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Abstract

Alternative splicing (AS) is a major source of transcriptome diver-
sity. Long noncoding RNAs (lncRNAs) have emerged as regulators
of AS through different molecular mechanisms. In Arabidopsis
thaliana, the AS regulators NSRs interact with the ALTERNATIVE
SPLICING COMPETITOR (ASCO) lncRNA. Here, we analyze the effect
of the knock-down and overexpression of ASCO at the genome-
wide level and find a large number of deregulated and differen-
tially spliced genes related to flagellin responses and biotic stress.
In agreement, ASCO-silenced plants are more sensitive to flagellin.
However, only a minor subset of deregulated genes overlaps with
the AS defects of the nsra/b double mutant, suggesting an alterna-
tive way of action for ASCO. Using biotin-labeled oligonucleotides
for RNA-mediated ribonucleoprotein purification, we show that
ASCO binds to the highly conserved spliceosome component PRP8a.
ASCO overaccumulation impairs the recognition of specific
flagellin-related transcripts by PRP8a. We further show that ASCO
also binds to another spliceosome component, SmD1b, indicating
that it interacts with multiple splicing factors. Hence, lncRNAs may
integrate a dynamic network including spliceosome core proteins,
to modulate transcriptome reprogramming in eukaryotes.
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Introduction

Alternative splicing (AS) of pre-mRNAs represents a major mecha-

nism boosting eukaryotic transcriptome and proteome complexity

[1]. In recent years, the advent of novel sequencing technologies

allowed us to analyze entire genomes and complete pools of tran-

scripts, leading to the identification of a wide variety of mRNA

isoforms in higher organisms. More than 90% of intron-containing

genes in humans and over 60% in plants are alternatively spliced [2–

4]. The significant diversity in the number of transcripts compared to

the number of genes suggests that a complex regulation occurs at

transcriptional and post-transcriptional levels [5]. Many mRNA

isoforms derived from the same DNA locus are tissue-specific or are

accumulated under particular conditions [6]. In humans, numerous

studies suggest that the misregulation of RNA splicing is associated

with several diseases [7–10]. In plants, AS plays an important role in

the control of gene expression for an adequate response to stress

conditions [11–19]. Alternative splicing modulates gene expression

mainly by (i) increasing gene-coding capacity, thus proteome

complexity, through the generation of a subset of mRNA isoforms

derived from a single locus and/or (ii) triggering mRNA degradation

through the introduction of a premature termination codon in speci-

fic isoforms that would lead to nonsense-mediated decay (NMD).

Besides the finding of an increasing number of AS events on mRNAs,

next-generation sequencing technologies led to the identification of

thousands of RNAs with no or low coding potential (the so-called

noncoding RNAs, ncRNAs), which are classified by their size and

location with respect to coding genes [20]. The long ncRNAs

(lncRNAs, over 200 nt) act directly in a long form or may lead to the

production of small ncRNAs (smRNAs) acting through base pairing

recognition of their mRNA targets. There is growing evidence that

large amounts of lncRNAs accumulate in particular developmental

conditions or during diseases, suggesting that they participate in a

wide range of biological processes. In recent years, several lncRNAs

from higher organisms have been characterized as modulators of

virtually every step of gene expression through interaction with

proteins involved in chromatin remodeling, transcriptional control,

co- and post-transcriptional regulation, miRNA processing, and

protein stability during various developmental processes [20–22]. In

particular, a growing number of lncRNAs have been linked to the
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modulation of AS in both plants and animals [23]. The main mecha-

nisms involving lncRNAs in AS modulation have been classified as

follows: (i) lncRNAs interacting with splicing factors [24–28];

(ii) lncRNAs forming RNA–RNA duplexes with pre-mRNA molecules

[29,30]; and (iii) lncRNAs affecting chromatin remodeling of alterna-

tively spliced target genes [31,32].

In Arabidopsis thaliana, the lncRNA ASCO (ALTERNATIVE SPLI-

CING COMPETITOR; AT1G67105) is recognized in vivo by the plant-

specific NUCLEAR SPECKLE RNA-BINDING PROTEINS (NSRs),

involved in splicing [24]. Interestingly, there is no evidence that

ASCO undergoes splicing, although it is recognized by splicing

factors. The analysis of a transcriptomic dataset of the nsra/b

mutant compared to wild-type (WT) plants revealed an important

number of intron retention events and differential 50 start or 30 end
in a subset of genes, notably in response to auxin [33]. Indeed, the

nsra/b mutant exhibits diminished auxin sensitivity, e.g., lower

lateral root (LR) number than WT plants in response to auxin treat-

ment. This phenotype was related to the one observed for ASCO

overexpressing lines. Interestingly, the splicing of a high number of

auxin-related genes was perturbed in nsra/b mutants and several of

them behaved accordingly in the ASCO overexpressing lines. The

ASCO-NSR interaction was then proposed to regulate AS during

auxin responses in roots [24]. More recently, an RNA immunopre-

cipitation assay followed by RNA-seq (RIP-seq) served to identify

genome-wide RNAs bound in vivo by NSRa [34]. Long ncRNAs tran-

spired to be privileged direct targets of NSRs in addition to specific

NSR-dependent alternatively spliced mRNAs, suggesting that other

lncRNAs than ASCO may interact with NSRs to modulate AS [34].

In this work, we thoroughly characterize ASCO knocked-down

plants and present its general role in AS regulation, not only in

response to auxin treatment. A transcriptomic analysis of ASCO

knocked-down seedlings revealed a misregulation of immune

response genes and, accordingly, ASCO RNAi-silenced plants exhib-

ited enhanced root growth sensitivity to flagellin 22 (flg22). The tran-

scriptomic analysis of the ASCO overexpressing versus ASCO

knocked-down seedlings revealed distinct and overlapping effects on

the entire mRNA population. Assessing the genome-wide impact of

ASCO function on AS, we found many flg22-response regulatory

genes to be differentially alternatively spliced in ASCO-deregulated

lines. Surprisingly, the effect of ASCO knock-down on AS was clearly

distinct from the defects of the nsra/b double mutant, suggesting that

ASCO impacts AS through a different interaction with the splicing

machinery. Searching for ASCO-interacting proteins, we found

SmD1b and PRP8a, two core components of the spliceosome that

recognize subsets of AS-regulated flg22-regulatory genes, also dif-

ferentially spliced in prp8-7 [35] and smd1b mutants. Furthermore,

ASCO overexpression competes for PRP8a binding to particular

mRNA targets. Hence, lncRNAs may interact with key conserved

components of the spliceosome to integrate a dynamic splicing

network that modulates transcriptome diversity in eukaryotes.

Results

The ASCO lncRNA participates in lateral root formation

It was previously shown that ASCO overexpression results in a

lower number of LRs in response to auxin treatment, a phenotype

related to that of the nsra/b mutant, suggesting that increasing ASCO

expression may lead to a titration of NSR activity in splicing [34].

To understand the role of ASCO in plant development, we generated

independent RNAi lines to downregulate the levels of ASCO expres-

sion (RNAi-ASCO1 and RNAi-ASCO2, Fig EV1A and B). Under

control growth conditions, RNAi-ASCO plants do not exhibit signifi-

cant changes in primary root growth when compared to Col-0 WT

(Fig EV1C), whereas both independent lines showed an enhanced

LR density in response to auxin treatment (Fig EV1D), the opposite

phenotype to the one displayed by the ASCO overexpressing lines

[24]. Furthermore, we transformed A. thaliana with a construct

bearing 2,631 bp of the ASCO promoter region controlling the

expression of the fusion reporter genes GFP-GUS (proASCO::GFP-

GUS). The proASCO construct includes the full intergenic region

upstream of ASCO in addition to the first fifteen nucleotides from

the transcription start site of the ASCO locus (position of the first

ATG found in the locus) fused to the reporter genes (Fig EV1E). In

roots, proASCO::GFP-GUS was active very early in LR development,

in pericycle cells undergoing the first division (Fig EV1F), whereas

activity was then restricted to the vasculature adjacent to the LR

primordium between stages II and VIII of LR development [36].

