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Malaria is among the leading causes of death worldwide. The emergence of Plasmodium

falciparum resistant strains with reduced sensitivity to the first line combination therapy

and suboptimal responses to insecticides used for Anopheles vector management

have led to renewed interest in novel therapeutic options. Here, we report the

development and validation of an ensemble of ligand-based computational models

capable of identifying falcipain-2 inhibitors, and their subsequent application in the virtual

screening of DrugBank and Sweetlead libraries. Among four hits submitted to enzymatic

assays, two (odanacatib, an abandoned investigational treatment for osteoporosis

and bone metastasis, and the antibiotic methacycline) confirmed inhibitory effects on

falcipain-2, with Ki of 98.2 nM and 84.4µM. Interestingly, Methacycline proved to be a

non-competitive inhibitor (α = 1.42) of falcipain-2. The effects of both hits on falcipain-2

hemoglobinase activity and on the development of P. falciparum were also studied.

Keywords: malaria, Plasmodium falciparum, falcipain-2, drug repositioning, virtual screening, drug rescue,

odanacatib, methacycline

INTRODUCTION

Despite decades of successful interventions aimed at reducing its incidence and mortality, malaria
continues being one of global leading causes of death, being the main global cause globally in
the 5- to 14-year-old population and the third cause among children below five (World Health
Organization (WHO), 2017; Ritchie and Roser, 2018). The most recent estimates from the World
HealthOrganization (WHO) report around 216million cases and 445,000 related deaths worldwide
in 2016 (Ritchie and Roser, 2018). The emergence of Plasmodium falciparum drug-resistant strains
with reduced sensitivity to the first line artemisinin combination therapy and suboptimal response
to insecticides used for vector management pose a threat to control interventions (Satimai et al.,
2012; Ajayi and Ukwaja, 2013; Kisinza et al., 2017). Accordingly, novel therapeutic options are
urgently required.
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Falcipains are P. falciparum cysteine proteases involved in
different processes of the erythrocytic cycle of the parasite,
including hydrolysis of host hemoglobin and erythrocyte
invasion and rupture. Four falcipains have so far been
identified, with falcipain-2 and falcipain-3 constituting
promising targets in the search for novel therapies due to their
significant hemoglobinase capacity (Marco and Coterón, 2012;
Bekono et al., 2018).

Drug repurposing involves finding novel medical uses for
existing drugs, including approved, investigational, discontinued,
and shelved therapeutics. Repurposing a drug has several
advantages in comparison to de novo drug discovery, since
the new therapeutic indication is built on already available
pharmacokinetic, toxicological, and manufacturing data, thus
leading to therapeutic solutions in a expedite manner (Ferreira
and Andricopulo, 2016; Corsello et al., 2017). While the
best-known examples of successful repurposing have been
serendipitous or arose from intelligent exploitation of side
effects (Corsello et al., 2017; Talevi, 2018), the drug discovery
community has recently focused on systematic, large-scale
repurposing efforts, including the use of genomic tools, and
in silico and high-throughput screening (Jin and Wong, 2015;
Talevi, 2018; Yella et al., 2018). The Virtual lock-and-key
approach (Lauria et al., 2011, 2014; Tutone et al., 2017) and the
BIOlogical Target Assignation method (Lauria et al., 2014) can
be mentioned among many other interesting examples of the use
of computational resources to deepen the rational basis of drug
repurposing programs.

Here, we have implemented a computer-aided drug
repurposing campaign to discover new inhibitors of falcipain-2.
Four hits were acquired and tested against the enzyme, with
two of them confirming inhibitory activity. The abandoned
drug odanacatib displayed competitive inhibition, while the
antibiotic methacycline also showed inhibitory effects through
non-competitive inhibition.

MATERIALS AND METHODS

Dataset Collection
P. falciparum falcipain-2 inhibitors were compiled from
literature. A total of 515 compounds previously assayed against
falcipain-2 were collected from over 20 original articles,
conforming the dataset used for model calibration and validation
(Domínguez et al., 1997; Chiyanzu et al., 2003; Shenai et al.,
2003; Desai et al., 2004, 2006; Greenbaum et al., 2004; Fujii et al.,
2005; Goud et al., 2005; Micale et al., 2006; Valente et al., 2006;
Biot et al., 2007; Chipeleme et al., 2007; Li et al., 2009; Hans et al.,
2010; Praveen Kumar et al., 2011; Shah et al., 2011; Huang et al.,
2012; Luo et al., 2012; Conroy et al., 2014; Ettari et al., 2014; Jin
et al., 2014; Wang et al., 2014; Weldon et al., 2014; Bertoldo et al.,
2015; Mundra and Radhakrishnan, 2015a,b; Sharma et al., 2015;
Singh et al., 2015; Schmidt et al., 2016). Such compounds were
labeled as ACTIVE or INACTIVE according to their reported
inhibitory data. The ACTIVE category included compounds
with IC50 ≤ 5µM, plus compounds with a percentage of
inhibition ≥ 50% against the enzyme at 10µM or ≥ 80% at
20µM (when a single-point inhibition assay was reported).

When none of the previous conditions were met, the compound
was labeled as INACTIVE. Considering such criteria, the dataset
includes 122 active compounds and 393 inactive compounds.
Such dataset was curated using the standardization tool available
in Instant JCHEM v. 17.2.6.0 (Chemaxon). The molecular
diversity of the whole dataset and within each category can be
appreciated in the heatmap displayed in Figure 1, which shows,
for every compound pair, the Tanimoto distance computed
using ECFP_4 molecular fingerprints. The heatmap was built
using Gitools v. 2.3.1 (Perez-Llamas and Lopez-Bigas, 2011)
and Tanimoto distances were calculated using ScreenMD—
Molecular Descriptor Screening v. 5.5.0.1 (ChemAxon). The
dataset is included as Supplementary Data Sheet 1.

Dataset Partition
It has been observed that rational/representative splitting of
datasets into training and test sets tends to produce models with
better predictivity (Golbraikh et al., 2003; Leonard and Roy,
2006; Martin et al., 2012). In the present study, a representative
sampling procedure was thus used to divide the datasets into: (a)
a training set, that was used to calibrate the models and; (b) a
test set, that was used to independently assess model predictivity.
Such representative partition of the dataset resulted from a
serial combination of two clustering procedures. First, we have
used the hierarchical clustering method included in LibraryMCS
software (version 17.2.13.0–ChemAxon), which relies on the
Maximum Common Substructure (MCS). A compound from
each of the resulting cluster was randomly chosen and used as a
seed to perform a non-hierarchical clustering using the k-means
algorithm, as implemented in Statistica 10 Cluster Analysis
module (Statsoft). Hierarchical clustering allowed deciding on
an initial partition of n molecules into k groups, and this

FIGURE 1 | Dissimilarity heatmap of the whole dataset. Light areas indicate

high similarity between the compared compounds while dark blue areas

indicate low similarity between the compared compounds.
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preliminary clustering was then optimized through the non-
hierarchical procedure, as suggested by Everitt et al. (2011). We
have previously used this combined approach for representative
dataset partitioning, with good results (Alberca et al., 2016, 2018;
Gantner et al., 2017). The clustering procedure was performed
separately for the ACTIVE and INACTIVE categories.

75% of the compounds in each cluster of the ACTIVE category
were kept for the training set (making a total of 91 compounds);
an equal number of compounds were taken from the INACTIVE
category clusters (23% of each INACTIVE cluster). We have
under-sampled the INACTIVE category, so that a balanced
training sample (comprising an identical proportion of active
and inactive examples) was obtained and model bias toward
predicting the larger category was avoided. The remaining 31
active and 302 inactive compounds were assigned to test set (333
compounds in total), which was later used for external validation
of the models.

Molecular Descriptor Calculation and
Modeling Procedure
3,668 conformation-independent descriptors were computed
with Dragon 6.0 software. A random subspace-based method
was applied to obtain 1,000 descriptor subsets of 200 potential
independent variables each. In the random subspace approach,
the molecular descriptors are randomly sampled, and eachmodel
is trained on one subset of the feature space (Yu et al., 2012; El
Habib Daho and Chikh, 2015); as a result, individual models do
not over-focus on features that display high explanatory power in
the training set.

A dummy variable (class label) was used as dependent
variable. It was assigned observed values of 1 for compounds
within the ACTIVE category and observed values of 0 for
compounds in the INACTIVE one. Using a Forward Stepwise
procedure and a semi-correlation approach (Toropova and
Toropov, 2017), 1,000 linear classifiers were obtained, one from
each of the random subsets of features. In order to avoid
overfitting, only one molecular descriptor every 12 training
instances was allowed into each model, with no more than
12 independent variables per model. Also, a maximal Variance
Inflation Factor of 2 was tolerated. No descriptor with regression
coefficient with p-value above 0.05 was allowed into the model.
R language and environment was used for all data analysis. The
R package data table (https://cran.r-project.org/package=data.
table) was used to handle datasets.

