4 is predicted to project

into the lumen of the nuclear envelope. In contrast, our data

suggest that Mps2 interacts with Mps3 within the lumen of

the nuclear envelope, as a functional and structural LINC com-

plex component.

We considered that Csm4 is not a structural LINC component

but instead functions primarily as an accessory protein to

Mps2 to regulate LINC complex interactions with cytoskeleton

components. We found that Csm4, unlike Ndj1, was not required

for the localization of Mps2 to the end of the chromosomes in

chromosome spread analyses, suggesting that Csm4 does not

influence the Mps2-Mps3 interaction (Figure 5A). In addition,

expression of Mps2DC6 abrogated the localization of Csm4 to

the end of the chromosomes, but not of Ndj1 orMps3 (Figure 5B),

suggesting that Csm4 requires Mps2 for association to the

end of the chromosomes. To determine whether Mps2 and

Csm4 interact, we co-expressed Mps2-GFP-Myc and Csm4-

HA-tagged proteins in yeast. Csm4-HA and Mps2-GFP-Myc

co-immunoprecipitated from total meiotic yeast extract (Figures
Current Biology 30, 1–10, April 6, 2020 5
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Figure 4. Myo2 Interacts with Mps2 and Is Required for Rapid-Prophase Movements in Budding Yeast

(A) Live-image examples of nuclei showing distribution of Myo2-GFP in strain (MYO2-GFP, Pgal-Myo2DN) carrying inducible Myo2DN treated with and without

estradiol. Expression of Myo2DN by adding estradiol competes away Myo2-GFP at the nuclear envelope.

(B) Histograms display rapid-prophase movements at early (4 h post-shift/zygotene in Myo2DN with and without estradiol and 4.5 h post-shift/zygotene in

csm4D) and late (5 h post-shift/zygotene in Myo2DN with and without estradiol and 8.5 h post-shift/zygotene in csm4D) prophase in maximum and

average speed analyses for paired telomeres in different strains, as indicated (see Figures S5 and S6). All measurements are for lacO256/lacI-GFP

spots adjacent to the 4R telomere, and each profile is the result of three independent experiments (a total of 250–300 cells scored per strain; see Videos

S3 and S4).

(C) Traces represent projection images of independent telomere movements in 61-frame time-lapse series (unpaired telomeres are represented in red and blue;

black marks the spindle pole body movement) in zygotene fromWT, csm4D, andMyo2DNwith estradiol. Schematics indicate the functional domains within full-

length Myo2 and Myo2DN, lacking the motor domain at the N terminus. +ED, estradiol; CBD, cargo-binding domain.

(D) Histograms display rapid-prophasemovements characteristics maximum speed, average speed, and bias for paired telomeres in the indicated yeast strain at

6 h after cells were transferred to sporulation media. ED, estradiol.
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5C, S4B, and S4C), suggesting that Mps2 and Csm4 form part of

the same complex during meiosis. We previously demonstrated

that Ndj1 and Mps3 are required for Csm4 to localize to the

end of the chromosomes in chromosome spread analyses [16],

presumably reflecting localization of Csm4 to the nuclear enve-

lope. Our current results suggest that Csm4 is recruited to the
6 Current Biology 30, 1–10, April 6, 2020
end of the chromosomes viaMps2, with both proteins positioned

in the outer nuclear membrane.

_underNotably, csm4D cells lacked perinuclear Myo2-

GFP foci (Figure 5D; Video S2). The formation of Myo2 foci

at the nuclear envelope depends on both Mps2 and Csm4.

We propose that Csm4 promotes rapid-prophase movements
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Figure 5. Csm4 Forms a Complex with Mps2, and Csm4 Is Required for the Nuclear Localization of Myo2
(A) Examples of nuclei at pachytene stage. White: DNA labeled with DAPI; green: GFP-Mps2 fusion protein. csm4D, Csm4 mutant strain; csm4D/ndj1D, double

mutant strain for csm4 and ndj1; Wt, wild-type strain. Schematic depicts the domains of the Mps2-GFP-fusion protein. Quantitation of GFP-Mps2 signal at the

end of the chromosomes per cell is also shown. GFP-Mps2 foci in wild-type obtained from three independent experiments (mean ± standard deviation; 31.14 ±

5.4; n = 42) compared to csm4D (31.15 ± 4.3; n = 14; unpaired t test; p = 0.99) and csm4D/Ndj1D (3.5 ± 2.6; n = 108; unpaired t test; p < 0.0001).