Thus, ASCO expression pattern is in agreement with the LR-related

phenotype of RNAi-ASCO plants.

Deregulation of ASCO expression triggers a transcriptional
response to biotic stress

In order to decipher the role of ASCO in the regulation of gene

expression at a genome-wide level, we performed RNA-seq with

A. thaliana 14-day-old seedlings RNAi-ASCO1 versus WT Columbia

(Col-0) accession in standard growth conditions. Overall, more

genes were upregulated (321) than downregulated (178) in ASCO-

silenced plants (Fig 1A). Over 90% of deregulated transcripts corre-

spond to protein-coding genes, according to Araport11 gene annota-

tion (Fig 1B; Table EV1). To extend our understanding on the

genome-wide role of ASCO in the control of gene expression, we

searched the putative function of differentially expressed genes

using Gene Ontology (GO). This analysis revealed a clear enrich-

ment of deregulated genes involved in immune and defense

responses (FDR < 8e-4), as well as related pathways such as

“response to chitin” and “glucosinolate metabolic pathways”

(Fig 1C). Interestingly, related pathways were also partially

observed in nsra/b mutants in response to auxin [34]. The upregula-

tion of biotic stress-related genes was validated by RT–qPCR in both

RNAi-ASCO lines compared to WT for a subset of 6 chosen tran-

scription factors (TFs) which have been linked to the response to

pathogens (Fig EV2A): STZ/ZAT10 (AT1G27730) encodes for a Zn–

finger TF involved in the response to oxidative stress [37] and acts

as a negative regulator of methyl jasmonate (MeJA) biosynthesis

[38], MYB29 (AT5G07690) positively regulates the biosynthesis of

aliphatic glucosinolate (AGSL), an essential defense secondary

metabolite in A. thaliana [39], WRKY33 (AT2G38470) controls the

ABA biosynthetic pathway in response to the necrotrophic fungi

Botrytis cinerea [40], ERF6 (AT4G17490) is a positive regulator of

the MeJA and ethylene-mediated defense against B. cinerea [41],

ERF104 (AT5G61600) participates in the ethylene-dependent

response to flg22 [42], and ERF105 (AT5G51190) was shown to be

strongly regulated in response to chitin [43] and to bind to the GCC-
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box pathogenesis-related promoter element [44]. Remarkably, all of

these pathogen-related TFs are transcriptionally overaccumulated in

control conditions in the RNAi-ASCO plants (Fig EV2A), indicating

that the deregulation of ASCO expression triggers molecular defense

responses likely through the induction of pathogen-related TFs.

It is known that peptides corresponding to the most conserved

domains of eubacterial flagellins (flg) act as potent elicitors in

A. thaliana. Notably, flg22 causes callose deposition, induction of

genes encoding for pathogenesis-related proteins, and a strong inhi-

bition of growth including root development [45–47]. Thus, we first

assessed the transcriptional accumulation over time of ASCO in

response to flg22. As shown in Fig EV2B, ASCO accumulation in

roots was not significantly affected by flg22, compared to CYP81F2

used as a positive control (Fig EV2C) [48]. Then, we characterized

the physiological response of both ASCO RNAi-silenced lines to the

exogenous treatment with flg22. Five-day-old plantlets were treated

or not for 9 additional days with 0.1 or 1 lM flg22. Strikingly, the

roots of RNAi-ASCO1 and 2 plants exhibited a normal development

in control conditions (Fig EV3A and B), whereas they were more

sensitive to flg22 treatment, exhibiting a significantly shorter

primary root (Figs 1D and EV3C) but a minor reduction in the

number of total LRs, resulting in a higher density of LRs (Fig 1E).

Cell wall staining and microscopic observation allowed us to quan-

tify meristem size and determine that RNAi-ASCO plants show a

reduction of the meristematic zone in response to flg22, e.g., shorter

distance between the quiescent center and the beginning of the tran-

sition zone (Fig 1F and G). This reduction in size is the result of a

significantly lower number of cells forming the root meristematic

zone (Fig EV3D). Together with the physiological phenotype, we

characterized the molecular response to this elicitor. A small subset
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Figure 1. ASCO modulates steady-state levels of transcripts involved in plant immune responses affecting the sensitivity to flg22 peptide.

A Number of differentially up- and downregulated genes (DEG) in RNAi-ASCO1 seedlings as compared to wild type (WT) according to the RNA-seq data (FDR < 0.01,
|log2FC| ≥ 0.75).

B Fraction of DEG found in each transcript class as defined in the Araport11 gene annotation. AS stands for antisense.
C Enriched Gene Ontology (GO) of DEG in RNAi-ASCO1 seedlings as compared to WT, x-axis represents the -log10 FDR for the enrichment of each GO category over

genome frequency.
D Representative picture of 14-day-old plants grown 9 days in liquid 1/2MS supplemented with 1 lM flg22. The scale bar representing 0.6 cm is included in the

picture.
E Lateral root density of WT and two independent RNAi-ASCO lines 9 days after transfer in 1/2MS supplemented with 0.1 or 1 lM flg22.
F Representative picture of root apical meristems after cell wall staining, in response to flg22. TZ: transition zone; QC: quiescent center.
G Root apical meristem size of WT and RNAi-ASCO1 (e.g distance from QC to TZ in lm).

Data information: Error bars indicate the standard error. The asterisk (*) indicates a significant difference as determined by Mann–Whitney’s U-test (P < 0.05, n = 18
biological replicates).
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of flg22-responsive genes was chosen [49–51] to assess putative

expression changes due to ASCO knock-down. In mock conditions,

RNAi-ASCO lines exhibited an increased expression for certain

flg22-responsive genes tested (Fig EV3E). Interestingly, this subset

of genes suffered an overall lower induction after 3 h of flg22 in

RNAi-ASCO plants (Fig EV3F), in agreement with the previously

observed altered sensitivity to flg22 of RNAi-ASCO roots.

To further demonstrate the link between ASCO and the response

to flg22, we searched for additional independent Arabidopsis lines

exhibiting a deregulation in ASCO accumulation. We characterized

two insertional mutants located at the 50 region (asco-1) and the 30

region of the locus (asco-2; Fig EV4A). The first line, asco-1, resulted

in an overexpressor of a truncated ASCO version (lacking a minor

portion of the 50 region), whereas the asco-2 T-DNA line shows

minor changes in ASCO expression (Fig EV4B and C). Interestingly,

the nearly 50-fold overaccumulation of ASCO RNA in asco-1 plants

do not yield any significant root growth phenotype, possibly a slight

reduction in LR density (Fig EV4D and E). Accordingly, when we

assessed two independent 35S:ASCO overexpressing lines, reaching

an overaccumulation of 1,000–2,500-fold RNA levels (Fig EV4B),

plants exhibit a longer main root and a lower density of LRs in

response to flg22 (Fig EV4F and G). Therefore, ASCO participates in

the regulation of biotic stress-related genes, shaping root architec-

ture in response to flg22.

ASCO modulates the alternative splicing of a subset of
pathogen-related mRNAs with unaltered accumulation