The robustness and predictive ability of the models were
initially estimated through randomization and Leave-Group-Out
cross-validation tests. In the case of randomization, the class label
was randomized across the compounds in the training set. The
training set with the randomized dependent variable was then
used to train new models from the descriptor selection step.
Such procedure was repeated 10 times within each descriptor
subset and the 95% confidence interval was built around the
mean accuracy of the randomized models. It is expected that the
randomized models will perform poorly compared to the real
ones. Regarding the Leave-Group-Out cross-validation, random
stratified subsets comprising 10 active compounds and 10

inactive compounds were removed from the training set in each
cross-validation round, and the model was regenerated using the
remaining compounds as training examples. The resulting model
was used to predict the class label for the 20 removed compounds.
The procedure was repeated 10 times, with each of the training set
compounds removed at least once. The results were informed as
the average percentage of good classifications (accuracy) across
the folds, and this was compared to the accuracy of the model
for the original training set and also, as advised by Gramatica
(2013), to the No-Model error rate or risk (NOMER%), i.e., the
error provided in absence of model:

NOMER% =
(n − nm)

n
× 100

where n is the total number of objects and nm is the number of
objects of the most represented class.

Finally, the predictivity of each individual model was assessed
through external validation, using the 333-compound test set that
was already described in sectionDataset Collection. A diversity of
statistical parameters commonly used to assess the performance
of classificatory models (Roy and Mitra, 2011; Gramatica, 2013)
were estimated for both the training and test sets: sensitivity (Se,
i.e., true positive rate), specificity (Sp, i.e., true negative rate),
accuracy (Acc, i.e., overall percentage of good classifications),
positive and negative predictivity and the F-measure, which is
defined as follows (Roy and Mitra, 2011):

F −measure =
2× Se× (1− Sp)

Se + (1− Sp)

Ensemble Learning
Classifier ensembles are known to provide better generalization
and accuracy than single model classifiers (El Habib Daho and
Chikh, 2015; Carbonneau et al., 2016; Min, 2016). Here, we have
used two retrospective virtual screening campaigns to assess the
performance of individual classifiers and classifier ensembles. As
described in the next subsection, the first retrospective virtual
screen allowed assessing the performance of individual classifiers
and provided the basis to decide which individual models would
be selectively combined in the model ensemble and how they
would be combined. The second retrospective virtual screen
served to the sole purpose of assessing the performance of the
chosen model ensemble.

The best individual classifiers were selected and combined
using the area under the ROC curve metric (AUC ROC) in the
first retrospective screen as criterion of performance. To choose
the ideal number of models to be included in the ensemble,
systematic combinations of the 2 to 100 best performing
classifiers were analyzed (the two best-performing models were
combined, then the three best-performing models, the four best-
performing models, and so on up to a total of 100 models
included in the ensemble). Four combination schemes were
applied to obtain a combined score:MIN operator (which returns
the minimum score among the individual scores of the combined
models); Average Score; Average Ranking and; Average Voting.
Voting was computed according to the equation previously used
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by Zhang andMuegge (2006). AUCROCs were obtained with the
pROC package (Robin et al., 2011); the Delong method was used
to statistically compare the AUC ROCs. BEDROC and RIE (1%)
were also computed (Truchon and Bayly, 2007). For that purpose,
we resorted to the R package enrichvs (enrichment assessment
of virtual screening approaches; Yabuuchi et al., 2011) and the
online tool ROCKER (Lätti et al., 2016).

Retrospective Screening Campaigns
Through simulated ranking experiments, Truchon and Bayly
(2007) demonstrated that the AUC ROC metric is dependent
on the ratio of active compounds/inactive compounds, and the
standard deviation of the metric converges to a constant value
when small yields of actives (Ya) of the screened library are used
(Ya below 0.05 seem to provide more robust results). Reasonably
small Ya also ensures that the saturation effect is constant or
absent. A high number of decoys (around 1,000 or higher) and a
small Ya contribute to a controlled statistical behavior (Truchon
and Bayly, 2007). Accordingly, to estimate the enrichment
performance of our models and model ensembles in a real virtual
screening scenario, we have performed retrospective virtual
screening experiments. For that purpose, we have seeded known
active compounds among a large number of decoys obtained with
the help of the Directory of Useful Decoys Enhanced (DUD-E;
Mysinger et al., 2012), a widely used benchmarking tool which
allows the obtention of putative inactive compounds paired to
known active compounds by physicochemical properties (e.g.,
molecular weight, logP, number of rotatable bonds, among
others), but topologically dissimilar to such active compounds.
In this way, two chemical libraries for such pilot screens were
obtained. The first one, that we will call DUDE-A, was compiled
by using the active compounds from the test set as queries
in the DUD-E website. Such active compounds were later
dispersed among the so-obtained paired decoys (putative inactive
compounds). As a result, DUDE-A contained 31 known active
compounds dispersed among 1500 DUD-E decoys and displayed
a Ya of 0.020. DUDE-A was used to estimate the performance
of the individual models in a virtual screening experiment and
to choose the best individual models that would be included in
the ensemble (i.e., to train the ensembles). It was also applied to
choose which score threshold would be applied in prospective
virtual screening campaigns. A second library, called DUDE-
B, was obtained to validate the ensemble that showed the best
performance in the DUDE-A screen. For that purpose, we
compiled from literature 33 recently reported active compounds
against FP-2 (IC50 ≤ 5µM; Nizi et al., 2018; Stoye et al., 2019).
The DUDE-B library was generated by merging these 33 active
compounds with 4,337 decoys from the DUD-E website. The
calculated Ya for DUDE-B is about 0.007.

Building Positivity Predictive Value
Surfaces and Choosing an Adequate Score
Threshold Value
A practical concern when implementing in silico screens involves
estimating the actual probability that a predicted hit will confirm
its activity when submitted to experimental testing (Positive

Predictive Value, PPV). Estimation of such probability is however
precluded due to its dependency on the Ya of the screened library,
which is not known a priori:

PPV =
Se Ya

Se Ya+
(

1− Sp
)

(1− Ya)

where Se represents the sensitivity associated to a given score
cutoff value and Sp represents the specificity. The former
equation was applied to build PPV surfaces. In order to choose an
optimal cutoff value to select predicted hits in prospective virtual
screening experiments, 3D plots showing the interplay between
PPV, the Se/Sp ratio and Ya were built for each individual model
and for each model ensemble. This approach has recently been
reported by our group (Alberca et al., 2018). Using DUDE-A
(described in previous subsection), Se and Sp were computed in
all the range of possible cutoff score values. Though there is no
guarantee that the Se and Sp associated to each score value for
DUDE-A will be the same when applying the classifiers to other
libraries, e.g., in the prospective virtual screening campaign,
since controlled statistical behavior is observed for database
sizes of 1,000 compounds or more and Ya below 0.05, we can
reasonably assume that the ROC curve and derived metrics
will be similar when applying the models to classify other large
chemical databases with low Ya. Taking into consideration that
in real virtual screening applications Ya is ignored a priori but
invariably low, Ya was varied between 0.001 and 0.010. The
R package plotly (https://cran.r-project.org/package=plotly) was
used to obtain all the PPV graphs. Visual analysis of the resulting
PPV surfaces allowed us to select a score threshold value with a
desired range of PPV.

Prospective Virtual Screening
Based on visual inspection of the resulting of PPV graphs,
we have applied in a prospective virtual screen an 11-model
ensemble using the MIN operator to combine individual
classifiers. Based on PPV surface analysis, we chose a score
threshold that provides a PPV ≥ 20% at Ya= 0.01.

We have used the 11-model ensemble to screen two databases:
(a) DrugBank 4.0, an online database containing extensive
information about the US Food and Drug Administration
(FDA) approved, experimental, illicit and investigational drugs
(Law et al., 2014); (b) SWEETLEAD, a curated database of
drugs approved by other international regulatory agencies,
plus compounds isolated from traditional medicinal herbs
and regulated chemicals (Novick et al., 2013). Both databases
were curated using Standardizer 16.10.10.0 (ChemAxon).
The following actions were applied to obtain homogeneous
representations of the molecular structure for the subsequent
virtual screen: (1) Strip salts; (2) Remove Solvents; (3)
Clear Stereo; (4) Remove Absolute Stereo; (5) Aromatize; (6)
Neutralize; (7) Add Explicit Hydrogens; and (8) Clean 2D.
Duplicated structures were removed using Instant JCHEM v.
17.2.6.0. Four hits were selected for experimental evaluation,
using the following criteria: (a) no previous report of falcipain-
2 inhibition; (b) availability through local suppliers; (c)
cost. Methacycline, benzthiazide, and bendroflumethiazide were
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acquired from Sigma-Aldrich. Odanacatib (99% HPLC) was
acquired from AK Scientific (Y0388).

