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Abstract. In this paper we obtain the Lipschitz continuity of nonnegative local minimizers of
the functional J(v) =

∫
Ω

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx, under nonstandard growth conditions of

the energy function F (x, s, η) and 0 < λmin ≤ λ(x) ≤ λmax < ∞. This is the optimal regularity
for the problem. Our results generalize the ones we obtained in the case of the inhomogeneous
p(x)-Laplacian in our previous work [17].

Nonnegative local minimizers u satisfy in their positivity set a general nonlinear degenerate/singular
equation divA(x, u,∇u) = B(x, u,∇u) of nonstandard growth type. As a by-product of our study,
we obtain several results for this equation that are of independent interest.

1. Introduction

In this paper we study the regularity properties of nonnegative, local minimizers of the functional

(1.1) J(v) =

∫
Ω

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx,

under nonstandard growth conditions of the energy function F (x, s, η) and 0 < λmin ≤ λ(x) ≤
λmax <∞.

There has been a great deal of interest in these type of problems. Their study started with the
seminal paper of Alt and Caffarelli [2] where the case F (x, s, η) = 1

2 |η|
2 was considered. Later

on, [3] considered the case F (x, s, η) = G(|η|2) under uniform ellipticity assumptions. The general
power case F (x, s, η) = 1

p |η|
p with 1 < p < ∞ was studied in [8], and F (x, s, η) = G(|η|) with G

convex under the assumption that G′ satisfies Lieberman’s condition namely, G′′(t) ∼ G′(t)/t, was
analyzed in [19]. The linear inhomogeneous case F (x, s, η) = 1

2 |η|
2 + f(x)s was addressed in [12]

and [15].

The minimization problem for the functional (1.1) with F (x, s, η) = 1
p(x) |η|

p(x) was first con-

sidered in [6] for p(x) ≥ 2 and then, in [16] and [17] in the inhomogeneous case F (x, s, η) =
1

p(x) |η|
p(x) + f(x)s, for 1 < p(x) <∞ and f ∈ L∞(Ω). In [17], among other results, we proved that

nonnegative local minimizers u are locally Lipschitz continuous and satisfy

∆p(x)u := div(|∇u(x)|p(x)−2∇u) = f in {u > 0}.
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growth, singular and degenerate elliptic equation, nonlinear elliptic operator, p(x)-Laplacian, free boundary problem.
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The operator ∆p(x), called the p(x)-Laplacian, extends the Laplacian, where p(x) ≡ 2 and the p-
Laplacian, where p(x) ≡ p. This is a prototype operator with nonstandard growth. The functional
setting for the study of this type of operators are the variable exponent Lebesgue and Sobolev
spaces Lp(·) and W 1,p(·).

Functionals and PDEs with nonstandard growth have a wide range of applications, such as the
modelling of non-Newtonian fluids, as for instance, electrorheological [21] or thermorheological fluids
[4]. Other areas of application include non-linear elasticity [24], image reconstruction [1, 7], the
modelling of electric conductors [25], as well as processes of filtration of gases in non-homogeneous
porous media [5].

As far as we know, no result on the minimization of (1.1) with F (x, s, η) a general function with
nonstandard growth has been obtained.

The main purpose of our work is to prove the local Lipschitz continuity of nonnegative local
minimizers of such an energy. We stress that this is the optimal regularity since it is known from
the particular cases refered to above that the gradient of a minimizer u jumps across Ω∩∂{u > 0}.

We prove that nonnegative minimizers of (1.1) are solutions to the associated equation in their
positivity sets. That is, a local minimizer u ≥ 0 satisfies

(1.2) divA(x, u,∇u) = B(x, u,∇u)

in {u > 0}, where
A(x, s, η) = ∇ηF (x, s, η), B(x, s, η) = Fs(x, s, η).

Under our assumptions, the governing equation (1.2) is given by A(x, s, η) satisfying

λ0|η|p(x)−2|ξ|2 ≤
∑
i,j

∂Ai
∂ηj

(x, s, η)ξiξj ≤ Λ0|η|p(x)−2|ξ|2,

and has a right hand side given by B(x, s, η) 6≡ 0 of p(x)-type growth in η. This equation is singular
in the regions where 1 < p(x) < 2 and degenerate in the ones where p(x) > 2.

Our study thus presents new features, needed in order to overcome the deep technical difficulties
arising due to the nonlinear degenerate/singular nature and the x and s dependence of this general
operator associated to our energy functional (1.1).

The first part of the paper is devoted to the study of equation (1.2) in a domain Ω, under
nonstandard growth conditions of p(x)-type. We prove existence results, a comparison principle, a
uniqueness result, a maximum principle and other local L∞ bounds of solutions of this equation.
These delicate results are of independent interest.

Some of these results are obtained under the growth assumption (3.14). We remark that this
hypothesis on the functions A and B allows to consider very general equations. This condition not
only enables us to get the inequality in Proposition 3.3 that is a main tool for all the proofs in the
paper, but also it is invariant under rescalings. All these results are included in Section 3.

In the second part of the paper we deal with the minimization problem for the functional (1.1).
In fact, in Section 4 we first get an existence result for minimizers. We also prove nonnegativity
and boundedness, under suitable assumptions. Then, we prove the local Hölder and Lipschitz
continuity of nonnegative local minimizers (Theorems 4.3 and 4.5).

The proofs in Section 4 involve delicate rescalings. One of the main difficulties this problem

presents is that it is not invariant under the rescaling u(x) 7−→ u(tx)
k , if t 6= k —rescaling that

is a crucial tool in dealing with this type of problems. The rescaled functionals lose the uniform
properties and nontrivial modifications are needed to get through the proofs. Even after these
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modifications, there is in general no limit equation for the rescaled problems due to the growth we
are allowing to the function B(x, s, η). Novel arguments are used to complete the proof of Theorem
4.4. In fact, we are able to show that, although there is in general no limit equation for the rescaled
problems, there is a limit function and it satisfies Harnack’s inequality (see (4.58)).

A thorough follow up of the dependence of the bounds found in Section 3 with respect to the
structural conditions on F,A and B is of most importance as well.

Let us point out that the results in the paper are new even in the case p(x) ≡ p constant.

Finally, in Section 5 we present some examples of functionals (1.1) where our results can be used.
Our examples include functionals (1.1) involving energy functions of the form

F (x, s, η) = a(x, s)
|η|p(x)

p(x)
+ f(x, s).

A possible example of admissible functions a(x, s), f(x, s) is given by

a(x, s) = a0(x)(1 + s)−q(x), a0(x) > 0, 0 < q(x) ≤ q0(x),

for s in the range where the nonnegative local minimizer takes values, q0(x) a function depending
on p(x) and

f(x, s) = b(x)|s|τ(x), b(x) ≥ 0, τ(x) ≥ 2,

with τ(x) satisfying (2.7).
Our results also apply to functionals (1.1) involving energy functions of the form

F (x, s, η) = G(x, η) + f(x, s).