Considering that overexpression of ASCO affected the AS of NSR

mRNA targets [24], we searched for mis-spliced genes potentially

explaining the global physiological impact of ASCO deregulation. To

this end, we used two complementary approaches to detect both dif-

ferential AS based on annotated isoforms (Reference Transcript

Dataset for A. thaliana, AtRTD2) [52] and potentially nonannotated

differential RNA processing events using RNAprof [33,52]. Based on

RNAprof, a total of 303 differential RNA processing events in 281

distinct genes were identified comparing RNAi-ASCO with WT

plants in control growth conditions (Dataset EV2), whereas the

SUPPA2 method [53] identified 205 genes with evidence of differen-

tial AS in the AtRTD2 database. Comparison of the two analyses

with differentially expressed genes (DEG) in RNAi-ASCO lines

revealed that most differentially alternatively spliced (DAS) genes

are not differentially accumulated (Fig 2A). In addition, our analy-

ses showed the complementarity between the two approaches since

only 24 common DAS genes were identified by both methods. Clas-

sification of the location and the relative isoform accumulation (up

or down) of these events revealed that the majority of them were

located in introns and had higher read coverage in RNAi-ASCO

plants, suggesting that ASCO inhibited proper intron splicing on

these genes (Fig 2B). Nevertheless, we also identified differential

events located within 50UTR, CDS, or 30UTR suggesting that other

RNA processing events, in addition to intron retention, such as alter-

native transcription start sites or polyadenylation sites, are affected

by ASCO expression levels. Analysis of differential AS events with

SUPPA revealed 317 significant DAS events (|dPSI| > 0.1, P < 0.01)

on 205 unique genes from the AtRTD2 transcript annotation data-

base (Dataset EV3). Similarly to the analysis with RNAprof, most of

these events corresponded to intron retention (62%) but we also

identified a significant number of alternative 30 splice site and alter-

native 50 splice site selection modulated in ASCO knock-down lines

(Fig 2C). To determine the most significant impact of the AS events,

we sought to identify isoform switching events (i.e., co-ordinated

variations in abundance of two isoforms) using the IsoformSwitchA-

nalyzeR package (Dataset EV4) [54]. Strikingly, isoform switching

events were detected for 52 genes, out of which 12 and 34 were

common cases detected by RNAprof and AtRTD2-SUPPA, respec-

tively (Fig 2D). In silico analysis of the protein sequences derived

from switching isoforms indicated that the AS events may lead to (i)

change of ORF length, (ii) gain or loss of conserved PFAM protein

domain and signal peptides, and (iii) change of the coding potential

and the sensitivity to NMD (Fig 2E). Since AS can often trigger

NMD, an important mechanism of plant gene expression regulation

[55], we compared DAS genes to those transcripts overaccumulated

in the double mutant of the NMD factor homologs UP FRAMESHIFT1

(UPF1) and UPF3, upf1-upf3 [56]. As shown in Fig 2F, 66 and 29

genes regulated by NMD were reported by RNAprof and AtRTD2-

SUPPA as alternatively spliced in RNAi-ASCO plants, respectively.

Hence, the majority of AS events controlled by ASCO seem to be

independent of the UPF1-UPF3-mediated RNA quality control

machinery, at least in the conditions previously assessed.

Furthermore, we performed RNA-seq with 14-day-old seedlings

35S:ASCO1 versus Col-0 WT plants in standard growth conditions.

Interestingly, there is a minimal overlap between DEG and DAS

genes in WT versus RNAi-ASCO1 and 35S:ASCO1. Strikingly, the

up- and down-deregulation of ASCO resulted in alternative subsets

of DAS genes, including only 120 common DAS between RNAi-

ASCO1 and 35S:ASCO1, compared to 227 and 137 excluding

events, respectively (Fig 3A). Further comparison of DEG fold

change revealed a global correlation of gene expression changes in

35S:ASCO1 and RNAi-ASCO1 as compared to WT. However, we

show that particular subsets of genes responded to the down- or

upregulation of ASCO (Fig 3B). Similarly, in these lines we

compared the dPSI (difference of Percent Spliced In), which repre-

sents the change of each AS event. The analysis revealed that the

group of 120 common AS events are positively correlated between

the two lines as compared to wild type (Fig 3C). In addition, this

also revealed that dPSI of AS events significantly regulated in

response to either overexpression or silencing of ASCO, respec-

tively, was not correlated between the two lines (Fig 3C). Overall,

the effect of ASCO silencing was more extensive on DAS,

compared to its overexpression.

In order to better understand the impact of ASCO deregulation on

the plant response to flg22, we focused on the transcriptional accu-

mulation of specific genes. Strikingly, several pathogen-related

genes appeared differentially spliced in the RNAi-ASCO1 line

although they were not affected in their global expression levels

(Fig 3A). These AS events include two members from the NB-LRR

disease resistance genes: RPP4 [57] and RLM3 [58], as well as the

splicing regulatory serine-rich protein-coding gene SR34

(AT1G02840), needed for accurate response to pathogens [59]. The

splicing of the SR34 own pre-mRNA is auto-regulated and depends

on the activity of immune response factors [60]. Other relevant AS

targets are SNC4 (AT1G66980) which encodes a receptor-like kinase

that participates in the activation of the defense response, and its AS

is impaired in defense-related mutants, affecting the response to

pathogens [60]; SEN1 (AT4G35770), a senescence marker gene
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A Comparison of differentially processed transcripts (RNAprof) and differential AS genes (AtRTD2-SUPPA) with differentially expressed genes (DEG).
B Number of genes containing at least one differential RNA processing event (as defined by RNAprof Padj < 0.001) in CDS, introns, 50UTR and 30UTR between RNAi-

ASCO1, and WT. Up and down fractions correspond to increase or decrease, respectively, of RNA-seq coverage in RNAi-ASCO1 for each specified gene feature.
C Proportion of DAS events identified by AtRTD2-SUPPA in RNAi-ASCO1 compared to WT; alternative 30 site (A30), alternative 50 site (A50), intron retention (IR), exon

skipping (ES).
D Comparison of differentially processed transcripts (RNAprof) and differentially AS genes (AtRTD2-SUPPA) with genes showing significant isoform switch events

(Isoswitch).
E Summary of the predicted consequence of the isoform switch events as shown by the feature acquired by the upregulated isoform. ncRNA stands for noncoding RNA,

and NMD stands for nonsense-mediated decay.
F Comparison of differentially processed transcripts (RNAprof), differentially AS genes (AtRTD2-SUPPA), and differentially expressed genes (DEG) with genes significantly

upregulated in the upf1-upf3 mutant [56], indicating genes potentially regulated by NMD.
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primarily regulated by salicylic acid (SA)- and MeJA-dependent

signaling pathways [61] and NUDIX HYDROLASE7 (NUDT7,

AT4G12720) which regulates defense and cell death against

biotrophic pathogens [62]. Another interesting target is EPITHIOSPE-

CIFIER PROTEIN (ESP, AT1G54040) a gene involved in plant defense

to insects which is differentially spliced in response to MeJA [63]

although this gene was also differentially expressed in RNAi-ASCO

plants. We also included in the following analysis a NAD(P)-binding

Rossmann-fold protein family gene (NRG, AT2G29290), exhibiting

drastically altered AS upon ASCO knock-down. DAS events in the

chosen genes mentioned above, first identified in silico (Fig 4A and

D, Appendix Fig S1), were validated by RT–PCR and polyacrylamide

gel electrophoresis by calculating the ratio between alternatively

spliced and fully spliced isoforms (isoform ratio, Figs 4B and C, and

4E and F, Appendix Fig S2). All events tested excepting RLM3

displayed significant changes in isoform ratio. Most events led to

changes in conserved protein domains (Fig 4 and Appendix Fig S2).

For instance, retention of the last intron in RPP4 gave place to a

protein predicted with a lower number of LRR repeat as previously

observed in other R-genes such as RPS4 [64]. Splicing events in

SR34 and ESP were further validated by quantitative RT–qPCR

where each differential event was normalized with respect to an

internal gene probe (called INPUT) which corresponds to a common

exon. This allowed for the calculation of the splicing index (defined

in the methods section, Appendix Fig S3). Splicing index was not

calculated for the other chosen genes due to technical difficulties in

primer designing. Altogether, our results indicate that the knock-

down of ASCO expression affects the AS of a subset of genes whose

isoforms distribution may modulate the pathogen-related transcrip-

tome and affect the response to flg22.
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B Scatter plot showing the respective gene expression fold change in RNAi-ASCO and 35S:ASCO lines as compared to WT. Genes showing significant changes in RNAi-
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RNAi-ASCO, 35S:ASCO, or in both lines are highlighted as red, green, or blue dot, respectively. Gray dots represent all AS events.
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ASCO interacts with the spliceosome core components PRP8a
and SmD1b

The fact that ASCO interacts with NSRs strongly suggested that its

deregulation would affect a large subset of NSR-targeted AS events.