(B) Examples of nuclei at pachytene stage (white: DNA labeled with DAPI; green: YFP and GFP fusion proteins, as indicated). mps2D6C, mutant strain for

mps2D6C, which lacks 6 amino acids from the Mps2 C terminus is shown. Schematic depicts the domains of the Csm4-YFP fusion, Mps3-GFP, and Ndj1-GFP

proteins. TM represents the predicted transmembrane domain of Csm4 and Mps3. Quantitation of YFP-Csm4 (in wild-type, 30.4 ± 2.7, n = 9 andmps2D6 3.5 ±

3.4, n = 12, unpaired t test, p < 0.0001), GFP-Mps3 (30.5 ± 6.1; n = 15), and GFP-Ndj1 (23.7 ± 3.1; n = 7) signal at the end of the chromosomes per cell is also

shown.

(C) Co-immunoprecipitation of Mps2-GFP-Myc and Csm4-HA from total yeast extract, using anti-Myc or anti-HA, as indicated. Yeast co-expressed Mps2-GFP-

Myc and Csm4-HA, and blots were probed with anti-HA (lower panels) and anti-Myc antibodies (upper panels) as indicated (see Figure S4).

(D) Examples of Myo2-GFP localization in vivo for wild-type and csm4D cells. Quantitation of Myo2 associated with nuclei is also shown.
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by recruiting Myo2 and/or by stabilizing the Mps2-Myo2

interaction.

DISCUSSION

Mps2 May Connect the LINC Complex to Myo2 on Actin
and Cooperate with Csm4 to Mediate Dynamic
Chromosome Movements in Yeast Meiosis
Understanding the role and regulation of rapid-prophase move-

ments has been limited by a lack of insight into the machinery

that generates rapid-prophase movements. Using complemen-

tary genetic, biochemical, and functional approaches, we
obtained evidence that Mps2 may function as a LINC compo-

nent, interacting with the cytoplasmic type V myosin motor

(Myo2). Mps2 and Myo2 are required to generate rapid-pro-

phase movements, suggesting that Myo2 is a primary engine

of rapid prophase movements in budding yeast (Figure 6).

Our model proposes that Mps3 and Mps2 are core compo-

nents of the LINC complex connecting telomeres to the cyto-

skeleton in meiotic budding yeast (Figure 6). Although Mps2

lacks obvious amino acid sequence homology to KASH

proteins, it appears to function as a KASH protein partner

to the SUN protein Mps3 within the budding yeast LINC

complex.
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Figure 6. Tentative Model for Meiotic Chromosome Telomere-Nu-

clear Envelope Attachment and Connection to Cytoskeleton Com-

ponents in Yeast
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On the other hand, although Csm4 is an essential regulator of

rapid-prophase movements, Csm4 appears not to be a structural

component of the LINC complex. Importantly, Csm4 and Mps2

interact and both are required to recruit Myo2 to the nuclear enve-

lope. Our model considers that Mps2 recruits Myo2 via direct

interaction and that Csm4 could act to stabilize the interaction

between Mps2 and Myo2. Alternatively, Csm4 could recruit actin

cables or promote actin polymerization at the nuclear envelope,

which would indirectly recruit Myo2 and other components of

the actin cytoskeleton. The evidence we present regarding local

function of Myo2 at telomeres does not rule out the possibility

that Myo2 dominant-negative overexpression or deletion of other

Myosin family members may affect other cellular functions rele-

vant to rapid-prophase movements, for example, on the role

that different myosins play in stabilizing the cytoskeletal network.

Based on observations that individual telomeres move in

association with actin cables, it was suggested that telomeres

move via actin treadmilling [17, 47]. We show that Myo2 might

generate the force driving rapid-prophase movements, perhaps

in addition to actin treadmilling. Combining both activities could

modulate chromosome movements and, for example, generate

back and forthmotions thatmight help resolve chromosome inter-

locks [17, 47].
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This paper MCY 3247
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This paper MDY 2426