Some admissible G(x, η), f(x, s) are

G(x, η) = a(x)G̃
(
|η|p(x)

)
a(x) > 0, G̃′′ ≥ 0,

G(x, η) = Ã(x)η · η|η|p(x)−2 Ã(x) ∈ RN×N uniformly elliptic,

f(x, s) = g(x)s.

Also,

F (x, s, η) = a1(x)F1(x, s, η) + a2(x)F2(x, s, η), ai(x) > 0,

is an admissible function if both F1(x, s, η) and F2(x, s, η) are admissible.

We begin our paper with a section where we state the hypotheses on F,A, B, λ and p(x) that
will be used throught the article. And we end it with an Appendix where we state some properties
of the function spaces Lp(·) and W 1,p(·) where the problem is well posed.

1.1. Preliminaries on Lebesgue and Sobolev spaces with variable exponent. Let p : Ω→
[1,∞) be a measurable bounded function, called a variable exponent on Ω and denote pmax =

esssup p(x) and pmin = essinf p(x). We define the variable exponent Lebesgue space Lp(·)(Ω) to

consist of all measurable functions u : Ω → R for which the modular %p(·)(u) =
∫

Ω |u(x)|p(x) dx is
finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf{λ > 0 : %p(·)(u/λ) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.
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There holds the following relation between %p(·)(u) and ‖u‖Lp(·) :

min
{(∫

Ω
|u|p(x) dx

)1/pmin

,
(∫

Ω
|u|p(x) dx

)1/pmax
}
≤ ‖u‖Lp(·)(Ω)

≤ max
{(∫

Ω
|u|p(x) dx

)1/pmin

,
(∫

Ω
|u|p(x) dx

)1/pmax
}
.

Moreover, the dual of Lp(·)(Ω) is Lp
′(·)(Ω) with 1

p(x) + 1
p′(x) = 1.

Let W 1,p(·)(Ω) denote the space of measurable functions u such that u and the distributional

derivative ∇u are in Lp(·)(Ω). The norm

‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)
makes W 1,p(·)(Ω) a Banach space.

The space W
1,p(·)
0 (Ω) is defined as the closure of the C∞0 (Ω) in W 1,p(·)(Ω).

For the sake of completeness we include in an Appendix at the end of the paper some additional
results on these spaces that are used throughout the paper.

1.2. Notation.

• N spatial dimension
• |S| N -dimensional Lebesgue measure of the set S
• Br(x0) open ball of radius r and center x0

• Br open ball of radius r and center 0
• χS characteristic function of the set S
• u+ = max(u, 0), u− = max(−u, 0)
• 〈 ξ , η 〉 and ξ · η both denote scalar product in RN

2. Assumptions

In this section we collect all the assumptions that will be made along the paper.

Throughout the paper Ω will denote a C1 bounded domain in RN . In addition, the following
assumptions will be made:

2.1. Assumptions on p(x). We assume that the function p(x) is measurable in Ω and verifies

1 < pmin ≤ p(x) ≤ pmax <∞, x ∈ Ω.

We assume further that p(x) is Lipschitz continuous in Ω and we denote by L the Lipschitz
constant of p(x), namely, ‖∇p‖L∞(Ω) ≤ L.

When we are restricted to a ball Br we use p−r and p+
r to denote the infimum and the supremum

of p(x) over Br.

2.2. Assumptions on λ(x). We assume that the function λ(x) is measurable in Ω and verifies

0 < λmin ≤ λ(x) ≤ λmax <∞, x ∈ Ω.
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2.3. Assumptions on F . We assume that F is measurable in Ω× R× RN , and for every x ∈ Ω,
F (x, ·, ·) ∈ C1(R× RN ) ∩ C2(R× RN \ {0}).

We denote A(x, s, η) = ∇ηF (x, s, η) and B(x, s, η) = Fs(x, s, η).

2.4. Assumptions on A. We assume that A ∈ C(Ω×R×RN ,RN ) and for every x ∈ Ω, A(x, ·, ·) ∈
C1(R × RN \ {0},RN ). Moreover, there exist positive constants λ0 and Λ0, and β ∈ (0, 1) such
that for every x, x1, x2 ∈ Ω, s, s1, s2 ∈ R, η ∈ RN \ {0} and ξ ∈ RN , the following conditions are
satisfied:

(2.1) A(x, s, 0) = 0,

(2.2)
∑
i,j

∂Ai
∂ηj

(x, s, η)ξiξj ≥ λ0|η|p(x)−2|ξ|2,

(2.3)
∑
i,j

∣∣∣∂Ai
∂ηj

(x, s, η)
∣∣∣ ≤ Λ0|η|p(x)−2,

(2.4)
∣∣A(x1, s, η)−A(x2, s, η)

∣∣ ≤ Λ0|x1 − x2|β
(
|η|p(x1)−1 + |η|p(x2)−1

)(
1 +

∣∣ log |η|
∣∣),

(2.5)
∣∣A(x, s1, η)−A(x, s2, η)

∣∣ ≤ Λ0|s1 − s2||η|p(x)−1.

2.5. Assumptions on B. We assume that B is measurable in Ω× R× RN and for every x ∈ Ω,
B(x, ·, ·) ∈ C1(R× RN ), and for every (x, s, η) ∈ Ω× R× RN ,

(2.6)
∣∣B(x, s, η)

∣∣ ≤ Λ0

(
1 + |η|p(x) + |s|τ(x)

)
,

where Λ0 is as in the assumptions on A and

(2.7)

τ(x) ≥ p(x) and τ ∈ C(Ω),

τ(x) ≤ p∗(x) =
Np(x)

N − p(x)
if pmax < N,

τ(x) arbitrary if pmin > N,

τ(x) = p(x) if pmin ≤ N ≤ pmax.

Remark 2.1. From (2.1) and (2.3) we get

|Ai(x, s, η)| = |Ai(x, s, η)−Ai(x, s, 0)| =
∣∣ ∫ 1

0

∑
j

∂Ai
∂ηj

(x, s, tη)ηj dt,
∣∣ ≤ ᾱ(pmin)Λ0|η|p(x)−1,

so that

(2.8) |A(x, s, η)| ≤ ᾱ(pmin)NΛ0|η|p(x)−1.

From (2.1) and (2.2) we have

A(x, s, η) · η = (A(x, s, η)−A(x, s, 0)) · η =

∫ 1

0

∑
ij

∂Ai
∂ηj

(x, s, tη)ηjηi dt,

so that

(2.9) A(x, s, η) · η ≥ α(pmax)λ0|η|p(x).
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3. Existence, uniqueness and bounds of solutions to equation (1.2)

In this section we consider A and B as in Section 2 and we prove results for solutions of the
equation

(3.1) divA(x, u,∇u) = B(x, u,∇u) in Ω.