Surprisingly, DAS genes in the RNAi-ASCO and 35S:ASCO plants

only partially coincide with those in nsra/b double mutants (in

response to auxin or not). In all, out of the 589 DAS events identi-

fied in nsra/b compared to WT, only 140 (32%) are common with

RNAi-ASCO1 and 109 (33%) with 35S:ASCO, representing 24 and

19% of all DAS events in the nsra/b mutant, respectively

(Fig EV5A). Furthermore, nsra/b plants do not respond to flg22 in

the same way as RNAi-ASCO plants (Fig EV5B and C), indicating

that ASCO further modulates AS in an NSR-independent manner by

an unknown mechanism, notably affecting the response to biotic

stress. Therefore, in order to decipher the AS-related complexes

implicating ASCO, we performed an antisense oligonucleotide-based

pull-down method, related to the chromatin isolation by RNA Purifi-

cation (ChIRP) [65,66] using nuclear extracts to purify ASCO-

containing RNPs. Eighteen biotinylated probes matching ASCO were
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Figure 4. Validation of AS events in RNAi-ASCO lines.

A–F (A, D) Differential RNA processing events of SR34 (AT1G02840) and NUDT7 (AT4G12720) transcripts detected by RNAprof from the comparison of RNA-seq libraries
of 14-day-old WT (red) and RNAi-ASCO1 (blue) plants. Three biological replicates were used. Vertical purple lines and P-values indicate significant differential
processing events. Structure of SR34 (A) and NUDT7 (D) RNA isoforms. Large black boxes indicate exons, narrow black boxes indicate UTRs, and black lines indicate
introns. Colored boxes indicate protein domains affected by an AS event. RS domain: Arg/Ser-rich domain. Red arrows indicate probes used for gel electrophoresis.
Protein domains were retrieved from Uniprot database (https://www.uniprot.org). (B, E) Analyses of RT–PCR products of SR34 (B) and NUDT7 (E) transcripts on 8%
acrylamide gel. (C, F) Quantification of the ratio of SR34 (C) and NUDT7 (D) isoforms detected in the gel in (B) and (E), respectively. RNAs were extracted from WT
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Data information: In (B and D), the results are expressed as a percentage of the input for PRP8a RIP followed by RT–qPCR, and IgG RIP was used as a negative control.
Error bars represent the standard error of 3 biological replicates. N/D stands for nondetectable. The asterisk (*) indicates a significant difference as determined by
Student’s t-test (P < 0.05, n = 3).
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used in independent sets called EVEN and ODD, respectively

(Dataset EV5). ASCO-ChiRP was performed in 4 biological replicates

for each set of probes: ODD, EVEN, and an additional set matching

the LacZ RNA, used as a negative control. ASCO enrichment was

corroborated by ChiRP followed by RNA purification and RT–qPCR

(Fig 5A). We then performed a mass spectrometry on the proteins

from the purified ASCO-containing RNP to identify potential ASCO

protein partners. Strikingly, among the RNA-related proteins identi-

fied in the EVEN and ODD samples, but not in the LacZ, we found

the pre-mRNA-processing-splicing factor 8A, PRP8a. PRP8 is a core

component of the spliceosome and is highly conserved in higher

organisms; null mutations generally result in embryonic lethality

[67]. In Arabidopsis, a PRP8a leaky mutation was found to also

affect the AS of the COOLAIR lncRNA [68] and results in a high

number of intron retention events [35]. Therefore, we developed

specific antibodies against PRP8a and we tested them in immunolo-

calization experiments that revealed a nuclear localization pattern

(Appendix Fig S4) similar to what was previously observed in

Drosophila [69]. In order to validate the interaction with ASCO

in vivo, we performed a RNA immunoprecipitation assay followed

by qPCR (RIP–qPCR) from nuclear extracts. We show that PRP8a

can recognize the spliceosomal U5 RNA [70] taken as a positive

control, as well as the ASCO lncRNA (Fig 5B). The efficiency of the

PRP8a immunoprecipitation (IP) was assessed by Western blot

comparing nuclei input samples, against the unbound fraction after

IP, as well as the anti-PRP8a IP and the anti-IgG IP (Fig 5C). We

then assessed the binding of PRP8a to the pathogen-related mRNAs

differentially spliced in the RNAi-ASCO lines. PRP8a was indeed

able to interact with 4 of these ASCO-related DAS genes. Further-

more, their binding was impaired upon the overexpression of ASCO

(Fig 5D), hinting at an ASCO-mediated competition of these mRNAs

inside the PRP8a-containing spliceosome complex. Interestingly,

ASCO is overaccumulated in the prp8-7 mutant allele [35] (Fig 6A),

as it occurs in the nsra/b mutant plants [24]. Remarkably, similar

AS defects were shown between the prp8-7 mutant and RNAi-ASCO

lines for pathogen-related genes (Fig 6B and C, Appendix Fig S5),

indicating that the flg22 differential phenotype of RNAi-ASCO plants

may be related to the interaction with the spliceosome components.

Recently, we identified another core component of the spliceosome,

SmD1b, linked both to AS and the recognition of aberrant ncRNAs

to trigger gene silencing [71]. Interestingly, ASCO expression levels

are also increased in the smd1b mutant (Fig 6D), exhibiting the

same transcript accumulation as in prp8-7 and nsra/b mutants.

Hence, we wondered whether this other core component of the

spliceosome also interacts with ASCO lncRNA. Using pUBI:SmD1b-

GFP plants (smd1b mutant background) [71], we performed a RIP

assay and found that SmD1b also recognizes ASCO in vivo (Fig 6E)

as well as the U6 RNA taken as a positive control. Furthermore,

SmD1b recognizes the four pathogen-related transcripts assessed

(Fig 6F) although only two out of three pathogen-related transcripts

assessed were DAS in smd1b mutants: ESP, SR34, but not NUDT7

(Fig 6G and H, Appendix Fig S5). SNC4 total transcript levels were

dramatically reduced in the smd1b mutant, hindering the analysis of

relative isoforms accumulation (Appendix Fig S5J). Altogether, our

results indicate that ASCO, an apparently intron-less lncRNA, inter-

acts with PRP8a and SmD1b, two core components of the spliceo-

some, contributing to determine the dynamic ratio between

hundreds of alternatively spliced mRNAs, notably pathogen-related

genes. Hence, lncRNAs appear as possible dynamic interactors of

multiple core components of the splicing machinery, likely modulat-

ing the splicing patterns of particular subsets of mRNAs.

Discussion

Long noncoding RNAs modulate splicing regulatory networks

We show here that reducing ASCO expression has a major effect on

AS at the genome-wide level in plants. In animals, different splicing

factors can recognize lncRNAs in vivo [23], e.g., Y-BOX BINDING

PROTEIN 1 (YBX1) [72], POLY(RC) BINDING PROTEINS 1 and 2

(PCBP1/2), FOX proteins [73], and the serine-rich splicing factors,

such as SRSF6 [74], among others. The lncRNA GOMAFU, for exam-

ple, is recognized through a tandem array of UACUAAC motifs by

the splicing factor SF1, which participates in the early stages of

spliceosome assembly [75]. Furthermore, GOMAFU was found to

directly interact with the splicing factors QUAKING homolog QKI

and SRSF1 [25]. In adult mice, GOMAFU is expressed in a specific

group of neurons and has been implicated in retinal cell develop-

ment [76,77], brain development [78], and post-mitotic neuronal

function [79]. GOMAFU’s downregulation leads to aberrant AS

patterns of typically schizophrenia-associated genes [25]. Other

lncRNAs recognized by splicing factors are NUCLEAR PARA-

SPECKLE ASSEMBLY TRANSCRIPT 1 (NEAT1) and NEAT2 (also

known as METASTASIS ASSOCIATED LUNG ADENOCARCINOMA

TRANSCRIPT 1; MALAT1) [80]. RNA FISH analyses revealed an inti-

mate association of NEAT1 and MALAT1 with the SC35 splicing

factor containing nuclear speckles in both human and mouse cells,

suggesting their participation in pre-mRNA splicing. Indeed, the

ASCO lncRNA also interacts with NSRs and SmD1b both localized in

nuclear speckles [24,71], whereas we show here that PRP8a seems

to have nuclear localization in Arabidopsis. It was shown that

NEAT1 localizes to the speckles periphery, whereas MALAT1 is part

of the polyadenylated component of nuclear speckles [80]. MALAT1

acts as an oncogene transcript, and its aberrant expression is

involved in the development and progression of many types of

cancers [81–83]. MALAT1 can promote metastasis by interacting

with the proline- and glutamine-rich splicing factor SFPQ, blocking

its tumor suppression activity [26]. In plants, little is known about

the interaction between splicing factors and lncRNAs [20,23]. NSRs

are a family of RNA-binding proteins that act as regulators of AS

and auxin-regulated developmental processes such as lateral root

formation in A. thaliana. These proteins were first shown to interact

with some of their alternatively spliced pre-mRNA targets and ASCO

lncRNA [24]. More recently, a RIP-seq approach on an NSRa fusion

protein in A. thaliana mutant background allowed the identification

of genome-wide NSR targets, e.g., specific alternatively spliced

mRNAs as well as a plethora of lncRNAs, including ASCO [34].