Molecular Docking
To gain insight into the possible mode of action of the active
hits, we studied their possible interactions with falcipain-2
by docking simulations. The structure of the enzyme was
obtained from the Protein data bank. We retrieved the available
experimental structure of the target in complex with an
inhibitor, the epoxysuccinate E64, that shows 2.9 Å of resolution
(PDB code: 3BPF; Kerr et al., 2009). Among the four chains
crystalized, we selected the B chain for the simulations. We
used AutoDockTools4 software to remove the inhibitor and the
crystallographic water molecules off the pdb file, and to add the
hydrogen atoms of the protein.

Autodock4 was used for docking simulations. The docking
software and conditions were selected based on the previous
investigation by Mugumbate et al. (2013). The authors showed
the capacity of this software to replicate the experimental pose
of E64 in the re-docking experiment and to identify known
inhibitors from non-inhibitors through the docking scores. Our
own results of the re-docking E64 into the binding site of FP-
2 were similar to such previous investigations, since Autodock4
was able to reproduce the experimental pose with a RMSD value
of 1.84 Å.

Odanacatib was docked into the active site of the enzyme.
Calculations were conducted with a grid of 40X40X40 grid
points, centered on the experimental ligand E64 (coordinates:
−36.75, 31.05, −47.07 in x, y, and z, respectively) and
with a spacing between grid point of 0.39 Å. We used the
default Autodock4 parameters for a population of 150, 50
genetic algorithm runs, 2.5 × 106 evaluations and 27,000
maximum generations.

Regarding non-competitive inhibitor methacycline, we first
used DoGSiteScore server (Volkamer et al., 2012) to detect
possible binding pockets in the protein. The server proposed
two regions of binding, besides the known catalytic binding
site of the enzyme. Methacycline was docked in both regions
and the best results were achieved in the area delimited by
CYS39, SER41, TRP43, GLU67, GLN68, LEU70, VAL71, ASP72,
CYS73, SER74, PHE75, ASN77, TYR78, GLY79, CYS80, TYR106,
VAL107, SER108, ASP109, ALA110, PRO111, ASN112. The
simulation was conducted in the conditions described before for
odanacatib and E64, except for the position of the grid, which was
centered on the side chain on VAL71, specifically in the carbon
atom defined as CG1.

Falcipain-2 Expression and Refolding
Falcipain-2 (MEROPS ID: C01.046) was expressed as inclusion
bodies in BL21(DE3) Escherichia coli strain, purified by IMAC
under denaturing conditions (final purity: 91%) and refolded to
active enzyme as previously described (Pradines et al., 2001).

Falcipain-2 Kinetic Assay
Falcipain-2 activity was assayed fluorometrically with Z-
LR↓AMC (Bachem) as substrate in 100mM acetate buffer pH
5.5 containing 5mM DTT and 0.01% Triton X-100, as this is

expected to increase enzyme stability and reduce the number
of false positives (Jadhav et al., 2010). Assays (final reaction
volume ∼80 µL) were performed at 30◦C in solid black 384-
well plates (Corning) at fixed enzyme concentration (3.3 nM).
Except stated otherwise, fluorogenic substrate was added at
final concentration of 5µM (∼1 x KM) to match balanced
assay conditions (Copeland, 2005). The release of 7-amino-4-
methylcoumarin was monitored continuously for 60min with a
FilterMax F5 Multimode Microplate Reader (Molecular Devices)
using standard 360 nm excitation and 465 nm emission filter set.
Enzyme activity was estimated as the slope of the linear region
of the resultant progress curves. Under the described conditions,
falcipain-2 activity showed no significant changes in the presence
of DMSO (0–8%) and the Selwyn test (Selwyn, 1965) indicated
that enzyme remained stable during the assay.

Falcipain-2 Inhibition Assay
1 µL of each compound (2.5mM in DMSO), N-(trans-
epoxysuccinyl)-l-leucine 4-guanidinobutylamide (E-64, Sigma-
Aldrich) (10µM in DMSO) or DMSO were dispensed into
each well. Then, 40 µL of activity buffer containing falcipain-
2 (6.6 nM) were added to each well, plates were homogenized
(30 seg, orbital, medium intensity) and each well subjected to
a single autofluorescence read (exc/ems = 360/465 nm). Plates
were incubated in darkness for 15min at 30◦C and then 40 µL
of Z-LR-AMC (10µM in assay buffer) were added to each well to
start the reaction. After homogenization (30 seg, orbital, medium
intensity), the fluorescence of AMC (exc/ems = 360/465 nm)
was acquired kinetically for each well (12 read cycles, one cycle
every 300 s). Fluorescence measurements were used to determine
the slope (dF/dt) of progress curves by linear regression and
inhibition percentage (%Inh) was calculated for each compound
according to:

%Inh = 100 · [1− (dF/dtWELL − µC−)/(µC+ − µC−)]

where dF/dtWELL represents the slope of each compoundwell and
µC+ andµC− the average of falcipain-2+DMSO (no-inhibition)
and substrate (no-enzyme) controls, respectively.

Compounds were re-tested in a dose-response manner (final
concentration ranging from 375µM to 44.7 pM) using identical
assay conditions. 6 µL of compounds stock (10mM in DMSO),
E-64 (10µM in DMSO), and DMSO were added to the first
wells (column 1), followed by addition of 34 µL of activity
buffer. After addition of 20 µL of buffer to subsequent wells,
24 serial 2-fold dilutions were made horizontally. Then, 40 µL
of activity buffer containing falcipain-2 (6.6 nM) were added
to each well, except for those corresponding to C-; completed
with 40 µL of activity buffer. After homogenization, incubation,
and autofluorescence measurement, 20 µL of Z-LR-AMC
substrate (20µM in activity buffer) were added. Data collection
and processing were performed exactly as described above.
At the concentration tested, no significant autofluorescence
(360/465 nm) was apparent for the investigated compounds.
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Percentage of falcipain-2 residual activity was calculated for
each condition according to:

%Res.Act = 100 ·

[

(dF/dtWELL − µC−)

(µC+ − µC−)

]

Half-maximal inhibitory concentration (IC50) and Hill slope
parameters were estimated by fitting experimental data from
dose-response curves to the four-parameter Hill equation by
using GraphPad Prism program (version 5.03).

Determining Reversibility, Mode of
Inhibition, and Ki
Reversibility and time dependence of falcipain-2 inhibition by
investigational compounds was assayed as previously described
(Morrison, 1969). In brief, odanacatib (15µM) and falcipain-
2 (330 nM) were incubated at 30 ◦C for 60min in activity
buffer. Two microliters of the mix were rapidly added to 200
µL of Z-LR-AMC (5µM in activity buffer) pre-incubated at the
same temperature. Immediately after mixing, AMC fluorescence
(λexc/ems = 355/460 nm, sensitivity = 550V) was continuously
monitored every second using a thermostated (30◦C) Aminco
Bowman Series 2 spectrofluorometer (Thermo Spectronic). In
the case of the methacycline, the final inhibitor concentration
in the mixture with falcipain-2 was 330µM. For falcipain-
2 control, the equivalent volume of DMSO vehicle was pre-
incubated with the enzyme. To determine the kinetics of
inhibition onset, falcipain-2 (3.3 nM final concentration) was
added to 200 µL of reaction mix (previously tempered at 30◦C)
containing activity buffer, odanacatib (0.15µM) and Z-LR-AMC
(5µM). Immediately after mixing, AMC release was monitored
as indicated above. For methacycline (33µM final concentration
in the reaction mix), the experiment was exactly the same.

The identification of the mode of inhibition was performed
as indicated previously. For odanacatib, falcipain-2 activity was
determined for at least six different substrate concentrations
(ranging from 62.5 to 1.95µM) in the absence and presence of
three fixed doses of inhibitor: 0.15, 0.5, and 2.5µM. Data were
re-arranged to estimate percentage of falcipain-2 residual activity
for each condition and the values for IC50 and Hill slope were
estimated by fitting experimental data to the four-parameter Hill
equation by using GraphPad Prism. To estimate Ki, kinetic data
were arranged in the form of Michaelis curves (dF/dt vs. [Z-LR-
AMC]0) and globally fitted to the competitive inhibition equation
present in GraphPad Prism (version 5.03). Finally, to estimate
Ki by using the tight-binding inhibition approach (Morrison,
1969), data were transformed to fractional velocity vs. inhibitor
concentration and re-analyzed by global fitting to the Morrison
equation by using GraphPad Prism (version 5.03).

To identify the mode of inhibition of methacycline, dose-
response curves (0–625µM) were performed as described above
at six different substrate concentrations (ranging from 1 to
50µM) and fitted as indicated above to estimate the values of
IC50 and Hill slope. Finally, kinetic data were arranged in the
form of Michaelis curves (dF/dt vs. [Z-LR-AMC]0) and globally
fitted to the mixed inhibition equation present in GraphPad
Prism (version 5.03) for the simultaneous estimation of α and Ki.