Namely, existence, comparison principle, uniqueness, maximum principle and bounds of solutions.
Our first result is Proposition 3.1, were we prove existence of a solution to (3.1) with given

boundary data. In order to prove the existence of a solution to (3.1) we show that, given u ∈
W 1,p(·)(Ω), there exists a minimizer of the functional

(3.2) JΩ(v) =

∫
Ω
F (x, v,∇v) dx

in u+W
1,p(·)
0 (Ω), where F is as in Section 2, A(x, s, η) = ∇ηF (x, s, η) and B(x, s, η) = Fs(x, s, η).

Then, in Proposition 3.2 we get an existence result under a growth assumption on the function
F stronger than (3.3) in Proposition 3.1, but without the small oscillation hypothesis there.

In Proposition 3.4 and Corollary 3.2 we prove comparison and uniqueness for this problem,
assuming that condition (3.14) below holds. In Proposition 3.5 we prove that solutions to (3.1)
with bounded boundary data are bounded and in Proposition 3.6 we prove a maximum principle
for this problem, under suitable assumptions. In Proposition 3.7 we give another existence result
of a bounded solution.

We start with the definition of solution to (3.1).

Definition 3.1. Let p, A and B be as in Section 2. We say that u is a solution to (3.1) if

u ∈W 1,p(·)(Ω) and, for every ϕ ∈ C∞0 (Ω), there holds that

−
∫

Ω
A(x, u,∇u) · ∇ϕdx =

∫
Ω
B(x, u,∇u)ϕdx.

We are using that, under the conditions in (2.7), the embedding theorem (see Theorem A.5) applies.

Our first existence result is

Proposition 3.1. Let p, F,A,B as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Let u ∈W 1,p(·)(Ω′)
and let us call p+ = supΩ′ p(x), p− = infΩ′ p(x). Assume that there exist ν, c1 ∈ R+, pmin > δ > 0
and g ∈ L1(Ω) such that

(3.3) F (x, s, η) ≥ ν|η|p(x) − c1|s|p(x)−δ − g(x) in Ω.

Assume, moreover that δ > p+ − p− and that

(3.4) F (x, s, η) ≤ ν−1|η|p(x) + c1|s|τ(x) + g(x) in Ω,

with τ satisfying (2.7).

Then, there exists a solution v ∈ u+W
1,p(·)
0 (Ω′) to (3.1) in Ω′.

Moreover, ‖v‖W 1,p(·)(Ω′) ≤ C, for a constant C depending only ‖u‖W 1,p(·)(Ω′), ‖g‖L1(Ω′), |Ω′|,
diam(Ω′), N , p−, p+, δ, L, ν, c1, ||τ ||L∞(Ω′) and the C1 norm of ∂Ω′.
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Proof. We will show that there is a minimizer of JΩ′ in u+W
1,p(·)
0 (Ω′) where

JΩ′(v) =

∫
Ω′
F (x, v,∇v) dx.

This minimizer is a solution to the associated Euler-Lagrange equation (3.1) in Ω′.
We will use the embedding theorem (see Theorem A.5) that states that, under the conditions in

(2.7), W 1,p(·)(Ω′) ↪→ Lτ(·)(Ω′) continuously.

So, let vn be a minimizing sequence. That is, vn ∈ u+W
1,p(·)
0 (Ω′) and

I = lim
n→∞

JΩ′(vn) = inf
u+W

1,p(·)
0 (Ω′)

JΩ′(v) ≤
∫

Ω′
F (x, u,∇u) dx.

Let us show that there is a constant κ > 0 such that ‖vn‖Lp(·)(Ω′) ≤ κ. In fact, by (3.3), for n

large, ∫
Ω′
|∇vn|p(x) dx ≤ 1 +

∫
Ω′
F (x, u,∇u) dx+

c1

ν

∫
Ω′
|vn|p(x)−δ dx+

1

ν

∫
Ω′
g(x) dx.

By Poincare’s inequality (Theorem A.4)

‖vn − u‖Lp(·)(Ω′) ≤ CΩ′‖∇(vn − u)‖Lp(·)(Ω′).
Hence, recalling Proposition A.1,

‖vn‖Lp(·)(Ω′) ≤ ‖u‖Lp(·)(Ω′) + CΩ′
[
‖∇vn‖Lp(·)(Ω′) + ‖∇u‖Lp(·)(Ω′)

]
≤ C

[
‖u‖W 1,p(·)(Ω′) + max

{( ∫
Ω′
|∇vn|p(x) dx

)1/p−
,
( ∫

Ω′
|∇vn|p(x) dx

)1/p+}]
≤ C̄

[
1 + max

{( ∫
Ω′
|vn|p(x)−δ dx

)1/p−
,
( ∫

Ω′
|vn|p(x)−δ dx

)1/p+}]
with C̄ depending on ‖u‖W 1,p(·)(Ω′), ‖g‖L1(Ω′), N, p

−, p+, δ, |Ω′|, diam(Ω′), L, ||τ ||L∞(Ω′), the C1

norm of ∂Ω′, and the constants in (3.3).
Observe that in case u ≡ M , there holds that

∫
Ω′ F (x, u,∇u) dx is bounded by a constant that

depends only on M , ‖τ‖L∞(Ω′) and |Ω′|. Hence, in that case C̄ is independent of the regularity of
Ω′.

Since we want to find a uniform bound of ‖vn‖Lp(·)(Ω′), we may assume that this norm is larger

than 1. Let q be the middle point of the interval [p+ − δ, p−]. By Young’s inequality with r(x) =
q

p(x)−δ , ∫
Ω′
|vn|p(x)−δ dx ≤ Cε + ε

∫
Ω′
|vn|q dx,

for 0 < ε < 1 with Cε depending only on |Ω′|, ε, p−, p+ and δ. On the other hand, since ‖vn‖Lq(Ω′) ≤
C‖vn‖Lp(·)(Ω′) with C depending only on |Ω′|, p−, p+ and δ,∫

Ω′
|vn|q dx ≤

(
C‖vn‖Lp(·)(Ω′)

)q
.

So that

‖vn‖Lp(·)(Ω′) ≤ C
[
C̃ε + ε

1
p+
(
‖vn‖Lp(·)(Ω′)

) q

p−
]

≤ C
[
C̃ε + ε

1
p+ ‖vn‖Lp(·)(Ω′)

]
.

By choosing ε small enough, we find that

(3.5) ‖vn‖Lp(·)(Ω′) ≤ C
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with C depending on |Ω′|, diam(Ω′), ‖u‖W 1,p(·)(Ω′), p
−, p+, N , δ, ‖g‖L1(Ω′), L, ||τ ||L∞(Ω′), the C1

norm of ∂Ω′, ν and c1.
From the computations above we find that

∫
Ω′ |vn|

p(x)−δ dx ≤ C1. So that we have that I > −∞
and

(3.6) ‖∇vn‖Lp(·)(Ω′) ≤ C2,

with C2 depending on |Ω′|, diam(Ω′), ‖u‖W 1,p(·)(Ω′), p
−, p+, N , δ, ‖g‖L1(Ω′), L, ||τ ||L∞(Ω′), the C1

norm of ∂Ω′, ν and c1.
From our comment above, we have that in case u ≡M in Ω′, the constant C2 is independent of

the regularity of ∂Ω′.