Strikingly, ASCO was detected albeit not among the most abundant

NSRa-interacting lncRNA, suggesting the existence of an intricate

network of multiple lncRNAs and splicing factors interactions. In

fact, we showed here that the impact of ASCO deregulation on AS at

a genome-wide level barely overlaps with the defects observed in

the nsra/b mutant background (with or without auxin), indicating

that ASCO and NSRs participate in common as well as in indepen-

dent molecular mechanisms related to AS.
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The ASCO lncRNA knocked-down plants show altered sensitivity
to flagellin

The comparison of the transcriptome of RNAi-ASCO and 35S:ASCO

plants revealed common and specific subsets of DAS genes. This

dual effect caused by the up- or downregulation of ASCO accumula-

tion hints to the potential relevance of a stoichiometric factor

impacting the action of ASCO within the spliceosome. ASCO-

silenced plants exhibit an enhanced sensitivity to flg22, in contrast

to 35S:ASCO and nsra/b plants. In agreement, overexpressing ASCO

plants and nsra/b mutants behave similarly in response to auxin

[24]. Interestingly, auxin signaling is known to control the balance

between growth and immunity [84]. The auxin response was

recently identified as a major component of the root transcriptional

response to beneficial and pathogenic bacteria elicitors and is

thought to mediate the observed reshaping of the root system in

response to bacterial defense elicitors [85]. Our results suggest that

ASCO has a wider function than the simple titration of NSR activity.

Remarkably, we now determined that ASCO is recognized by addi-

tional splicing factors: the spliceosome core components PRP8a and

SmD1b. Accordingly, RNAi-ASCO lines and a prp8-7 leaky mutant

exhibit similar AS defects of flg22-regulated genes. However, smd1b

mutants resulted in a deregulated ratio of isoforms of only ESP and

SR34, but not NUDT7. The milder effect of ASCO-related SmD1b

over the subset of pathogen-related genes may be due to a compen-

satory role of SmD1a in the smd1b background. Core splicing factors

null mutants usually give very severe phenotypes or embryo lethal-

ity, and smd1b mutation was proposed to be partially compensated

by SmD1a [71]. Thus, the prp8-7 leaky allele and the smd1b

compensated mutant both exhibit partial effects on global constitu-

tive splicing. Altogether, our results indicate that a complex network

of lncRNAs and splicing factors involving ASCO, PRP8a, SmD1b,

and NSRs dynamically shapes transcriptome diversity, integrating

developmental, and environmental cues, thus conditioning the

response to biotic stress (Fig 7).

In Arabidopsis, the lncRNA ELF18-INDUCED LONG NONCODING

RNA 1 (ELENA1) is regulated by the perception of the translation

elongation factor Tu (elf18) and it was identified as a factor enhanc-

ing resistance against Pseudomonas syringae. It was shown that

ELENA1 directly interacts with Mediator subunit 19a (MED19a),

modulating the enrichment of MED19a on the PATHOGENESIS-

RELATED GENE1 (PR1) promoter [86]. Several other examples of

lncRNAs mediating the environmental control of gene expression

illustrate the relevance of the noncoding transcriptome as a key inte-

gration factor between developmental and external cues [68,87–89].

The sensitivity to pathogens has been shown to be affected in

spliceosome-related mutants. For instance, it was recently reported

that the prp40c mutants display an enhanced tolerance to Pseu-

domonas syringae [90]. On the other hand, several other splicing-

related genes have been identified as positive regulators of plant

immunity against Pseudomonas [91–93]. Therefore, the modulation

of the expression and activity of splicing-related components appear

to be important for the proper response to pathogens.

LncRNAs as highly variable components of the conserved
spliceosomal machinery

Here, we show that the highly structured lncRNA ASCO, which

does not seem to contain introns, is capable to interact with PRP8a

and modulate PRP8a binding to ASCO-related AS targets. The

spliceosome is a large complex composed of five different small

nuclear ribonucleoprotein complexes subunits (snRNPs). Each

subunit includes noncoding and nonpolyadenylated small nuclear

uridine (U)-rich RNAs (U snRNAs) and core spliceosomal proteins,

along with more than 200 non-snRNPs splicing factors [94]. PRP8a

is one of the largest and most highly conserved proteins in the

nucleus of eukaryotic organisms. It occupies a central position in

the catalytic core of the spliceosome and has been implicated in

several crucial molecular rearrangements [67]. In Arabidopsis, anal-

ysis of PRP8a leaky mutation suggests that PRP8a recognizes the

lncRNA COOLAIR in vivo to modulate its AS [68] hinting at an

interaction with lncRNAs. COOLAIR designates a set of transcripts

expressed in antisense orientation of the locus encoding the floral

repressor FLC [95]. Two main classes of COOLAIR lncRNAs are

produced by AS and polyadenylation of antisense transcripts gener-

ated from the FLC locus. One uses a proximal splice site and a

polyadenylation site located in intron 6 of FLC, whereas the distal

one results from the use of a distal splice and polyadenylation sites

located in the FLC promoter [95]. Notably, prp8-7 partial loss of

function leads to a reduced usage of COOLAIR proximal polyadeny-

lation site and an increase of FLC transcription which is associated

with late-flowering phenotypes [68,95]. Interestingly, the FLC/

COOLAIR module is strongly deregulated in the nsra/b double

mutant and NSRa was linked to flowering time further supporting

multiple interactions of lncRNAs and the splicing machinery [34].

Although NSRa-COOLAIR interaction seems not to occur, it was

proposed that the control of NSRa over COOLAIR involves the direct

interaction and processing of the polyadenylation regulatory gene

FPA [34]. In the model legume Medicago truncatula, the NSRs clos-

est homolog, RNA-BINDING PROTEIN 1 (RBP1), is localized in

nuclear speckles where many components of the splicing machinery

are hosted in plant cells. Remarkably, RBP1 interacts with a highly

◀ Figure 6. PRP8a and SmD1b regulate AS of ASCO mRNA targets.

A ASCO transcript levels in WT and prp8-7 mutants.
B, C prp8-7 leaky mutant displays similar AS events as observed in RNAi-ASCO. Quantification of SR34 (B) and ESP (C) isoforms splicing index by RT–qPCR.
D ASCO transcript levels in smd1b mutant. In A and D, RNAs were extracted from WT, prp8-7, and smd1b 14-day-old plants.
E SmD1b can bind ASCO in vivo. U6 RNA was used as a positive control and a housekeeping gene (HKG2, AT4G26410) RNA as a negative control. The results were

expressed as % INPUT in SmD1b-GFP RIP and IgG RIP used as a negative control.
F SmD1b recognizes in vivo the RNAs of 4 genes regulated by ASCO. The results were expressed as % INPUT in SmD1b-GFP RIP and IgG RIP used as a negative

control.
G, H smd1b mutant displays similar AS events as observed in RNAi-ASCO. Quantification of SR34 (G) and ESP (H) isoforms splicing index by RT–qPCR.