X, a, csm4::LEU2 Pdmc1-I/GFP-URA3 at Ura3, Pcyc1-I/GFP-URA3

atCyc1, Laco256-LEU2 at Chr4telo

This paper MDY 2609

X, alpha, mps3D240-430 This paper MDY 2661

Y, alpha, csm4::LEU2 leu1 TUB1/GFP lacO256-LEU2-IVRtelo P-DMC1-

GFP/lacI at LYS2

This paper MDY 2778

X, a, Myo2-GFP-TRP1 mps2DC6-TRP1 This paper MDY 3554

Y, alpha, Myo2-GFP-TRP1 mps2DC6-TRP1 This paper MDY 3557

X, alpha, GFP-myc-MPS2-URA3 Mps3-HA-TRP1 This paper MDY 4027

Y, a, GFP-myc-MPS2-URA3 Mps3-HA-TRP1 This paper MDY 4030

Software and Algorithms

ImageJ N/A https://imagej.nih.gov/ij/

AxioVision Zeiss https://www.zeiss.com/

Prism 7 GraphPad https://www.graphpad.com/

scientific-software/prism/
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Roberto J.

Pezza (Roberto-Pezza@omrf.org). For yeast strains generated in this study and further information about the reagents please contact

Roberto J. Pezza (Roberto-Pezza@omrf.org). All yeast strains are available for sharing.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast culture
Diploids were grown 24 h in 5 mL YPDA at 30�C. For synchronous meiosis cells were grown to 53 107 cells/ml in YPAcetate for 16 h,

then shifted to 1% potassium acetate at 108 cells/ml for 5 h to reach zygotene stage.

METHOD DETAILS

Yeast strains
Strain list and corresponding background can be found in STAR Methods. CSM4 alleles: csm4::LEU2 was constructed by replacing

the PstI-PmeI fragment from the CSM4 coding sequencewith a PstI-SmaI fragment containing TRP1 [61]. CSM4was epitope-tagged
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at the N terminus by inserting EcoRV and EcoRI site immediately after the start codon in CSM4. A SmaI-EcoRI 3x HA fragment was

PCR amplified from pFA-3x HA-TRP1 [62] and ligated into the EcoRV-EcoRI sites. The 3xHA-CSM4 constructs was cloned onto

MCB917, a derivative of pRS304 [63] that carries a fragment of chromosome 16 in the NotI-SacI sites. The 3xHA-CSM4 was

integrated into csm4::LEU2 strains by digestion with BglII. Mps2DC: The deletion of six codons from the C terminus of Mps2 was

accomplished by transformation with a PCR product [62]. GFP-MPS2 was introduced by transformation with plasmid p30 [50].

mps3D240-430: partial deletion alleles of MPS3 deleted residues 240-430, was constructed by PCR and sequenced before use.

Themutant alleles were cloned into theURA3 vector YIplac211 and integrated at the genomic site ofMPS3. Successful replacements

of MPS3 with the deletion alleles were identified by PCR screening of 5-FOAR colonies [33].

Yeast two-hybrid analysis
Bait plasmidswere constructed in pBGKT7 (Clontech) and transformed into yeast strain AH109. Bait transformants were transformed

with a library of random sheared yeast genomic DNA in pACTII and interaction was selected onminus adenine, histidine, leucine, and

tryptophan medium. Approximately 1x106 transformants were screened. Library plasmids were recovered and rescreened.

Measuring rapid prophase movements in budding yeast
For time-lapse acquisitions, cells from sporulating cultures were concentrated, spread across polyethyleneimine-treated coverslips,

then covered with a thin 1%agarose pad to anchor the cells to the coverslip [64]. The coverslip was then inverted over a silicone

rubber gasket attached to a glass slide, to provide an air space and to prevent drying while imaging. In some experiments, following

image acquisition the cell preparations were placed in a humid chamber at 30�C overnight to determine the effects of image acqui-

sition on final levels of sporulation. All time-lapse experiments employed an extended depth-of-focus method to acquire fluores-

cence images [65]. [16] Images were made at 27�C using an upright Axioplan 2ie microscope fitted with a 100 3 , NA1.4 plan-

Apo objective (Carl Zeiss MicroImaging), a high-speed switching DG-5 xenon illuminator (Sutter), a CoolSNAP HQ digital camera

(Photometrics), and a BNC555 pulse generator (Berkeley Nucleonics) to synchronize camera exposure with focusing movements

and illumination. Each image in a time-lapse series employed the full camera frame (1392 3 1040 6.45 mm square pixels) to acquire

12-bit images in 250 ms exposures while focus traveled through 10 mm (5 mm on either side of the mid-focal plane). Longer travel

and exposure times provide better resolved final images, but these conditions clearly revealed the spots of interest and minimized

fading of the fluorescent signals. Fine sampling in the plane of focus (0.0645 mm/pixel) was found to provide better spot discrimination

than lower levels of resolution. Following image deconvolution, cells were examined individually to determine the positions of the

spots in each time-lapse series. The position of each spot was defined as the pixel coordinate nearest the centroid of the brightest

local pixels. Positions were assigned automatically by software then edited manually to remove spurious assignments and to correct

for overlapping spots; assignment is aided by the summation of intensity that occurs when spots coincide (the images essentially

are summed intensity projections, rather than the more familiar maximum intensity projections). Image acquisition, deconvolution,

viewing, and quantification were all carried out using custom-written software [16].