Let us proceed with the proof of the existence of a minimizer. By the estimates above, for a

subsequence that we still call vn, there holds that there exists v ∈ u+W
1,p(·)
0 (Ω′), such that

vn ⇀ v in W 1,p(·)(Ω′), vn → v in Lp
−

(Ω′) and almost everywhere,

and such that the bounds (3.5) and (3.6) also hold for v.
By Egorov’s Theorem, for every ε > 0 there exists Ωε such that |Ω′ \ Ωε| < ε and vn → v

uniformly in Ωε.
On the other hand, if we set ΩK = {x ∈ Ω′ / |v|+ |∇v| ≤ K}, there holds that |Ω′ \ ΩK | → 0 as

K →∞.
Let Ωε,K = Ωε ∩ ΩK . Then, |Ω′ \ Ωε,K | → 0 as ε→ 0 and K →∞.
There holds

(3.7) lim sup
n→∞

∫
Ωε,K

F (x, vn,∇vn) dx ≤ I + c1

∫
Ω′\Ωε,K

|v|p(x)−δ dx+

∫
Ω′\Ωε,K

g dx.

Let us prove that∫
Ωε,K

F (x, v,∇v) dx ≤ I + c1

∫
Ω′\Ωε,K

|v|p(x)−δ dx+

∫
Ω′\Ωε,K

g dx.

In fact,∫
Ωε,K

F (x, vn,∇vn) dx−
∫

Ωε,K

F (x, v,∇v) dx =

∫
Ωε,K

[
F (x, vn,∇vn)− F (x, vn,∇v)

]
dx

+

∫
Ωε,K

[
F (x, vn,∇v)− F (x, v,∇v)

]
dx = A+ B.

On the one hand, B → 0 since F (x, vn,∇v) − F (x, v,∇v) → 0 uniformly in Ωε,K and it is
uniformly bounded. On the other hand, by the convexity assumption on F (x, s, η) with respect to
η,

A ≥
∫

Ωε,K

A(x, vn,∇v) · (∇vn −∇v) dx→ 0 as n→∞

since A(x, vn,∇v) → A(x, v,∇v) uniformly in Ωε,K , they are uniformly bounded and ∇vn ⇀ ∇v
weakly in Lp(·)(Ωε,K).

Hence, for every ε,K,∫
Ωε,K

F (x, v,∇v) dx ≤ I + c1

∫
Ω′\Ωε,K

|v|p(x)−δ dx+

∫
Ω′\Ωε,K

g dx.
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Now, by letting ε→ 0 and K →∞, we get∫
Ω′
F (x, v,∇v) dx ≤ I,

and therefore, v is a minimizer of JΩ′ in u+W
1,p(·)
0 (Ω′) and a solution to (3.1). �

As a corollary of Proposition 3.1 we have the following existence result that will be used in the
next section.

Corollary 3.1. Let p, F,A,B as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Let u ∈W 1,p(·)(Ω′)
and let us call p+ = supΩ′ p(x), p− = infΩ′ p(x). Assume that there exist ν, c1 ∈ R+ and pmin >
δ > 0 such that

(3.8) F (x, s, η) ≥ ν|η|p(x) − c1

(
|s|p(x)−δ + 1

)
in Ω.

Assume, moreover that δ > p+ − p− and that

(3.9) F (x, s, η) ≤ ν−1|η|p(x) + c1

(
|s|τ(x) + 1

)
in Ω,

with τ(x) satisfying (2.7).

Then, there exists a solution v ∈ u + W
1,p(·)
0 (Ω′) to (3.1) in Ω′ and ‖v‖W 1,p(·)(Ω′) ≤ C, for a

constant C depending only ‖u‖W 1,p(·)(Ω′), |Ω′|, diam(Ω′), N , p−, p+, δ, L, ν, c1, ||τ ||L∞(Ω′) and the

C1 norm of ∂Ω′.

With a stronger growth assumption on the s variable for the function F (x, s, η) we get an
existence result without the small oscillation assumption of the function p.

Proposition 3.2. Let p, F,A,B as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Let u ∈W 1,p(·)(Ω′).
Assume that there exist ν, c1 ∈ R+, g ∈ L1(Ω) and 1 ≤ q < pmin such that

(3.10) F (x, s, η) ≥ ν|η|p(x) − c1|s|q − g(x) in Ω.

Assume, moreover that

(3.11) F (x, s, η) ≤ ν−1|η|p(x) + c1|s|τ(x) + g(x) in Ω,

with τ satisfying (2.7).

Then, there exists a solution v ∈ u + W
1,p(·)
0 (Ω′) to (3.1) in Ω′ and ‖v‖W 1,p(·)(Ω′) ≤ C, for a

constant C depending only ‖u‖W 1,p(·)(Ω′), ‖g‖L1(Ω′), |Ω′|, diam(Ω′), N , pmin, pmax, q, L, ν, c1,

||τ ||L∞(Ω′) and the C1 norm of ∂Ω′.

Proof. We proceed as in the proof of Proposition 3.1 and we prove that a minimizing sequence {vn}
satisfies

(3.12) ν

∫
Ω′
|∇vn|p(x) dx ≤

∫
Ω′
F (x, u,∇u) + 1 +

∫
Ω′
g(x) dx+ c1

∫
Ω′
|vn|q dx.

We want to prove that there is a constant such that
∫

Ω′ |∇vn|
p(x) dx ≤ C. So, we can assume

that
∫

Ω′ |∇vn|
p(x) dx > 1.

Thus,

‖vn‖Lq(Ω′) ≤ C‖vn‖Lp(·)(Ω′) ≤ C
[
‖u‖W 1,p(·)(Ω′) + ‖∇vn‖Lp(·)(Ω′)

]
≤ C

[
‖u‖W 1,p(·)(Ω′) +

( ∫
Ω′
|∇vn|p(x) dx

)1/pmin
]
,
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where C depends on q, pmin, pmax, N , L and |Ω′|, diam(Ω′). Hence, as q < pmin,

(3.13)

∫
Ω′
|vn|q dx ≤ C

(
1 +

( ∫
Ω′
|∇vn|p(x) dx

)q/pmin
)

≤ C̃ + ε

∫
Ω′
|∇vn|p(x) dx

with C depending only on q, pmin, pmax, N, |Ω′|,diam(Ω′), L, ‖u‖W 1,p(·)(Ω′), and C̃ depending on the

same constants and also on ε.
Thus, by (3.12) and (3.13), ∫

Ω′
|∇vn|p(x) dx ≤ Ĉ

with Ĉ depending only on q, pmin, pmax, N, ν, |Ω′|,diam(Ω′), L,
∫

Ω′ g(x) dx, c1, ||τ ||L∞(Ω′), the C1

norm of ∂Ω′ and ‖u‖W 1,p(·)(Ω′).