Data information: The asterisk (*) indicates a significant difference as determined by Student’s t-test (P < 0.05, n = 3 biological replicates). Error bars show
mean � standard error.
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structured lncRNA, EARLY NODULIN 40 (ENOD40), which partici-

pates in root symbiotic nodule organogenesis [96–98]. ENOD40 is

highly conserved among legumes and was also found in other

species such as rice (Oryza sativa) [99], but shows no homology to

ASCO lncRNA [24]. In contrast to the nuclear localization of

Arabidopsis ASCO, ENOD40 was found both in the nucleus and in

the cytoplasm, and it is able to relocalize RBP1 from nuclear speck-

les into cytoplasmic granules during nodulation [98]. These obser-

vations suggested a role of the lncRNA ENOD40 in

nucleocytoplasmic trafficking, potentially modulating RBP1-depen-

dent splicing and further supporting the multiple interactions of

lncRNAs with splicing regulators. A major result shown here is that

ASCO is recognized by PRP8a and SmD1b, two central regulators of

splicing and not only by the NSR proteins which are plant-specific

“peripheral” regulators of splicing. Indeed, the nsra/b null double

mutants did not display major phenotypes in contrast to null PRP

or SmD components. The identification of how the ASCO lncRNA

interacts with PRP8a will certainly contribute to understanding the

intricate network of lncRNA-mediated regulation of core splicing

factors, thus opening wide perspectives for the use of lncRNAs in

the modulation of the dynamic population of alternatively spliced

mRNAs in higher organisms. Interestingly, a search for ASCO

SPLICEOSOME

NSR

Pol II

PRP8a
U-RNAs

PRP8a

SPLICEOSOME

flg responsive genes

ASCO lncRNA

NSR

SPLICEOSOME

ES

IR

A3'

A5'

Dynamic pool
of isoforms

SmD1b

SmD1b

Figure 7. The interaction of ASCO lncRNA and the spliceosome components PRP8a and SmD1b shapes the transcriptional response to flg22 modulating
alternative splicing.

Proposed mechanism of ASCO lncRNA action. ASCO hijacks NSR proteins to modulate the population of alternatively spliced transcripts. Additionally, ASCO is recognized by
PRP8a and SmD1b, two core components of the spliceosome, conditioning the SmD1b/PRP8a-dependent transcriptome diversity in response to flagellin.
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homologs across the Brassicaceae family reveals that 9 additional

copies of ASCO exist in A. thaliana and related sequences are also

present in other Brassicaceae species, including A. halleri and

A. lyrata, and the more distant species Capsella rubella and

Capsella grandiflora (Appendix Fig S6A). However, none of the four

detectable A. thaliana ASCO-like homologs suffered any significant

alteration in RNAi-ASCO and 35S:ASCO lines (Appendix Fig S6B),

suggesting that none of them seem to compensate for the absence

or overaccumulation of the ASCO lncRNA. The existence of ASCO-

like sequences in other species suggests that conserved lncRNA-

mediated mechanisms of AS regulation may occur through the

interaction with highly conserved splicing factors. As PRP8a and

SmD1b as well as the snRNAs are highly conserved spliceosomal

components in contrast to the outstanding variability of lncRNA

sequences along evolution, our results hint at a yet undiscovered

evolutionary layer in the fine-tuning of AS in specific cell types and

different environmental conditions without affecting essential splic-

ing activity. Structure and short sequences inside lncRNAs may

contribute to the evolution of splicing regulatory networks in

eukaryotes.

Materials and Methods

Plant material and growth conditions

All the lines used in this study were in the A. thaliana Columbia-0

(Col-0) background. We used the nsra/b double mutant and the

ASCO overexpressing lines from [Ref. 24]. The insertion lines

WiscDsLoxHs110_08A (asco-1) and SAIL_812_C08 (asco-2) were

obtained from the T-DNA mutant collection at the Salk Institute

Genomics Analysis Laboratory (SIGnAL, http://signal.salk.edu/cgi-

bin/tdnaexpress) via NASC (http://arabidopsis.info/). Seeds from

prp8-7 in the T line Col-0 background [35] and smd1b [71] mutants

were provided by H. Vaucheret. The pUBQ10:SmD1b-GFP line was

used for RNA immunoprecipitation assays. Plants were grown at

20°C with a 16-h light/8-h dark photoperiod (long days) on solid

half-strength Murashige and Skoog (1/2MS) medium.

Generation of transgenic lines

ProASCO::GUS transgenic lines
The promoter region of ASCO (2631-bp upstream of the transcrip-

tion start) was amplified from A. thaliana genomic DNA using

gene-specific primers listed in Dataset EV5. The amplicon was

subcloned into the pENTR/D-TOPO vector and recombined in a

pKGWFS7 binary destination vector, upstream of the GFP, and GUS

sequences. ProASCO::GUS constructs were transferred into

A. thaliana by standard Agrobacterium-mediated protocol [100].

Three lines were selected based on 3:1 segregation for the transgene

(single insertion) and brought to T3 generation where the transgene

was in a homozygous state. All lines behave similarly as for GUS

expression.

RNAi-ASCO knocked-down lines
The first 233-bp of the ASCO transcript was amplified from

A. thaliana genomic DNA using gene-specific primers listed in

Dataset EV5. Amplicons were subcloned into the pENTR/D-TOPO

vector and recombined in a pFRN binary destination vector [101] to

target the ASCO RNA by long dsRNA hairpin formation.

Root growth analysis

For analysis of auxin impact on root architecture, plants were grown

as described in [Ref. 24]. Briefly, seeds were sterilized and directly

sown on plates containing 1/2MS medium supplemented or not

with 100 nM NAA. Plantlet root architecture was analyzed using the

RootNav software after 7 days of growth [102]. For analysis of

flagellin impact on root architecture, plants were previously grown

5 days on solid 1/2MS medium + 1% sucrose and then transferred

for additional 9 days in liquid 1/2MS media + 1% sucrose supple-

mented or not with 0.1 lM or 1 lM of synthetic flg22 peptide

(GeneCust). For each plantlet, lateral roots were counted, and the

primary root length was measured using the RootNav software.

Experiments were done at least two times, with a minimum of 16

plants per genotype and condition. Statistical tests were performed

using the Mann–Whitney’s U-test (P < 0.05) using wild-type values

as reference.

Root meristem measurements

Plants were grown as for root growth analysis in response to flg22.

The treated plants were stained with SCRI Renaissance 2200

(Renaissance Chemicals) as described in [Ref. 103]. Images were

obtained with LSM880 (Zeiss) confocal microscope. The SR2200 flu-

orescence was excited with a 405 nm laser line and emission

recorded between 410 and 686 nm (405/410–686). Cell counting

and primary root meristem measurements were performed using

ImageJ package (https://imagej.nih.gov/ij/). Experiments were

done two times, with a minimum of 18 plants per genotype and

condition. Statistical tests were performed using the Student’s t-test

(P < 0.05).

Histochemical GUS staining

Histochemical GUS staining was performed according to [Ref. 104]

Briefly, 10-day-old plantlets grown in standard conditions were

fixed in cold 90% acetone and incubated overnight at 37°C in the

GUS staining buffer. Roots were subsequently fixed in 4%

paraformaldehyde for 1 h and washed several times in 70% ethanol

before a final wash in 10% glycerol prior observation. Images were

acquired using an AxioImagerZ2 microscope (Zeiss).

RNA extraction and RT–PCR analyses

Total RNA was extracted using Quick-RNA Kit (ZYMO RESEARCH),

and DNase treatment was performed according to the manufac-

turer’s protocol. One lg of DNase-free RNA was reverse transcribed

using Maxima H Minus Reverse Transcriptase (Thermo Scientific).

cDNA was then amplified in RT–qPCRs using LightCycler 480 SYBR

Green I Master (Roche) and transcript-specific primers on a Roche

LightCycler 480 thermocycler following standard protocol (45

cycles, 60°C annealing). Experiments were done in biological tripli-

cates with at least three technical replicates. Expression was normal-

ized to 2 constitutive genes (AT1G13320 and AT4G26410) [105].