Determining the Sensitivity of
Methacycline Inhibition to RedOx Potential
The inhibitory activity of decreasing concentrations (375
µM−91.6 pM) of methacycline were determined in activity
buffer containing DTT (0.1–10mM) or L-cysteine (0.1–10mM)
as indicated above. Resultant dose-response curves were fitted as
previously indicated to estimate the values of IC50 and Hill slope.

Densitometric Estimation of the Inhibition
of Falcipain-2 Hemoglobinase Activity
Increasing concentrations of methacycline (200µM, 500µM,
and 1mM) and odanacatib (0.5, 5, and 50µM) were
preincubated with falcipain-2 (132 nM) for 30min at 37◦C
in buffer 100mM NaAc, 10mM DTT pH 5.5. Then, human
hemoglobin (H7379, Sigma-Aldrich) was added to a final
concentration of 100µg/mL to initiate reaction (final assay
volume = 50 µL). E64 (10µM) and DMSO were used as
negative and positive controls, respectively. Also, a blank
(no falcipain-2) control was included. In all cases, the final
concentration of DMSO was 10%. Mixes were incubated without
agitation for 3 h at 37◦C to allow the enzymatic reaction to
proceed. Then, reactions were stopped by addition of 15 µL
of 5xSDS–PAGE sample buffer + 7.5 µL of DTT (1M) and
boiled for 5min. Samples (22.5 µL, equivalent to 1.5 µg of
hHb) were electrophoretically resolved by SDS-PAGE on a
15% acrylamide gel and Coomassie stained. The amount of
undegraded hHb, observed as a doublet of around 15 kDa, was
estimated densitometrically by using ImageJ 1.38d software
(Nation al Institutes of Health, USA).

Evaluation of Antiparasitic Activity
Human erythrocytes were obtained from volunteer donors
with a procedure approved by CEIC (Committee for Ethics
on Clinical Investigation, Facultad de Farmacia y Bioquímica,
Universidad de Buenos Aires EXP-UBA: 0048676/2017). Human
erythrocytes infected with the NF54 strain of P. falciparum
were cultivated in RPMI 1640 medium supplemented with
0.5% albumax II (Invitrogen), 22mM glucose, 25mM HEPES,
0.65mM hypoxanthine, and 50 mg/mL gentamicin. Cultures
were maintained at 37◦C by routine passage at 5% hematocrit
with a maximum parasitemia of 5% in a 90% N2/5% O2/5% CO2

atmosphere as previously described (Alvarez et al., 2014).
When needed, ring-stage parasites were synchronized by

using sorbitol treatment (Aley et al., 1986). After 24 h
synchronization, cultures of infected erythrocytes at trofozoite-
stage were treated with various concentrations of odanacatib,
methacycline and E-64 for 48 h. Briefly, 100 µL of synchronous
trophozoite-stage infected erythrocytes cultures were plated
in 96-well at 4% hematocrit and 1% parasitemia. 100µL of
odanacatib (200, 20, or 2µM), methacycline (1,000, 100, or
20µM), E-64 (50, 10, or 2µM), DMSO (vehicle control), or
RPMI 1640 medium (control) were dispensed into each well
to achieve final hematocrit of 2%, 0.5% parasitemia and the
final concentration of each compound tested in a final volume
of 200 µL. Parasitemia was evaluated by light microscopy
counting infected forms of the parasite (ring, trophozoite, and
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schizont-stages) in a thick blood smear stained with Giemsa.
A total of ∼1,500 erythrocytes distributed in at least 15
random microscopic fields were evaluated of each smear and
the parasitemia was calculated as (infected erythrocytes / total
erythrocytes)∗100. Then, each treatment was normalized to
control parasitemia and expressed as percentage.

Significance was determined using one-way Analysis of
Variance followed by a Tukey Multiple Comparison Test.
Computations were carried out using PRISM statistical software
(GraphPad Software, Inc., version 6). A p-value < 0.05 was
considered significant. The number of determinations (n) for
independent preparations (N) are indicated.

RESULTS

A ligand-based virtual screening approach was used to discover
falcipain-2 inhibitors. 1,000 individual linear classifiers were
obtained by applying a random subspace approximation on a
pool of more than 3,000 Dragon molecular descriptors. The
individual models were internally and externally validated.

Results of the internal validation are shown in Table 1.
Regarding the Leave-Group-Out, results for each individual
classifier are informed as the average accuracy across the folds,
which is in all cases above 80% and close to the correspondent
accuracy on the training set, suggesting the models are robust.
Since the proportions of the active and inactive compounds in
the training set are identical (as are in each of the Leave-Group-
Out folds) the correspondent NOMER% (associated to random
classification) is 50%, well below the behavior of the models in
the cross-validation.

Regarding the randomization results, Table 1 shows the 95%
confidence interval around the mean accuracy of the randomized
models. As expected, the accuracy of the randomizedmodels is in
all cases much below the accuracy of the true (non-randomized)
models, and very close to the NOMER%, suggesting a low
probability of chance correlations for the true models.

External validation was performed using the 333-compound
independent test set. The results are summarized in Table 2.

TABLE 1 | Results of the internal validation procedures for the best 11 individual

classifiers.

Model Training set LGO Randomization

Acc (%) Average Acc (%) Confidence interval 95%

594 84.615 83.740 53.882 61.283

516 88.462 86.712 56.623 63.267

477 84.615 83.835 56.158 64.501

975 87.363 86.374 53.309 62.844

244 90.110 88.712 55.312 62.160

504 85.714 83.765 55.978 61.824

870 86.264 82.753 56.962 65.126

154 86.813 85.168 54.677 62.246

764 84.615 83.080 53.273 62.112

564 85.714 82.636 54.814 62.000

80 86.264 85.378 56.980 61.921

In general, the individual classifiers show an acceptable
performance. Due to the unbalanced nature of the test set (31
active compounds and 302 inactive ones) in comparison to the
test set (91 active and 91 inactive compounds) some of the
differences in the statistical parameters of the training and test
sets are to be expected (i.e., decreased sensitivity in the test set,
sharp drop in the positive predictivity and concomitant increase
in the negative predictivity).

The best individual model included the following features:
Model 594
Class = −0.48333 + 0.38415∗SM08_AEA(bo) -

6.50601∗SpPosA_A - 0.12786∗C-005 + 0.35800∗B05[N-
N] + 0.13459∗nR=Cs + 0.21576∗CATS2D_02_DD +

0.25881∗nS(=O)2 - 0.33510∗B03[O-S] - 0.07816∗N-072
+ 0.16832∗B06[C-S]

Wilks’ Lambda:.45705 approx. F(10, 171) = 20.314 p < 0.0000.
Dragon’s nomenclature for the molecular descriptors has been
kept in the previous expression. SM08_AEA(bo) corresponds
to the spectral moment of order 8 from augmented edge
adjacency matrix weighted by bond order; SpPosA_A is the

TABLE 2 | Statistical parameters of the best individual classifiers, for both the

training and test sets.