Now, as in the proof of Proposition 3.1, we get that there exists a subsequence that we still call

{vn} and a function v ∈ u+W
1,p(·)
0 (Ω′) such that

vn → v in Lpmin(Ω′), vn ⇀ v weakly in W 1,p(·)(Ω′).

Now, the proof follows as that of Proposition 3.1. �

We next prove a result valid for solutions of equation (3.1) that will be of use in the proofs of
Hölder and Lipschitz continuity of minimizers of the energy functional (1.1)

Proposition 3.3. Let p, F,A and B be as in Section 2. Assume moreover that

(3.14) 2|As(x, s, η) · ξw| ≤ 1

2

∑
i,j

∂Ai
∂ηj

(x, s, η)ξiξj +Bs(x, s, η)w2,

for every (x, s, η) ∈ Ω× R× RN \ {0}, ξ ∈ RN and w ∈ R.

Let u ∈W 1,p(·)(Ω) ∩ L∞(Ω) and let v ∈W 1,p(·)(Ω) ∩ L∞(Ω) be such that

(3.15)

{
divA(x, v,∇v) = B(x, v,∇v) in Ω,

v = u on ∂Ω.

Then,
(3.16)∫

Ω

(
F (x, u,∇u)− F (x, v,∇v)

)
dx ≥

1

2
αλ0

(∫
Ω∩{p(x)≥2}

|∇u−∇v|p(x) dx+

∫
Ω∩{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇u−∇v|2 dx

)
,

where α = α(pmin, pmax) and λ0 is as in (2.2).
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Proof. For 0 ≤ σ ≤ 1, let uσ = v + σ(u− v). Then, denoting ∇ηF = A and Fs = B, we obtain
(3.17)∫

Ω

(
F (x, u,∇u)− F (x, v,∇v)

)
dx =

∫ 1

0

∫
Ω
A(x, uσ,∇uσ) · ∇(uσ − v)

1

σ
dx dσ

+

∫ 1

0

∫
Ω
B(x, uσ,∇uσ)(uσ − v)

1

σ
dx dσ =

∫ 1

0

∫
Ω

(
A(x, uσ,∇uσ)−A(x, v,∇v)

)
· ∇(uσ − v)

1

σ
dx dσ

+

∫ 1

0

∫
Ω

(
B(x, uσ,∇uσ)−B(x, v,∇v)

)
(uσ − v)

1

σ
dx dσ = I + II,

where we have used (3.15). Moreover,

(3.18)

I =

∫ 1

0

∫ 1

0

∫
|∇v|≥|∇uσ |

As(x, u
στ ,∇uστ ) · ∇(uσ − v)(uσ − v)

1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|<|∇uσ |

As(x, u
σ(1−τ),∇uσ(1−τ)) · ∇(uσ − v)(uσ − v)

1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|≥|∇uσ |

∑
i,j

∂Ai
∂ηj

(x, uστ ,∇uστ )(uσ − v)xi(u
σ − v)xj

1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|<|∇uσ |

∑
i,j

∂Ai
∂ηj

(x, uσ(1−τ),∇uσ(1−τ))(uσ − v)xi(u
σ − v)xj

1

σ
dx dσ dτ

= I1 + I2 + I3 + I4.

Now, using (2.2), and the inequality

(3.19) |η′ + t(η − η′)| ≥ 1

4
|η − η′|, for |η′| ≥ |η|, 0 ≤ t ≤ 1

4
,

we get

(3.20)

I3 + I4 ≥
∫ 1

0

∫ 1

0

∫
|∇v|≥|∇uσ |

λ0|∇uστ |p(x)−2|∇(uσ − v)|2 1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|<|∇uσ |

λ0|∇uσ(1−τ)|p(x)−2|∇(uσ − v)|2 1

σ
dx dσ dτ

≥ αλ0

(∫
{p(x)≥2}

|∇u−∇v|p(x) dx+

∫
{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇u−∇v|2 dx

)
,

where α = α(pmin, pmax) and λ0 is as in (2.2). On the other hand,

(3.21)

II =

∫ 1

0

∫ 1

0

∫
|∇v|≥|∇uσ |

Bs(x, u
στ ,∇uστ )(uσ − v)2 1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|<|∇uσ |

Bs(x, u
σ(1−τ),∇uσ(1−τ))(uσ − v)2 1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|≥|∇uσ |

∇ηB(x, uστ ,∇uστ ) · ∇(uσ − v)(uσ − v)
1

σ
dx dσ dτ

+

∫ 1

0

∫ 1

0

∫
|∇v|<|∇uσ |

∇ηB(x, uσ(1−τ),∇uσ(1−τ)) · ∇(uσ − v)(uσ − v)
1

σ
dx dσ dτ.
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Finally, using that As(x, s, η) = ∇ηB(x, s, η), the assumption (3.14) and estimates (3.17), (3.18),
(3.20) and (3.21), we get (3.16). �

We now prove a comparison principle for equation (3.1), which holds under assumption (3.14).

Proposition 3.4. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds.

Let u, v ∈W 1,p(·)(Ω) be such that

(3.22)

divA(x, u,∇u) ≥ B(x, u,∇u) in Ω,

divA(x, v,∇v) ≤ B(x, v,∇v) in Ω,

u ≤ v on ∂Ω.

Then,

(3.23) u ≤ v in Ω.

Proof. We will use arguments similar to those in Proposition 3.3. In fact, for R > 0 we consider

the nonnegative function wR ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω) given by

(3.24) wR =


0 if u− v ≤ 0,

u− v if 0 < u− v < R,

R if u− v ≥ R,

and by (3.22) we have

(3.25) 0 ≥
∫

Ω

(
A(x, u,∇u)−A(x, v,∇v)

)
·∇wR dx+

∫
Ω

(
B(x, u,∇u)−B(x, v,∇v)

)
wR dx = I+II.

Then, denoting ΩR = Ω ∩ {0 < u− v < R} and, for 0 ≤ τ ≤ 1, uτ = v + τ(u− v), we get

(3.26)

I =

∫ 1

0

∫
ΩR∩{|∇v|≥|∇u|}

As(x, u
τ ,∇uτ ) · ∇(u− v)(u− v) dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|<|∇u|}

As(x, u
(1−τ),∇u(1−τ)) · ∇(u− v)(u− v) dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|≥|∇u|}

∑
i,j

∂Ai
∂ηj

(x, uτ ,∇uτ )(u− v)xi(u− v)xj dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|<|∇u|}

∑
i,j

∂Ai
∂ηj

(x, u(1−τ),∇u(1−τ))(u− v)xi(u− v)xj dx dτ

= I1 + I2 + I3 + I4.