For analysis of flg22 impact on gene expression, plants were
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previously grown 9 days on solid 1/2MS medium + 1% sucrose

and then transferred for additional 24 h in liquid 1/2MS

medium + 1% sucrose before adding or not 1 lM of flg22. Five

plantlets were pooled for each replicate. The fold induction of

expression after flg22 treatment was normalized to the WT

response considered as 100%. For analysis of gene expression

after a flg22 kinetic, roots from 8 plants were pooled for each

replicate. For AS analysis, isoform-specific primers were designed

for each differential event and the signal was normalized with

respect to an internal gene probe (called INPUT) corresponding to

a common exon for each group of transcripts. This allows dif-

ferentiating the change of each isoforms independently of the

expression level of the studied gene (splicing index) in each

sample [33]. The splicing index was calculated following this

equation: splicing index = 2[ΔCt(specific isoform) � (ΔCt(INPUT)]. Error

bars on qRT–PCR experiments represent standard deviations, and

significant differences were determined using Student’s t-test

(P ≤ 0.05, n ≥ 3 biological replicates). All the used primers are

listed in Dataset EV5.

For RT–PCR analysis, the amplification was performed using

Phusion High-Fidelity DNA Polymerase and transcript-specific

primers as manufacturer’s protocol. PCR products were separated

on an 8% polyacrylamide gel stained with SYBR Gold (Thermo

Fischer Scientific) and revealed using a ChemiDoc MP Imaging

System (Bio-Rad). Band intensity was quantified using ImageJ pack-

age (https://imagej.nih.gov/ij/). Isoform ratio was calculated as the

ratio of intensity of the two bands corresponding either to the alter-

natively spliced or to spliced transcript isoforms, respectively.

Transcriptome studies

Total RNA was extracted using RNeasy Plant Mini Kit (Qiagen) from

whole 14-day-old Col-0, 35S:ASCO1, and RNAi-ASCO1 plants grown

on 1/2MS medium. Three independent biological replicates were

produced per genotype. For each biological repetition and each

point, RNA samples were obtained by pooling RNA from more than

200 plants. After RNA extraction, polyA RNAs were purified using

Dynabeads mRNA DIRECT Micro Kit (Ambion). Libraries were

constructed using the Truseq Stranded mRNA Sample Prep Kit (Illu-

mina�). Sequencing was carried out at the POPS Transcriptomic

Platform, Institute of Plant Sciences Paris-Saclay in Orsay, France.

The Illumina HiSeq2000 technology was used to perform paired-end

100-bp sequencing. A minimum of 30 million of paired-end reads by

sample were generated. RNA-seq preprocessing included trimming

library adapters and quality controls with Trimmomatic [106].

Paired-end reads with Phred Quality Score Qscore > 20 and read

length > 30 bases were kept, and ribosomal RNA sequences were

removed with SortMeRNA [107]. Processed reads were aligned

using Tophat2 with the following arguments: –max-multihits 1 -i 20

–min-segment-intron 20 –min-coverage-intron 20 –library-type fr-

firststrand –microexon-search -I 1,000 –max-segment-intron 1,000 –

max-coverage-intron 1,000 –b2-very-sensitive. Reads overlapping

exons per genes were counted using the FeatureCounts function of

the Rsubreads package using the GTF annotation files from the

Araport11 repository (https://www.araport.org/downloads/

Araport11_Release_201606/annotation/Araport11_GFF3_genes_tra

nsposons.201606.gff.gz). Significance of differential gene expression

was estimated using DEseq2 [108], and the FDR correction of the

P-value was used during pairwise comparison between genotypes.

A gene was declared differentially expressed if its adjusted P-value

(FDR) was ≤ 0.01 and its absolute fold change was ≥ 1.5.

Gene Ontology analysis

Gene Ontology enrichment analysis was done using AgriGO

(http://bioinfo.cau.edu.cn/agriGO) and default parameters.

AS analysis

The RNA profile analysis was performed using the RNAprof software

(v1.2.6) according to [Ref. 33]. Briefly, RNAprof software allows

detection of differential RNA processing events from the comparison

of nucleotide level RNA-seq coverage normalized for change in gene

expression between conditions. Here, the RNAprof analysis compared

RNA-seq data from biological triplicates of WT, RNAi-ASCO1, and

35S:ASCO1 lines. Differentially processed regions genes were filtered

as follows: fold change > 2 and P < 0.001. Overlap between gene

features and differentially processed regions was done using in-house

R scripts (https://github.com/JBazinIPS2/Bioinfo/blob/master/RN

Aprof_events_selection.Rrst). Only regions fully included in a gene

features were kept for further analysis. The RNAprof software archive,

including documentation and test sets, is available at the following

address: http://rna.igmors.u-psud.fr/Software/rnaprof.php. Tran-

script level quantification was performed using pseudo-alignment

counts with kallisto [109] on AtRTD2 transcripts sequences (https://ic

s.hutton.ac.uk/atRTD/RTD2/AtRTDv2_QUASI_19April2016.fa) with

a K-mer size of 31-nt. Differential AS events in the AtRTD2 database

were detected using SUPPA2 with default parameters [53].

Only events with an adjusted P < 0.01 were kept for further analysis.

Isoforms switch identification was performed with the

IsoformSwitchAnalyzeR package [54] according to [34].

Whole-mount immunolocalization

Specific rabbit polyclonal antibodies were developed against PRP8a

using the peptide TNKEKRERKVYDDED (Li International). Five-day-

old seedlings were fixed with 4% paraformaldehyde in microtubule

stabilization buffer (MTSB) [110] for 1 h and rinsed once in glycine

0.1 M and twice with MTSB. Cell walls were partially digested for

45 min at 37°C in cellulase R10 1% w/v (Onozuka), pectolyase 1%

w/v, and cytohelicase 0.5% w/v (Sigma) solution. After two PBS

washes, root tissues were squashed on polylysine-treated glass slides

(VWR International) and dipped in liquid nitrogen. The coverslip was

then removed, and the slides were left to dry. After 2 rinses with PBS

and 2 with PBS-0.1% Triton, they were treated with BSA 3% in PBS-

Triton buffer for 1 h and incubated with the anti-PRP8a antibody (di-

lution 1:400) for 16 h at 4°C in a humid chamber. After incubation,

slides were rinsed 8–10 times with PBS-Triton and incubated for 1 h

at 37°C with the secondary antibody (anti-Rabbit IgG coupled to Alexa

Fluor� 594, dilution 1:500; Thermo Scientific) and rinsed 10 times

with PBS-Triton and once with PBS. Slides were mounted in Vecta-

shield© containing DAPI (VECTOR Laboratories). Images were

obtained with LSM880 (Zeiss) confocal microscope equipped with

Plan-Apochromat 63×/NA1.40 Oil M27 lens. Dapi and Alexa 594 fluo-

rescences were, respectively, excited with 405 nm and 561 nm diodes

and recorded between 410–500 nm and 570–695 nm.
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LncRNA-bound nuclear protein isolation by RNA purification

A method adapted from the ChIRP protocol [65,66,111] was devel-

oped to allow identification of nuclear proteins bound to specific

lncRNAs. Briefly, plants were in vivo crosslinked, and nuclei of cells

purified and extracted through sonication. The resulting supernatant

was hybridized against biotinylated complementary oligonu-

cleotides that tile the lncRNA of interest, and putative lncRNA-

containing protein complexes were isolated using magnetic strepta-

vidin beads. Co-purified ribonucleoprotein complexes were eluted

and used to purify RNA or proteins, which were later subject to

downstream assays for identification and quantification.

Probe design
Antisense 20-nt oligonucleotide probes were designed against the

ASCO full-length sequence (AT1G67105) using an online designer at

http://singlemoleculefish.com/. All probes were compared with the

A. thaliana genome using the BLAST tool at the NCBI, and probes

returning noticeable homology to non-ASCO targets were discarded.

Eighteen probes were finally generated and split into two sets based

on their relative positions along the ASCO sequence, such as EVEN-

numbered and ODD-numbered probes were separately pooled. A

symmetrical set of probes against LacZ RNA [66] was also used as

the mock control. All probes were ordered biotinylated at the 30 end
(Invitrogen).