Co-immunoprecipitation
To prepare cell lysate, cells were washed with ddH2O supplemented with 0.2 mM PMSF and resuspended in 1 mL/g sample of

buffer H (25 mM HEPES pH 8.0, 2 mMMgCl2, 0.1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.1% IGPAL, 150 mM KCl) with protease

inhibitors cocktail (Price) plus 3.6 g/g sample of Zirconium Silicate beads (Next Advance). Cells were homogenized in the Blue

Bullet Blender at speed 10 for 15 min in a cold room, and the lysate was cleared by centrifugation at 70000 g for 30 min at 4�C.
For immunoprecipitation, 15 mg/g sample of anti-HA or 12 mg/g sample of anti-Myc antibodies were added to the lysates, incubated

overnight at 4�C in rotation followed by incubation with 30 mL/g sample of Dynabeads M-280 Sheep Anti-Rabbit or Anti-Mouse IgG

for 1 h at 4�Cwith rotation. Beads were washed four times with ice-cold IP buffer, and bound proteins were eluted by boiling for 5 min

with SDS-PAGE sample buffer. Proteins were separated by 4%–15%gradient SDS-PAGE under reducing conditions and transferred

to nitrocellulose membranes. The blots were probed with individual primary antibodies as indicated, and then incubated with

HRP-conjugated donkey anti-rabbit or anti-mouse antibodies. In all blots, proteins were visualized by enhanced chemiluminescence.

Spreads/localizations in budding yeast
Spreadmeiotic nuclei were prepared from sporulating cells by spheroplasting, fixing, and drying the resulting preparations on slides.

Spheroplasting was carried out by removing 5-10 mL samples, washing the cells in 2% wt/vol potassium acetate/0.8M sorbitol/

pH7.0, adding dithiothreitol to a final concentration of 10mM for 10 min at 30�C and then adding Zymolyase 100T (ICN Biomedicals,

Irvine, CA) to 25 mg/ml final concentration. The percent of cells spheroplasted at a given time was determined by counting samples

diluted into potassium acetate-sorbitol with versus without 2% wt/vol Sarkosyl; only the spheroplasts lyse in 2% Sarkosyl. At 70%–

90%spheroplasting, the cells were washed oncewith ice-cold 0.1M 2-(N-morpholino) ethane sulfonic acid/1M sorbitol/1mMEDTA/

0.5 mMMgCI2/pH 6.4 and kept on ice as a pellet with the supernatant removed. Spheroplasts in the pellet were mixed with 0.1 M 2-

(N-morpholino)ethanesulfonic acid/l mM EDTA/0.5 mMMgCI2/pH 6.4 at a volume ratio of 1 part spheroplasts:25 parts buffer. Para-

formaldehyde (4%wt/vol)/pH 7.0 (unbuffered) was added at a volume ratio of 1 part suspension:7 parts paraformaldehyde, and 0.4ml

of the mixture was placed on a glass microscope slide precoated with poly-L-lysine. After 10 min at room temperature, the slides

were gently drained and 0.35 mL more of 4% wt/vol paraformaldehyde/pH 7.0 was added for another 5 min. The final fixative
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was gently drained off, the surface of the slide rinsed with 5 mL of 0.4% vol/vol PhotoFlo200 (Eastman Kodak, Rochester, NY), and

the preparations al- lowed to air dry. GFP antibodies were used for fluorescent localization of GFP tagged proteins.

QUANTIFICATION AND STATISTICAL ANALYSIS

Prism was used for statistical analysis of media, standard deviation, and t test for significance. Statistical details of experiments,

including number of cells, what n represents, mean and standard deviation of the analyzed populations, and test of significance

when comparing two samples, can be found in Results and in the Figure legends.

DATA AND CODE AVAILABILITY

This study did not generate/analyze data/code.
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