Now, proceeding as in Proposition 3.3, we obtain
(3.27)

I3 + I4 ≥
∫ 1

0

∫
ΩR∩{|∇v|≥|∇u|}

λ0|∇uτ |p(x)−2|∇(u− v)|2 dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|<|∇u|}

λ0|∇u(1−τ)|p(x)−2|∇(u− v)|2 dx dτ

≥ α̃λ0

(∫
ΩR∩{p(x)≥2}

|∇u−∇v|p(x) dx+

∫
ΩR∩{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇u−∇v|2 dx

)
,

where α̃ = α̃(pmin, pmax) and λ0 is as in (2.2).
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On the other hand, we observe that the evaluation of (3.14) in ξ = 0 implies that Bs(x, s, η) ≥ 0.
Then, we get

(3.28)

II ≥
∫ 1

0

∫
ΩR∩{|∇v|≥|∇u|}

Bs(x, u
τ ,∇uτ )(u− v)2 dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|<|∇u|}

Bs(x, u
(1−τ),∇u(1−τ))(u− v)2 dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|≥|∇u|}

∇ηB(x, uτ ,∇uτ ) · ∇(u− v)(u− v) dx dτ

+

∫ 1

0

∫
ΩR∩{|∇v|<|∇u|}

∇ηB(x, u(1−τ),∇u(1−τ)) · ∇(u− v)(u− v) dx dτ

+

∫ 1

0

∫
{u−v>R}∩{|∇v|≥|∇u|}

Bs(x, u
τ ,∇uτ )w2

R dx dτ

+

∫ 1

0

∫
{u−v>R}∩{|∇v|<|∇u|}

Bs(x, u
(1−τ),∇u(1−τ))w2

R dx dτ

+

∫ 1

0

∫
{u−v>R}∩{|∇v|≥|∇u|}

∇ηB(x, uτ ,∇uτ ) · ∇(u− v)wR dx dτ

+

∫ 1

0

∫
{u−v>R}∩{|∇v|<|∇u|}

∇ηB(x, u(1−τ),∇u(1−τ)) · ∇(u− v)wR dx dτ.

Now, using that As(x, s, η) = ∇ηB(x, s, η), (2.3), (3.19), assumption (3.14) and estimates (3.25),
(3.26), (3.27) and (3.28), we get
(3.29)

0 ≥ 1

2
α̃λ0

(∫
ΩR∩{p(x)≥2}

|∇u−∇v|p(x) dx+

∫
ΩR∩{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇u−∇v|2 dx

)
− α̂Λ0

(∫
{u−v>R}∩{p(x)≥2}

(
|∇u|+ |∇v|

)p(x)
dx+

∫
{u−v>R}∩{p(x)<2}

|∇u−∇v|p(x) dx
)
,

where α̂ = α̂(pmin, pmax) and Λ0 is as in (2.3). Since R > 0 is arbirtrary, we can use that u, v ∈
W 1,p(·)(Ω) and let R→∞ and we obtain
(3.30)

0 ≥ 1

2
α̃λ0

(∫
Ω∩{p(x)≥2}

|∇(u− v)+|p(x) dx+

∫
Ω∩{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇(u− v)+|2 dx

)
,

which implies that ∇(u−v)+ = 0 in Ω. Since (u−v)+ ∈W 1,p(·)
0 (Ω), Poincare’s inequality (Theorem

A.4) gives (u− v)+ = 0 in Ω. That is, (3.23) holds. �

As a corollary of Propostion 3.4 we obtain the following uniqueness result

Corollary 3.2. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds.

Let ϕ ∈W 1,p(·)(Ω) and let u1, u2 ∈W 1,p(·)(Ω) be such that

(3.31)

{
divA(x, ui,∇ui) = B(x, ui,∇ui) in Ω,

ui = ϕ on ∂Ω,

for i = 1, 2. Then, u1 = u2 in Ω.
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We next prove that solutions to (3.1) with bounded boundary data are bounded, under the
assumptions of Proposition 3.1.

Proposition 3.5. Let p,A and B be as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Assume
moreover, that conditions (3.3), (3.4) and (3.14) hold in Ω′ for some p+ − p− < δ < pmin where
p+ = supΩ′ p and p− = infΩ′ p and with τ satisfying (2.7). Let us also assume that there exists a
positive constant Λ0 such that the following condition holds:

(3.32) |B(x, s, η)| ≤ Λ0(1 + |s|p(x)−1 + |η|p(x)−1),

for every (x, s, η) ∈ Ω′ × R× RN . Let u ∈W 1,p(·)(Ω′) be such that

(3.33)

{
divA(x, u,∇u) = B(x, u,∇u) in Ω′,

|u| ≤M on ∂Ω′,

for some positive constant M . Then, there exists C such that |u| ≤ C in Ω′, where C depends only
on M , |Ω′|, diam(Ω′), N,λ0,Λ0, L, p

−, p+, δ, ‖g‖L1(Ω′), ||τ ||L∞(Ω′), ν and c1.

Proof. Let v+ be the solution to (3.1) with boundary data M . Then, from the proof of Proposition
3.1 it follows that ||v+||W 1,p(·)(Ω′) depends only on the constants in the structural conditions, on

|Ω′|, diam(Ω′) and M . Since (recall Remark 2.1) we are under the assumptions of Theorem 4.1 in
[11], then v+ ∈ L∞(Ω′) with bounds depending only on the constants in the structural conditions,
on |Ω′|, diam(Ω′) and M . Now, the comparison principle (Proposition 3.4) implies that u ≤ v+

in Ω′ and the upper bound follows. Proceeding in an analogous way with v− the solution to (3.1)
with boundary data −M , we obtain the lower bound, thus concluding the proof. �

As a corollary of Propositions 3.1 and 3.5 we get

Corollary 3.3. Let p, F,A and B as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Assume,
moreover that F satisfies (3.8) and (3.9) with τ satisfying (2.7) and A and B satisfy (3.14) and
(3.32) in Ω′ for some p+ − p− < δ < pmin where p+ = supΩ′ p and p− = infΩ′ p.

Let u ∈W 1,p(·)(Ω′) ∩ L∞(Ω′). Then, there exists v ∈ u+W
1,p(·)
0 (Ω′) a solution to

divA(x, v,∇v) = B(x, v,∇v) in Ω′.

Moreover, v ∈ L∞(Ω′) and ‖v‖L∞(Ω′) is bounded by a constant C that depends only on ‖u‖L∞(Ω′),

|Ω′|, diam(Ω′), N,λ0,Λ0, L, p
−, p+, δ, ||τ ||L∞(Ω′), ν and c1.

We also prove the following maximum principle

Proposition 3.6. Let p,A and B be as in Section 2. Assume moreover that condition (3.14) holds.