Crosslinking and ribonucleoprotein complexes purification
For protein extraction, approximately 250 g of 7-day-old Col-0

plants grown on solid half-strength MS medium was irradiated three

times with UV using a CROSSLINKER� CL-508 (Uvitec) at 0.400 J/

cm2. For RNA extraction, 10 g of 7-day-old Col-0 plants grown on

solid half-strength MS medium was crosslinked under vacuum for

15 min with 37 ml of 1% (v/v) formaldehyde. The reaction was

stopped by adding 2.5 ml of 2 M glycine, and seedlings were rinsed

with Milli-Q purified water. For both crosslinking methods, 6 g of

the fixed material was ground in liquid nitrogen and added to 50-ml

tubes with 25 ml of extraction buffer 1–15 ml of plant material

ground to fine dust (the nuclei were prepared starting with 30 fifty-

milliliter tube; buffer 1: 10 mM Tris–HCl pH 8, 0.4 M sucrose,

10 mM MgCl2, 5 mM b-mercaptoethanol, 1 ml/30 g of sample

powder Protease Inhibitor Sigma Plant P9599). The solution was

then filtered through Miracloth membrane (Sefar) into a new tube,

and 5 ml of extraction buffer 2 (10 mM Tris–HCl pH 8, 0.25 M

sucrose, 10 mM MgCl2, 5 mM b-mercaptoethanol, 1% Triton X-100,

50 ll protease inhibitor) was added. The solution was then centri-

fuged, the supernatant discarded and the pellet was resuspended in

500 ll of extraction buffer 3 (10 mM Tris–HCl pH 8, 1.7 M sucrose,

2 mM MgCl2, 5 mM b-mercaptoethanol, 0.15% Triton X-100, 50 ll
protease inhibitor) and layered on top of fresh extraction buffer 3 in

a new tube. After centrifugation at 13,000 rpm for 2 min at 4°C to

pellet nuclei, the supernatant was discarded and the pellet resus-

pended in 300 ll of nuclei lysis buffer (50 mM Tris–HCl pH 7, 1%

SDS, 10 mM EDT, 1 mM DTT, 50 ll protease inhibitor, 10 ll RNAse
inhibitor per tube) to degrade nuclear membranes. Samples were

sonicated three times in refrigerated BIORUPTOR Plus (Diagenode),

10 cycles 30 s ON–30 sec OFF in a Diagenode TPX microtube M-

50001. After centrifugation, the supernatant was transferred to a

new tube and diluted two times volume in hybridization buffer

(50 mM Tris–HCl pH 7, 750 mM NaCl, 1% SDS, 15% formamide,

1 mM DTT, 50 ll protease inhibitor, 10 ll RNAse inhibitor). One

hundred pmol of probes were added to samples and incubated 4 h

at 50°C in a thermocycler. Samples were transferred to tubes

containing Dynabeads-Streptavidin C1 (Thermo Fisher Scientific)

and incubated 1 h at 50°C. Then, samples were placed on a

magnetic field and washed three times with 1 ml of wash buffer (2×

SSC, 0.5% SDS, 1 mM DTT, 100 ll protease inhibitor).

Protein purification
Samples for protein extraction were DNase-treated according to the

manufacturer (Thermo Scientific). After addition of 1.8 ml of TCA-

acetone (5 ml 6.1 N TCA + 45 ml acetone + 35 ll b-mercap-

toethanol), samples were incubated overnight at �80°C. After

centrifugation at 44,000 g for 20 min and 4°C, the supernatant was

discarded and 1.8 ml of acetone wash buffer (120 ml acetone, 84 ll
b-mercaptoethanol) was added to the samples. Then, samples were

incubated 1 h at �20°C and centrifuged again at 40,000 g for

20 min and 4°C. The supernatant was discarded, and the dry pellet

was used for mass spectrometry analysis.

RNA purification
Samples for RNA extraction were boiled for 15 min after washing

with 1 ml of wash buffer (2× SSC, 0.5% SDS, 1 mM DTT, 100 ll
protease inhibitor). Beads were removed in a magnetic field, and

TRIzol/chloroform RNA extraction was performed according to the

manufacturer (Sigma). RNAs were precipitated using 2 volumes

EtOH 100, 10% 3 M sodium acetate, and 1 ll glycogen and washed

with EtOH 70%. RNAs were kept at �20°C before use for reverse

transcription and RT–qPCR analysis.

Liquid Chromatography–Mass Spectrometry (LC-MS) analysis

Proteins purified from ribonucleoprotein complexes were analyzed

using the King Abdullah University of Science and Technology

proteomic facilities. Dry pellets of samples purified with either ODD,

EVEN, or LacZ probe sets were solubilized in trypsin buffer

(Promega) for digestion into small peptides. The solubilized

peptides were then injected into a Q ExactiveTM HF hybrid quadru-

pole-Orbitrap mass spectrometer (Thermo Scientific) with a Liquid

Chromatography (LC) Acclaim PepMap C18 column (25 cm

length × 75 lm I.D. × 3 lm particle size, 100 Å porosity, Dionex).

Data were analyzed for each sample using Mascot software (Matrix

Science), with a minimal sensitivity of 2 detected peptides per iden-

tified protein.

RNA immunoprecipitation

Eleven-day-old plants grown in Petri dishes were irradiated three

times with UV using a CL-508 cross-linker (Uvitec) at 0.400 J/cm2.

Briefly, fixed material was ground in liquid nitrogen and homoge-

nized and nuclei isolated and lysed according to [Ref. 112]. RNA

immunoprecipitation was basically performed as described by [Ref.

113]. The nuclei extract (input) was used for immunoprecipitation

with 50 ll of Dynabeads-Protein A (Thermo Fisher Scientific) and

1 lg of anti-GFP antibodies (Abcam ab290) or anti-PRP8a (Li Inter-

national), respectively. Beads were washed twice for 5 min at 4°C

with wash buffer 1 (150 mM NaCl, 1% Triton X-100, 0.5% Nonidet
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P-40, 1 mM EDTA, and 20 mM Tris–HCl, pH 7.5) and twice with

wash buffer 2 (20 mM Tris–HCl, pH 8) and finally resuspended in

100 ll Proteinase K buffer (100 mM Tris–HCl, pH 7.4, 50 mM NaCl,

and 10 mM EDTA). Twenty microliters were saved for further

immunoblot analysis. After Proteinase K (Ambion AM2546) treat-

ment, beads were removed with a magnet, and the supernatants

were transferred to a 2-ml tube. RNA was extracted using TRI

Reagent (Sigma-Aldrich) as indicated by the manufacturer. Eighty

microliters of nuclei extracts was used for input RNA extraction.

The immunoprecipitation and input samples were treated with

DNase, and random hexamers were used for subsequent RT. Quan-

titative real-time PCR reactions were performed using specific

primers (Dataset EV5). Results were expressed as a percentage of

cDNA detected after immunoprecipitation, taking the input sample

as 100%. For Western blot analysis, immunoprecipitated proteins

were eluted by incubating 20 ll of beads in 20 ll of 2× SDS-loading

buffer without b-mercaptoethanol (100 mM Tris–HCl pH 6.8, 20%

glycerol, 12.5 mM EDTA, 0.02% bromophenol blue) at 50°C for

15 min. Input, unbound and eluted fractions were boiled in 2× SDS-

loading buffer with 1% b-mercaptoethanol for 10 min, loaded onto

a 4–20% Mini-PROTEAN� TGXTM Precast Protein Gels (Bio-Rad),

and transferred onto a PVDF membrane using the Mini Trans-Blot�

Cell system (Bio-Rad) for 3 h at 70 V. Membranes were blocked in

5% dry nonfat milk in PBST and probed using PRP8a antibody

(1:500) and an HRP coupled anti-Rabbit secondary antibody (Bio-

Rad, 1:10,000). All antibodies were diluted in 1% dry nonfat milk in

PBST. Blots were revealed with the Clarity ECL substrate according

the manufacturer instruction (Bio-Rad) and imaged using the

ChemiDoc system (Bio-Rad).

Data availability

Data were deposited in CATdb database [114] (http://tools.ips2.

u-psud.fr/CATdb/) with ProjectID NGS2016-07-ASCOncRNA. This

project was submitted from CATdb into the international repository

GEO (http://www.ncbi.nlm.nih.gov/geo) with ProjetID GSE135376.

Expanded View for this article is available online.
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