Training set

Model Se Sp Acc F-measure Positive

predictivity

Negative

predictivity

Model 594 0.88 0.81 0.85 0.31 0.82 0.87

Model 516 0.89 0.88 0.88 0.21 0.88 0.89

Model 477 0.86 0.84 0.85 0.28 0.84 0.85

Model 975 0.89 0.86 0.87 0.25 0.86 0.89

Model 244 0.92 0.88 0.90 0.21 0.88 0.92

Model 504 0.87 0.85 0.86 0.26 0.85 0.87

Model 870 0.89 0.84 0.86 0.28 0.84 0.88

Model 154 0.88 0.86 0.87 0.25 0.86 0.88

Model 764 0.84 0.86 0.85 0.24 0.85 0.84

Model 564 0.85 0.87 0.86 0.23 0.87 0.85

Model 80 0.89 0.84 0.86 0.28 0.84 0.88

Test set

Model 594 0.84 0.80 0.80 0.32 0.30 0.98

Model 516 0.77 0.82 0.82 0.29 0.31 0.97

Model 477 0.71 0.84 0.83 0.26 0.31 0.97

Model 975 0.87 0.80 0.81 0.32 0.31 0.98

Model 244 0.84 0.77 0.78 0.36 0.28 0.98

Model 504 0.81 0.81 0.81 0.30 0.31 0.98

Model 870 0.81 0.81 0.81 0.31 0.30 0.98

Model 154 0.71 0.82 0.81 0.29 0.29 0.96

Model 764 0.74 0.83 0.83 0.27 0.32 0.97

Model 564 0.77 0.84 0.83 0.27 0.33 0.97

Model 80 0.81 0.75 0.76 0.38 0.25 0.97

The default score cutoff value (0.5) was used to discriminate between active and inactive
compounds and estimate the parameters. Note that this score has been later optimized
to obtain improved Se/Sp relationships.
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normalized spectral positive sum from adjacency matrix; C-
005 refers to the frequency of CH3X groups where X indicates
an electronegative atom (O, N, S, P, Se, halogens); B05[N-
N] indicates the presence/absence of the N – N pair at
topological distance 5; nR=Cs refers to the number of aliphatic
secondary C(sp2); CATS2D_02_DD is the CATS2D Donor-
Donor at lag 02; nS(=O)2 symbolizes the number of sulfones;
B03[O-S] indicates the presence/absence of O – S pair at
topological distance 3; N-072 refers to frequency of the atom-
centered fragment RCO-N< / >N-X=X; B06[C-S] denotes
the presence/absence of a C – S pair at topological distance
6. The molecular descriptors associated to presence/absence
or frequency of a given feature indicate differences in the
frequencies at which such features appear in the active and
inactive class of the training set. Those descriptors associated
in the model to a positive weighting coefficient (B05[N-
N], nR=Cs, nS(=O)2, and B06[C-S]) show that such feature
is more frequent in the active compounds than in the
inactive ones. In contrast, the descriptors associated to a
negative coefficient (SpPosA_A, C-005, and N-072) indicate
that such features appear more frequently in the compounds
of the inactive class than in the ones of the active class.
CATS2D_02_DD is a two-dimensional Chemically Advanced
Template Search descriptor similar to a pharmacophore pair
(Reutlinger et al., 2013), but considering topological distances
between the pharmacophore points instead of geometrical
distances. Here, the descriptor suggests that two H-bond donors
at a topological distance of two are a desirable feature in falcipain-
2 inhibitors.

The physicochemical interpretation of the two descriptors
associated to spectral moments of a topological matrix
(SM08_AEA(bo) and SpPosA_A) is less immediate.

An augmented edge adjacency matrix aE(w) is a symmetric
square matrix that can be derived from an edge-weighted
molecular graph, for any weighting scheme w. The elements
from such matrix [aEw]ij take values of 1 if i and j are adjacent
edges/bonds, values wi if i equals j (that is, for the elements in
the diagonal) and values of 0 otherwise (i.e., for non-diagonal
elements corresponding to non-adjacent edges; Liu et al., 2018).
The kth spectral order µk of a topological matrix M can be
defined as:

µk = tr(Mk)

where k is the power of the matrix and tr is its trace, i.e.,
the sum of the diagonal elements (Estrada, 1996). The kth
spectral moment of the edge adjacency matrix has a simple
graph theoretical interpretation (Estrada, 1996): it is the sum
of all self-returning walks of length k in the line graph of the
molecular graph, beginning and ending with the same vertex. It
may then be appreciated that the value of such descriptor would
be highly influenced by the presence of ring systems and the
nature of such cycles (e.g., fused rings). Since the considered
augmented edge matrix is weighted by the bond order, the
presence of double and triple bonds and aromatic systems will
tend to increase the value of the descriptor. Generally speaking,

active examples in our training set tend to display higher values
of SM08_AEA(bo).

Regarding SpPosA_A, it denotes the normalized sum of
positive eigenvalues of the adjacency matrix. Its value diminishes
with increase branching, with greater emphasis in terminal rather
than in central branching (Balaban et al., 1991).

The 11 best individual models and a brief description
of the descriptors included in them have been listed as
Supplementary Data Sheet 2.

For a more challenging and realistic simulation, the
enrichment behavior of the individual models was studied
through a retrospective virtual screen on DUDE-A library, where
a small proportion of active compounds (31) was dispersed
among a high number (1500) of putative decoys. Initially, we
compute the area under the Receiver Operating Characteristic
curve (AUC ROC) to assess the classificatory performance of the
models. 100, 93.4 and 3.1% of the individual classifiers displayed
AUC ROCs above 0.8 for the training set, the test set and the
DUD-A library, in that order. 85.8% of the individual models
achieved an AUC ROC > 0.90 for the training set, whereas only
one of the models (named model 975) got an AUC ROC above
0.9 for the test set, none of the models achieved an AUC ROC
above 0.9 for the DUDE-A library. This suggests that our random
subspace approach has been successful in finding individual
classifiers with good explanatory and predictive power, but also
that some degree of overfitting may also be present. Results also
suggests that the retrospective screening experiment on DUDE-
A is the more challenging tasks for the classifiers. Table 3 shows
the 11 individual classifiers that showed the best performance on
the DUDE-A library, along with their AUC ROC, BEDROC, and
RIE values.

Whereas, the performance of the best individual classifiers
was quite satisfactory, we explored ensemble learning approaches
to obtain meta-classifiers with improved accuracy and a more
robust behavior. Figure 2 shows the AUC ROC values (DUDE-
A) obtained when systematically combining between the 2 and

TABLE 3 | Values of the AUC ROC, BEDROC, and RIE metrics for the 11

individual classifiers that displayed the best performance on the DUDE-A library.

Model AUC ROC BEDROC

(α = 20)

RIE 1%

Training

set

Test

set

DUDE-A DUDE-A DUDE-A

594 0.9162 0.8819 0.8529 0.2565 0.0000

516 0.9396 0.8819 0.8508 0.3150 0.0000

477 0.9123 0.8910 0.8419 0.2647 3.2258

975 0.9475 0.9105 0.8355 0.2191 3.2258

244 0.9492 0.8599 0.8343 0.2597 3.2258

504 0.9343 0.8812 0.8314 0.2355 0.0000

870 0.9291 0.8776 0.8294 0.2195 0.0000

154 0.9275 0.8730 0.8283 0.2769 3.2258

764 0.9195 0.8810 0.8268 0.2361 0.0000

564 0.9271 0.8992 0.8205 0.1673 0.0000

80 0.9233 0.8478 0.8198 0.1969 0.0000
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100 individual models that displayed the best performance on the
DUDE-A library, using four combination schemes: Minimum
score (MIN), average score (AVE), average ranking (RANK), and
average voting (VOT). The expectations on the ensembles were
confirmed statistically: two combination schemes (minimum of
the best 11 models and average ranking of the 4 best models)
statistically outperformed the individual models in the DUDE-
A database (p = 0.0003 and p = 0.0132, in that order). The
MIN operator consistently outperformed the other combination
schemes. When considering the influence of the number of
models combined by the MIN operator on the AUC ROCmetric,
it was observed that above 11 models the AUC ROC did not
improve substantially but poorer statistical behavior in terms of
the standard deviation of the mean estimation was observed. The
enrichment metrics for the best ensembles are shown in Table 4.
Note that when applied in the screening of the DUDE-B database,
the enrichment metrics for the 11-model combination based
on the MIN operator (MIN-11) are similar (or in some cases,
even better) than when screening DUDE-A database, validating
the enrichment power of the best model combination. It may
also be observed that best ensemble achieved good to excellent
enrichment metrics. For instance, in the DUDE-A library, the
RIE metric indicates that among the top 15 ranked compounds,
10 are known active ones.

Based on the previous results, we chose to move to
the prospective (real) virtual screening campaign with the
combination scheme based on the MIN operator (MIN-11).
In our experience, this model combination scheme leads to
high-specific model combinations (i.e., small false positive rate),
which is a particularly convenient approach in our context (a
small academic group from a low- to mid-income country,
with limited resources to invest in hit validation); we thus
often prefer to reduce the false positive rate even if this means
losing sensitivity and sacrificing some active scaffolds. We
have chosen to refine the former criteria (prioritizing Sp) by
resorting to PPV surface analysis (Alberca et al., 2018). With
the help of PPV surfaces, the evolution of the most relevant
metric for our purposes, the PPV, i.e., the actual probability
that a predicted hit will confirm activity when submitted to
experimental testing, can be visually optimized as a function of
the (Se/Sp) ratio across a range of Ya values. For this analysis,
we have considered that the association between the Se/Sp and
the score values of the MIN-11 model ensemble (observed in
the retrospective screening campaign on DUDE-A) will hold
when performing screens on other libraries (e.g., in a prospective
virtual screening application). This is a strong assumption that
of course is not necessarily true. However, since the AUC ROC
values obtained for the DUDE-A library are unmistakably high
(above 0.9 for the best model ensemble) while on the other
hand the DUDE-A database Ya ratio (0.02) and size (>1,000
compounds) speak of a controlled statistical behavior (Truchon
and Bayly, 2007), we believe it is a reasonable assumption in the
present setting.

Using PPV surfaces (Figure 3), we chose 0.58 as score
threshold to be used in our prospective virtual screening
campaign; such score is associated to a Se/Sp ratio of 0.561 for
MIN-11, and to a PPV value ≥ 20% for a Ya of 0.01. This means

that if Ya in the real virtual screen was 0.01, we would have
to submit about five predicted hits to experimental testing in
order to find one confirmed hit. The virtual screen using the
previous score cutoff value resulted in 157 hits, with 72 of them
corresponding to approved drugs. Based on the previous analysis
and our funding availability, we acquired and submitted four hits
(Figure 4) to experimental testing: the antibiotic methacycline,
the antihypertensives benzthiazide and bendroflumethiazide, and
the abandoned drug odanacatib (an inhibitor of the cysteine
protease cathepsin K that was pursued as a treatment for
osteoporosis and bone metastasis but whose development was
abandoned at Phase III long-term clinical trials due to safety
issues; Drake et al., 2017).