We also assume that B(x, 0, 0) ≡ 0 for every x ∈ Ω. Let u ∈W 1,p(·)(Ω) be such that

(3.34)

{
divA(x, u,∇u) = B(x, u,∇u) in Ω,

−M1 ≤ u ≤M2 on ∂Ω,

for some nonnegative constants M1,M2. Then, −M1 ≤ u ≤M2 in Ω.

Proof. Since condition (3.14) implies thatBs(x, s, η) ≥ 0 in Ω×R×RN\{0}, we haveB(x,M2, 0) ≥ 0
and also B(x,−M1, 0) ≤ 0, for every x ∈ Ω. Recalling (2.1), we take v+ ≡ M2 and v− ≡ −M1

and observe that divA(x, v+,∇v+) ≤ B(x, v+,∇v+) and divA(x, v−,∇v−) ≥ B(x, v−,∇v−) in Ω.
Then, we can apply the comparison principle (Proposition 3.4) and obtain −M1 ≡ v− ≤ u ≤ v+ ≡
M2 in Ω and the conclusion follows. �
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As a corollary of Propositions 3.1 and 3.6 we get

Corollary 3.4. Let p, F,A and B as in Section 2 and let Ω′ ⊂ Ω be a C1 domain. Assume,
moreover that F satisfies (3.8) and (3.9) with τ satisfying (2.7) and A and B satisfy (3.14) in
Ω′ for some p+ − p− < δ < pmin where p+ = supΩ′ p and p− = infΩ′ p. We also assume that
B(x, 0, 0) ≡ 0 for every x ∈ Ω′.

Let u ∈W 1,p(·)(Ω′) ∩ L∞(Ω′). Then, there exists v ∈ u+W
1,p(·)
0 (Ω′) a solution to

divA(x, v,∇v) = B(x, v,∇v) in Ω′.

Moreover, v ∈ L∞(Ω′) and ‖v‖L∞(Ω′) ≤ ‖u‖L∞(Ω′).

We also have the following existence result of a bounded solution

Proposition 3.7. Let p as in Section 2. Assume that F (x, ·, ·) is locally Lipschitz in R× RN for
almost every x ∈ Ω and that F (x, s, ·) ∈ C1(RN )∩C2(RN \ {0}) for s ∈ R and almost every x ∈ Ω.
Let A = ∇ηF , B = Fs. Assume that A satisfies (2.2) and (2.5),

|A(x, s, η)|, |B(x, s, η)| ≤ Λ0(1 + |s|τ(x) + |η|p(x)) a.e. in Ω× R× RN ,

and F satisfies (3.3) and (3.4), where τ satisfies (2.7). Assume moreover that

(3.35) F (x, s, η) = G(x, s, η) + f(x, s) with G, f measurable functions

and,

(3.36) G ≥ 0 in Ω× R× RN , G(x, s, η) = 0 ⇐⇒ η = 0,

(3.37) f(x, ·) monotone decreasing in (−∞, 0] and monotone increasing in [0,+∞).

Then, for every Ω′ ⊂ Ω of class C1 there holds that, if p+ − p− < δ < pmin where p+ = supΩ′ p
and p− = infΩ′ p for δ in (3.3), given u ∈W 1,p(·)(Ω′) such that 0 ≤ u ≤M in Ω′ there exists v that

minimizes the functional JΩ′(v) in u+W
1,p(·)
0 (Ω′). Moreover, 0 ≤ v ≤M in Ω′.

In addition, if there exists ε0 > 0 such that for almost every x ∈ Ω, F (x, ·, ·) ∈ C1((−ε0,M +
ε0)× RN ), then there holds that v is a solution to

(3.38)

{
divA(x, v,∇v) = B(x, v,∇v) in Ω′,

v = u on ∂Ω′.

Proof. To begin with, the existence of a minimizer v follows proceeding as in Proposition 3.1. Let
us prove that a minimizer satisfies 0 ≤ v ≤M . In fact, both w1 = v − (v −M)+ and w2 = v + v−

are admissible functions. So that on the one hand,

0 ≤
∫

Ω′
F (x,w1,∇w1)− F (x, v,∇v) =

∫
v>M

F (x,M, 0)− F (x, v,∇v)

=

∫
v>M

f(x,M)− f(x, v)−
∫
v>M

G(x, v,∇v)

≤ −
∫
v>M

G(x, v,∇v) ≤ 0.

Hence, G(x, v,∇v) = 0 in {v > M}. So that, ∇(v −M)+ = 0 in Ω′. As (v −M)+ = 0 on ∂Ω′,
we deduce that v ≤M in Ω′.
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On the other hand, proceeding in a similar way with w2,

0 ≤
∫

Ω′
F (x,w2,∇w2)− F (x, v,∇v) =

∫
v<0

F (x, 0, 0)− F (x, v,∇v)

=

∫
v<0

f(x, 0)− f(x, v)−
∫
v<0

G(x, v,∇v)

≤ −
∫
v<0

G(x, v,∇v) ≤ 0,

and we deduce as before that v− = 0. This is, v ≥ 0 in Ω′.
Now, in order to proceed with the proof we assume further regularity of F for −ε0 ≤ s ≤M+ε0.

Let 0 ≤ ϕ ∈ C∞0 (Ω′) and 0 < ε < ε0/‖ϕ‖L∞ . Then, w = v + εϕ is an admissible function,
−ε0 < w < M + ε0 and we deduce that

divA(x, v,∇v) ≤ B(x, v,∇v) in Ω′.

Replacing ϕ by −ϕ we reverse the inequality. So that, v is a solution to (3.38). �

4. Energy minimizers of energy functional (1.1)

In this section we prove properties of nonnegative local minimizers of the energy functional (1.1).
We prove that nonnegative local minimizers are locally Hölder continuous (Theorem 4.3) and are
solutions to

divA(x, u,∇u) = B(x, u,∇u) in {u > 0},
where A(x, s, η) = ∇ηF (x, s, η) and B(x, s, η) = Fs(x, s, η). In particular we prove our main result
which is the local Lipschitz continuity on nonnegative local minimizers (Theorem 4.5).

We start with a definition, some related remarks and an existence result of a minimizer. We also
prove nonnegativity and boundedness, under suitable assumptions.

Definition 4.1. Let p, F and λ be as in Section 2. Assume that F satisfies (3.3) and (3.4) with τ

satisfying (2.7). We say that u ∈W 1,p(·)(Ω) is a local minimizer in Ω of

J(v) = JΩ(v) =

∫
Ω

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx

if for every Ω′ ⊂⊂ Ω and for every v ∈ W 1,p(·)(Ω) such that v = u in Ω \ Ω′ there holds that
J(v) ≥ J(u).

We point out that the energy J is well defined in W 1,p(·)(Ω) since, under the conditions in (2.7),
the embedding theorem (see Theorem A.5) applies.