To evaluate the ability of the selected hits to inhibit falcipain-2,
we performed a two-round screening strategy. First, compounds
were assayed in single dose (31.25µM) to discard inactive
molecules. Given that all of them were able to reduce to some
extent (6–85%) the activity of falcipain-2 in comparison with
the DMSO vehicle; we decided to evaluate the four hits in
a dose-response manner (375 µM−0.45 pM) under balanced
assay conditions to equalize the chances to detect competitive,
non-competitive and uncompetitive inhibitors (Copeland, 2003;
Yang et al., 2009). At the excitation/emission wavelengths
used for AMC recording, compounds showed no significant
autofluorescence in the concentration range tested. Prior to
the analysis of the complete data, we explored the correlations
between inhibition percentages in the primary (31.25 µM) and
secondary (23.4 µM) screenings.

Compounds showed consistent results in both
screenings (correlation coefficient r2 = 0.98; slope =

0.9732; Supplementary Data Sheet 3), with odanacatib and
methacycline being the most active. These compounds showed
typical progression (Supplementary Data Sheet 3) and dose-
response curves (Figure 5), with measurable IC50 and Hill
slope values of 0.186µM and −1.079 for odanacatib, and
106.4µM and −0.9294 for methacycline. In the same range of
concentrations, benzthiazide and bendroflumethiazide showed
no dose-dependent inhibition.

We further characterized odanacatib and methacycline in
terms of the reversibility and time-dependence of falcipain-2
inhibition. Reversible interaction with falcipain-2 was verified
for both compounds by the recovery of enzyme activity after
rapid addition of substrate (100-fold dilution) to the pre-
incubated mix of enzyme and inhibitor (Figures 6A,B). In
this experiment, methacycline displayed a linear progress curve
(Figure 6A) with a stable inhibition value, indicative of rapid
onset of steady state (i.e., rapid dissociation of EI complex). In
the presence of odanacatib, however, the enzyme took several
minutes to recover full activity and to show a permanent
inhibition value (concave progress curve), suggesting slow
dissociation of inhibitor from the complex with falcipain-2
(Figure 6B). Similarly, both inhibitors displayed different kinetic
behavior when enzyme was added to a reaction mix previously
containing inhibitor and substrate (Figures 6C,D). Methacycline
displayed a typical linear progress curve (Figure 6C), showing
a defined (stable) value of inhibition during the whole
assay. In contrast, odanacatib showed non-linear kinetics
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FIGURE 2 | AUC ROC metric vs. the number of combined models in the DUD-E database. (A) Minimum score; (B) Average score; (C) Average ranking; (D) Average

voting.

FIGURE 3 | PPV surface for the best 11-model ensemble on the DUDE-A

library. The Se/Sp ratio correspondent to the chosen score cut-off value and

the associated PPVs within the Ya 0.001–0.010 range are signaled.

(Figure 6D) with inhibition progressively increasing over time
(time-dependent inhibition). As stable inhibition was observed
only after ∼15min, all subsequent kinetic experiments for
odanacatib included preincubation (≥ 30min at 30◦C) with
the enzyme.

To investigate the mode of inhibition of odanacatib, we
first evaluated the impact of substrate concentration on the
apparent IC50 value over a wide range (0.4–13.2xKM) of substrate

TABLE 4 | Values of the AUC ROC, BEDROC, and RIE metrics for the best model

combination (DUDE-A library).

AUC ROC BEDROC (α = 20) RIE (1%)

Model DUDE A DUDE B DUDE A DUDE B DUDE A DUDE B

MIN-11 0.9214** 0.8991** 0.6414 0.4252 29.6322 9.0289

M-594 0.8529 0.7415 0.2565 0.2710 0.0000 0.0000

For comparison purposes, the results of the best individual model (M-594) are also
presented, as well as the enrichment metrics for the MIN-11 ensemble on the DUDE-
B library. **Statistically significant differences in comparison with the best individual model
(p < 0.01).

saturation levels. For this, we used a reduced set of three
odanacatib concentrations selected to: (i) include IC50 value at
each substrate condition and (ii) cover the wider inhibition range
(∼15–80%) in the central stretch of the dose-response curves.
As observed in Figures 7A,B, apparent IC50 values increased
linearly with the increment of substrate concentration, indicating
a competitive mode of inhibition for odanacatib on the activity
of falcipain-2. The global fitting of all the Michaelis curves to
the equation of competitive inhibition (Figure 7C) allowed us to
estimate a Ki value of 98.2± 10.2 nM. As this estimation is in the
limit of tight-binding inhibition (Ki≤ 10−7 M), kinetic data were
transformed to fractional velocity vs. inhibitor concentration
and re-analyzed by global fitting to the Morrison equation32. Ki
value for odanacatib determined from this approach (Figure 7D)
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was 99.88 ± 8.28 nM, very similar to our previous (more
approximate) estimation.

For methacycline, which initially showed potency in the
high micromolar range, we constructed complete dose-response
curves at six fixed substrate concentrations, ranging from 0.2
to 10xKM. Although substrate concentration was increased
50-fold, only a slight increase (1.42-fold) was observed in
the apparent IC50 value, suggesting no competition between
methacycline and the small peptidic substrate Z-LR-AMC.
To directly estimate Ki and α values, Michaelis plots were
globally fitted to the model for mixed inhibition. This approach
confirmed that methacycline inhibits falcipain-2 activity non-
competitively with a Ki value of 84.4 ± 6.5µM and α =1.42 ±

0.15 (Figure 8).
Given that cysteine peptidases require that its catalytic

sulfhydryl group be in reduced state to show their maximal
enzymatic activity, they are prone to undergo RedOx
interferences caused by several classes of thiol-reactive
compounds able to simulate genuine inhibition (Thorne
et al., 2010). In many cases, this artifactual inhibition can be
significantly relieved by simply changing the reduction potential
of the activity buffer, thus providing a diagnostic test to detect
false-positive RedOx compounds. To establish if this could be
the case for methacycline, we further investigated the effect
of the strength and concentration of reducing agents (DTT, a
strong reducing agent, and cysteine, a weak reducing agent) on
the inhibition of falcipain-2 by this molecule. Dose-response
curves were very similar regardless of the final concentration of
the reducing agent (100-fold range) present in the assay buffer
(Supplementary Data Sheet 3). These results rule out common
types of RedOx interference and suggest that methacycline
genuinely inhibits falcipain-2.

Once established that odanacatib and methacycline inhibit
the peptidolytic activity of falcipain-2, we assayed whether
these molecules could also modulate falcipain-2 proteolytic
activity on its natural substrate, human hemoglobin (hHb).
To this end, we pre-incubated the enzyme with increasing
concentrations of both inhibitors and then added the hHb
substrate. E-64, a specific and highly potent irreversible inhibitor
of C1A cysteine peptidases, was used as a positive control.
After incubation at 37◦C for 3 h, reaction mixes were resolved
electrophoretically by SDS-PAGE on a 15% acrylamide gel
and Coomassie stained. The amount of undegraded hHb,
observed as a doublet of around 15 kDa, was estimated
densitometrically. As shown in Supplementary Data Sheet 3,
odanacatib inhibited the hemoglobinase activity of FP2 in
a dose-response manner. For methacycline, however, no
inhibition was observed in this assay, even at the highest
concentration tested (1mM). Of note, the effective inhibitory
concentrations of odanacatib in this assay were in the low-to-
middle micromolar range, a significant shift in comparison to the
sub-micromolar potency previously observed in the inhibition
of Z-LR-AMC hydrolysis. Overall, these observations suggest
that (i) the existing differences between the surrogate (peptidic)
and the natural (macromolecular) falcipain-2 substrates are
somehow important for the inhibitory efficiency of both
inhibitory molecules and that, at least, (ii) low-to-middle

micromolar compound concentrations would be required to
assess their efficacy in a more physiological context (i.e.,
cellular culture).

To analyze the influence of odanacatib and methacycline
in the intraerythrocytic cycle of P. falciparum, a synchronized
culture of RBCs infected (trophozoite stage) was treated with
increasing concentrations of odanacatib (1, 10, or 100µM) and
methacycline (10, 50, or 500µM). E-64 (1, 5, or 25µM)was again
used as a positive control. After 48 h, the number of infected
erythrocytes was evaluated by light microscopy in stained
blood smears. Odanacatib (100µM) significantly reduced the
parasitemia (Figure 9), with no apparent reduction in the other
two concentrations tested.Methacycline significantly reduced the
parasitemia at 500 and 50µM, but not at 10µM. As expected, E-
64 significantly reduced the parasitemia at 5 and 25µM, but no
at 1µM. Almost no erythrocytes infected at schizont-stage were
observed in the treatments (Supplementary Data Sheet 3). It is
important to mention that at the highest concentrations assayed,
methacycline (500µM) and odanacatib (100µM) induced
cytotoxic effects on RBC, as observed in the hemolysis assay
(Supplementary Data Sheet 3).

Molecular docking results were in good agreement with
the experimental observations. Figure 10 shows the best result
of the docking simulation for odanacatib in the catalytic
binding site, that is, the pose that showed lower value of the
scoring function. Two hydrogen bonding interactions were
found between the compound and GLN36 and ASN173.
The docking score was −6.94 kcal/mol, which is lower
than the score achieved for E64 in the same conditions
(−4.91 kcal/mol). Regarding methacycline, we detected
hydrogen bonding interactions between methacycline and
the residues of the proposed (non-catalytic) binding pocket.
Residues like ASP72, ASN112, PRO111, and ALA110 could be
implicated in the stabilization of the complex (docking score
of−5.65 kcal/mol). More studies will be performed to evaluate
these predictions.

DISCUSSION AND CONCLUSIONS

Using an ensemble learning approximation, we have performed
a ligand-based virtual screening campaign to identify new
falcipain-2 inhibitors as potential new treatments against malaria.
There are some previous reports on the development of
ligand-based models to predict the activity of P. falciparum
cysteine proteases. The approaches used in such studies show
considerable differences with the one reported here: they
used conformation-dependent descriptors (3D QSAR) to infer
regression models; in almost all cases, congeneric series of
comparatively narrow chemical diversity have been used to
train the models, thus limiting their applicability domain and;
the reported models have mostly been used for explanatory
rather than predictive purposes. Xue and coworkers realized
CoMFA and CoMSIA 3D-QSAR studies on a series of 93
alkoxylated and hydroxylated chalcones (Xue et al., 2004).
Potshangbam and coworkers also carried out CoMSIA and
CoMFA studies on a series of 54 2-pyrimidinecarbonitrile

Frontiers in Chemistry | www.frontiersin.org 11 August 2019 | Volume 7 | Article 534

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Alberca et al. In silico Discovery of Falcipain Inhibitors

FIGURE 4 | Molecular structures of the hits selected in the prospective virtual screening campaign that were submitted to experimental confirmation. (A)

methacycline; (B) benzthiazide; (C) bendroflumethiazide; (D) odanacatib.

FIGURE 5 | Dose-response curves of identified falcipain-2 inhibitors (open circles). For each compound, dotted line represents the best fit of experimental data to the

four-parameter Hill equation. (A) E-64. (B) Odanacatib. (C) Methacycline. (D) Benzthiazide. (E) Bendroflumethiazide. For those compounds achieving data

convergence, the resultant values for the parameters IC50, Hillslope and R2 are indicated. In all cases, equivalent volumes of DMSO vehicle were assayed in parallel

(closed circles).

analog inhibitors of falcipain-3 (Potshangbam et al., 2011).
Using the same approximations, Wang et al. performed a 3D
QSAR study of 247 2-pyrimidinecarbonitrile analog inhibitors

of falcipain-3 (Wang et al., 2013). Teixeira and colleagues
did a CoMFA and CoMSIA analysis of a series of 39
peptidyl vinyl sulfone derivatives as potential cysteine protease
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FIGURE 6 | Reversibility and time dependence of the inhibition of falcipain-2 by methacycline and odanacatib. Top panel: Product progress curves for the dissociation

of E-I complex by rapid dilution (100-fold) of enzyme-inhibitor mix into substrate solution. (A) Methacycline. (B) Odanacatib. Bottom Panel: Product progress curves

for the formation of E-I complex by rapid addition of enzyme to a substrate-inhibitor mix. (C) Methacycline. (D) Odanacatib.

inhibitors (Teixeira et al., 2011). Very recently, Allangba et al.
derived complexation QSAR models and pharmacophores from
a training set of 15 lactone–chalcone and isatin–chalcone
hybrid inhibitors with falcipain-2 inhibitory activity (Allangba
et al., 2019). The most similar study to our own is possibly
the one by Mugumbate and coworkers, who as a part of
and hybrid ligand- and structure-based approach, obtained
ligand-based models based on Pentacle alignment-independent
descriptors, using a training set of nine non-peptide inhibitors
of falcipain-2 (Mugumbate et al., 2013). They performed a
retrospective pilot screen before using their protocol to explore
the ZINC database, retrieving falcipain-2 inhibitors in the low
µM range. All in all, the enrichment metrics they computed
in their retrospective screen are similar to the ones we
obtained here.

Our most predictive model combination was chosen (i.e.,
trained) based on a retrospective virtual screening campaign
(DUDE-A library). The enhanced ability of the selected model-
ensemble to retrieve falcipain-2 inhibitors in comparison to
our best individual models was checked using a second
retrospective virtual screening experiment (DUDE-B library).
Four of the hits emerging from our prospective virtual
screening experiment were acquired and assayed against the
enzyme. Two of them, odanacatib (previously investigated
as treatment against osteoporosis and bone metastasis) and
methacycline (an antibiotic) confirmed our predictions, reducing
the peptidolytic activity of the enzyme. Interestingly, our
observed PPV (50%, corresponding to two experimentally
confirmed hits out of four assayed compounds) exceeded

our theoretic expectations based on PPV surfaces analysis,
which suggested a PPV of at least 20% for the chosen score
threshold, for a hypothetic yielding of active compounds
of 1%.

Both hits displayed different inhibition mechanisms. In
agreement with previous reports for the interaction with
other Papain-like C1A (Clan CA family) human cathepsins
(Gauthier et al., 2008), odanacatib inhibits falcipain-2 in a
reversible, competitive and tight-binding (sub-micromomlar)
mode. For human cathepsin K, odanacatib inhibition occurs
throughout the formation of a covalent but yet reversible
thioimidate adduct between the -SH in the catalytic Cys
residue and the nitrile warhead (Oballa et al., 2007). This
covalent association mechanism results in on- and off-
rates of 5.3 × 106 M and 0.0008 s−1 (t1/2 ∼14min),
respectively (Gauthier et al., 2008). These observations are
in line with the slow association and dissociation kinetics
observed by us for falcipain-2 inhibition, suggesting that a
similar chemical inhibition mechanism could be occurring.
Other compounds bearing the N-(1-cyanocyclopropyl)-amide
inhibitory scaffold present in odanacatib, have been reported
as potent (Ki ∼1–2 nM) and selective (>15-fold over human
cathepsins) falcipain-2 inhibitors (Ang et al., 2011; Nizi et al.,
2018).

On the other hand, methacycline acts as a reversible, non-
competitive and sub-milimolar inhibitor of falcipain-2. Based on
our observations (reproducible, reversible and dose-dependent
reduction of enzyme activity, rapid equilibrium onset, Hill slopes
∼ −1, inhibitory activity insensitive to the RedOx potential
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FIGURE 7 | (A) Dose-response curves for odanacatib at fixed substrate concentrations. Dotted lines represent the best fit of experimental data to the four-parameter

Hill equation. (B) Effect of substrate concentration on the IC50 values of falcipain-2 inhibition by odanacatib. IC50 values increase linearly (>9-fold) with substrate

concentration in the range 1.95–62.5µM. Dotted line represents the best fit of data to linear equation. Y-axis intercept accounts for the Ki value. (C) Global fitting of

kinetic data to the competitive inhibition model equation. (D) Global fit ting of kinetic data to the Morrison equation.

FIGURE 8 | Methacycline is a non-competitive, sub-millimolar inhibitor of falcipain-2. (A) Dose-response curves for methacycline at fixed substrate concentrations.

Dotted lines represent the best fit of experimental data to the four-parameter Hill equation. (B) Half maximal inhibitory concentration of methacycline increases slightly

(1.42-fold) with substrate concentration in the range: 1–50µM. (C) Global fitting of kinetic data to the equation of mixed inhibition model.

and no signs of common compound-specific assay interferences
such as autofluorescence or aggregate formation), methacycline
inhibition seems to occur throughout a genuinemechanism. This
may lead to rational optimization efforts to improve affinity.
Further studies should be performed to confirm the putative
binding pocket suggested by our docking experiments, to move
in that direction. To date, only few non-competitive falcipain-2
inhibitors have been reported; including suramin analogs
(Marques et al., 2013), heme analogs (Marques et al., 2015),

and (E)-chalcones (Bertoldo et al., 2015) reported. Suramin,
heme, and their analogs inhibit falcipain-2 with IC50 values
in the nanomolar range and seem to share a common “non-
competitive like” inhibition mechanism that occurs through
the formation of a ternary enzyme:inhibitor:substrate complex
of stoichiometry 1:1:2. In both cases, the authors argued that
the binding of the inhibitor to falcipain-2 reveals a novel
regulatory substrate binding site in the enzyme, which allows
the subsequent allosteric binding of a second substrate molecule,
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FIGURE 9 | Effect of odanacatib and methacycline on the development of P.

falciparum under culture. Cultures of erythrocytes infected (trophozoite stage)

at 2% hematocrit and 0.5% parasitemia were incubated with increasing

concentrations of odanacatib (ODA; 1, 10, or 100µM) and methacycline

(METHA; 10, 50, or 500µM). E-64 (1, 5, or 25µM) was used as positive

control of falcipain-2 inhibition. DMSO was used as a vehicle control (V) and

RPMI 1640 medium as a control (C). After 48 h, the number of infected

erythrocytes (ring, trophozoite, and schizont-stages) was evaluated by light

microscopy in stained blood smears. Data are the means ± SD of one

experiment performed by triplicate. (*) p < 0.05 represents the differences

between control and the treatments.

resulting in falcipain-2 inhibition (Marques et al., 2013, 2015).
Very similar to what we have found for methacycline, (E)-
chalcones 48 (Ki =45µM, α < 1) and 66 (Ki =7µM, α

= 1) display a classical non-competitive inhibition profile for
falcipain-2 with no evidence of substrate inhibition (Bertoldo
et al., 2015). None of these inhibitors appear to bind falcipain-
2 active site, thus anticipating new routes to overcome the critical
issue of selectivity over human cathepsins. In this regard, the
identification and targeting of non-active (i.e., allosteric) binding
sites within the falcipain-2 molecule seems to be an attractive and
effective alternative to traditional active site-directed inhibitors,
as recently showed by Pant and coworkers (Pant et al., 2018).
Two compounds, rationally designed to target an allosteric site
present in the pro-mature domain interface of falcipains-2/-3,
were able to bind both pro-enzymes with nanomolar affinities
and arrest P. falciparum growth, clearly illustrating the potential
of this approach.

Of interest, odanacatib inhibits the peptidolytic activity
of falcipain-2 much more efficiently than its hemoglobinase
activity. Although displaying comparable affinities for the
enzyme [KhHb

D =3.3µM (Hogg et al., 2006); KZ−LR−AMC
M =

4.8µM], there are important differences between Z-LR-AMC
and hHb as falcipain-2 substrates, regarding both their binding
modes and their catalytic heterogeneity. In the first case, the
small peptidic substrate Z-LR-AMC accommodates completely
within falcipain-2 active site and the enzyme-substrate complex
relies entirely on active site interactions for its stabilization
and catalytic transformation. In addition, Z-LR-AMC substrate
comprise a single cleavage site per molecule. These facts seem

to make it somehow more vulnerable to the competitive binding
of odanacatib to the active site and to the catalytic impairment
promoted by the binding of methacycline to a presumptive
allosteric site, like the one proposed here. In the case of
hHb, it has been shown that interaction with the enzyme
depends almost exclusively on a unique falcipain-2 structural
motif (the “arm”), located >25 Å away from the active site
(Pandey et al., 2005; Wang et al., 2006). In fact, a falcipain-
2 mutant lacking most of the arm loop showed no activity
or affinity against hHb, although remained fully active against
a number of generic peptide and protein substrates (Pandey
et al., 2005). Additionally, hHb was able to bind to falcipain-
2 molecules with the active site blocked by the irreversible
inhibitor E-64, clearly indicating that the recognition of intact
hHb is mostly independent of the active site. Considering all
these observations, we can hypothesize that the binding of
odanacatib to falcipain-2 active site would not be likely to perturb
substantially the binding affinity of intact hHb to its exosite and
vice versa. Thus, with the ability to bind both enzyme forms
(falcipain-2 and the falcipain-2-hHb complex) with comparable
affinity, odanacatib would probably behave as a non-competitive
inhibitor against an exosite-binding substrate such as intact
hHb. This has been previously reported for small active site-
directed inhibitors of proteases and kinases when acting on
their natural macromolecular substrates (Krishnaswamy and
Betz, 1997; Pedicord et al., 2004; Blat, 2010). The change in the
inhibition modality of odanacatib, however, seems insufficient
to explain, per se, the magnitude of the drop in its inhibitory
potency against the falcipain-2/hHb system. A second line of
argument came from the observation that hHb molecule is
a catalytically heterogeneous substrate, comprising numerous
independent falcipain-2 cleavage sites and whose digestion seems
to be a non-ordered process (Subramanian et al., 2009). The
occurrence of multiple cleavage events at different sites along the
protein sequence leads to the formation of numerous digestion
products of lower molecular weight. These digestion products
also contain functional falcipain-2 cleavage sites and become new
substrates that, after a new round of proteolysis, may generate
additional substrate peptides. As the reaction proceeds, this
iterative process leads to an increase in the number and the
global concentration of peptidyl substrates able to compete for
the binding to falcipain-2 active site. This might eventually lead
to a partial relief of inhibition by competitive, active site-directed
inhibitors, as would be the case of odanacatib.

Considering that falcipain-2 and−3 are the major cysteine
proteases required for the intraerythrocytic development of P.
falciparum, we evaluated the antiparasitic effect of odanacatib
and methacycline. The inhibitors of cysteine proteases block the
hydrolysis of hemoglobin, causing the development of enlarged,
hemoglobin-filled food vacuoles in trophozoites and failure of
parasites to complete their development (Marco and Coterón,
2012). The two drugs showed a clear inhibition in a dose-
depend manner on the intraerythrocytic cycle of P. falciparum.
The effective concentrations of odanacatib in P. falciparum
cultures were in the low-to-middle micromolar range, similar
to those observed in the inhibition assay of hemoglobinase
activity. This finding is compatible with a hypothetical mode
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FIGURE 10 | Best poses from the molecular docking experiments for odanacatib (Left) and methacycline (Right). Interacting residues are shown in sticks.

of action trough inhibition of falcipain functions within the
food vacuole. Although the inhibition of diverse proteases by
tetracycline derivatives has previously been reported (Morrison,
1969; Zucker et al., 1985; Sanchez Mejia et al., 2001; Chi
et al., 2011), to the best of our knowledge, this is the first
report of the inhibition of a C1A cysteine peptidase from a
protozoa parasite by an antibiotic of the tetracycline family.
The molecular targets for the action of tetracyclines against
Plasmodium parasites have not been fully elucidated. However,
their mode of action seems to include the inhibition of protein
synthesis at mitochondrial, plastid and nuclear ribosomes by
the association with ribosomal components (Gaillard et al.,
2015). Additional mechanisms, such as reduction in de novo
pyrimidine synthesis and a decrease in the transcription rates of
mitochondrial and apicoplast genes, have also been postulated
(Briolant et al., 2008; Gaillard et al., 2015). The inclusion of
falcipain-2 among the potential targets of tetracycline derivatives
adds new possibilities for the development of “two-edged swords”
candidate drugs for P. falciparum, with potential benefits in
terms of potency and delay of resistance appearance (Agarwal
et al., 2017). The contribution of this mechanism to the
global antimalarial activities of these antibiotics remains to be
established in future investigations.

It should also be underlined that odanacatib underwent long-
term clinical trials as a treatment of postmenopausal osteoporosis
(Bone et al., 2015), which were early stopped due to robust
efficacy and a favorable benefit/risk profile. However, its clinical
development was dropped due to an increased risk of stroke
in the postmenopausal patients on odanacatib vs. a placebo
group. Accordingly, our findings on the potential use of the
drug against malaria could be considered a drug rescue example,
i.e., a proposal on a new medical used of and abandoned or
discontinued drug. Do the safety issues of odanacatib pose
an inevitable impediment for their potential development as
antimalarial treatment? Not necessarily. Although they are
indeed a concern, it should be considered that the odanacatib
augmented risk of stroke was observed in long-term studies,
whereas the drug could possibly be administered in a short-
term manner as malaria treatment (for instance, artemisinin-
based combination therapies only require a 3-day course
to achieve efficacy in cases of uncomplicated P. falciparum
malaria). Accordingly, the long-term risks of odanacatib use

may not have a negative impact on its use as antimalarial.
There are well-known examples of drug rescue of discontinued
drugs with severe safety issues, that can be re-introduced
in a new therapeutic setting with the pertinent precautions.
For instance, thalidomide was largely abandoned due to its
teratogenic effects, but has been recently relaunched to the
market for the treatment of leprosy and multiple myeloma
(Teo et al., 2002; Mercurio et al., 2017).

Pharmacokinetics studies reveal that after multiple-dose
administration of odanacatib 50mg (once weekly for 4
weeks), average maximal plasma concentrations of around
400 nM are observed (Chen et al., 2018), although a high
fraction of plasma protein bound drug has also been reported
(Kassahun et al., 2014). Accordingly, further studies are
required to evaluate the dose-compatibility between the
previously investigated therapeutic use and the possible
antimalarial indication.
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