Remark 4.1. Let u be as in Definition 4.1. Let Ω′ ⊂⊂ Ω and w − u ∈W 1,p(·)
0 (Ω′). If we define

w̄ =

{
w in Ω′,

u in Ω \ Ω′,

then w̄ ∈W 1,p(·)(Ω) and therefore J(w̄) ≥ J(u). If we now let

JΩ′(v) =

∫
Ω′

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx

it follows that JΩ′(w) ≥ JΩ′(u).
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Remark 4.2. Let J be as in Definition 4.1. If u ∈ W 1,p(·)(Ω) is a minimizer of J among the

functions v ∈ u+W
1,p(·)
0 (Ω), then u is a local minimizer of J in Ω.

We start with an existence result of a minimizer to (1.1).

Theorem 4.1. Let p, F,A,B and λ be as in Section 2. Let φ ∈ W 1,p(·)(Ω) and assume moreover
that F satisfies (3.10) and (3.11) with τ satisfying (2.7).

Then, there exists a minimizer u ∈ φ+W
1,p(·)
0 (Ω) to (1.1) and there holds that ‖u‖W 1,p(·)(Ω) ≤ C,

for a constant C depending only on ‖φ‖W 1,p(·)(Ω) ‖g‖L1(Ω), λmax, |Ω|, diam(Ω), N , pmin, pmax, q,

L, ν, c1, ||τ ||L∞(Ω) and the C1 norm of ∂Ω.

Proof. The proof is immediate from the computations in the proof of Proposition 3.2. �

We also have,

Theorem 4.2. Let p and λ be as in Section 2. Let F,A and B be as in Propostion 3.7, except for
the fact that we require that F satisfies (3.10) and (3.11) with τ satisfying (2.7), instead of (3.3)

and (3.4), and with no oscillation assumption on p. Let φ ∈ W 1,p(·)(Ω) such that 0 ≤ φ ≤ M , for
some M > 0.

Then, there exists a minimizer u ∈ φ+W
1,p(·)
0 (Ω) to (1.1) and 0 ≤ u ≤M in Ω.

Proof. Proceeding as in the proof of Proposition 3.2 we obtain that there exists a minimizer u ∈
φ + W

1,p(·)
0 (Ω) to (1.1). The proof that 0 ≤ u ≤ M is similar to that of Proposition 3.7. We only

have to observe that

{u− (u−M)+ > 0} = {u > 0} and {u+ u− > 0} = {u > 0}.
�

For local minimizers of (1.1) we first have

Lemma 4.1. Let p, F,A,B and λ be as in Section 2. Assume that F satisfies (3.3) and (3.4) with

τ satisfying (2.7). Let u ∈W 1,p(·)(Ω) be a local minimizer of

J(v) =

∫
Ω

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx.

Then

(4.1) divA(x, u,∇u) ≥ B(x, u,∇u) in Ω,

where A(x, s, η) = ∇ηF (x, s, η) and B(x, s, η) = Fs(x, s, η).

Proof. In fact, let t > 0 and 0 ≤ ξ ∈ C∞0 (Ω). Using the minimality of u we have

0 ≤ 1

t
(J(u− tξ)− J(u)) ≤ 1

t

∫
Ω

(
F (x, u− tξ,∇u− t∇ξ)− F (x, u,∇u)

)
dx

and if we take t→ 0, we obtain

(4.2) 0 ≤ −
∫

Ω
∇ηF (x, u,∇u) · ∇ξ dx−

∫
Ω
Fs(x, u,∇u)ξ dx,

which gives (4.1). �

From now on we will deal with nonnegative, bounded, local minimizers of (1.1). Next we will
prove that they are locally Lipschitz continuous.

We first prove that nonnegative, bounded, local minimizers are locally Hölder continuous.
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Theorem 4.3. Let p, F,A,B and λ be as in Section 2. Assume that F satisfies (3.3) and (3.4) with
τ satisfying (2.7). Let x0 ∈ Ω, r̂0 > 0 such that Br̂0(x0) ⊂⊂ Ω. Assume that A,B satisfy condition
(3.14) in Br̂0(x0) and either B(x, 0, 0) ≡ 0 for x ∈ Br̂0(x0) or B satisfies (3.32) for x ∈ Br̂0(x0).

Let u ∈W 1,p(·)(Ω)∩L∞(Ω) be a nonnegative local minimizer of (1.1). Then, there exist 0 < γ < 1,

γ = γ(N, pmin) and 0 < ρ̂0 < r̂0, such that u ∈ Cγ(Bρ̂0(x0)). Moreover, ‖u‖
Cγ(Bρ̂0 (x0))

≤ C with ρ̂0

and C depending only on β, pmax, pmin, N, L, r̂0, λ0,Λ0, ‖g‖L1(Br̂0 (x0)), ν, c1, λmax, ‖u‖L∞(Br̂0 (x0)),

||τ ||L∞(Br̂0 (x0)) and δ.

Proof. We will prove that there exist 0 < γ < 1 and 0 < ρ0 < r0 < r̂0 such that, if Br0(y) ⊂ Br̂0(x0)
and ρ ≤ ρ0, then

(4.3)
(

–

∫
–
Bρ(y)

|∇u|p− dx
)1/p−

≤ Cργ−1,

where p− = inf{p(x), x ∈ Br0(y)}. Without loss of generality we will assume that y = 0.

In fact, let 0 < r0 ≤ min{ r̂02 , 1}, 0 < r ≤ r0 and v the solution of

(4.4) divA(x, v,∇v) = B(x, v,∇v) in Br, v − u ∈W 1,p(·)
0 (Br).

Observe that, under our assumptions we can apply either Proposition 3.1 and Proposition 3.5 or
Proposition 3.6 and deduce that such a solution exists and it is bounded in Br if r0 is small enough
depending on δ and L = ‖∇p‖L∞(Ω). Hence, by Proposition 3.3, we have
(4.5)∫

Br

(
F (x, u,∇u)− F (x, v,∇v)

)
dx ≥

1

2
αλ0

(∫
Br∩{p(x)≥2}

|∇u−∇v|p(x) dx+

∫
Br∩{p(x)<2}

(
|∇u|+ |∇v|

)p(x)−2
|∇u−∇v|2 dx

)
,

where α = α(pmin, pmax) and λ0 is as in (2.2).
By the minimality of u, we have (if A1 = Br ∩ {p(x) < 2} and A2 = Br ∩ {p(x) ≥ 2})∫

A2

|∇u−∇v|p(x) dx ≤ CrN ,(4.6) ∫
A1

|∇u−∇v|2(|∇u|+ |∇v|)p(x)−2 dx ≤ CrN ,(4.7)

where C = C(pmin, pmax, N, λmax, λ0).
Let ε > 0. Take ρ = r1+ε and suppose that rε ≤ 1/2. Take 0 < η < 1 to be chosen later. Then,

by Young’s inequality, the definition of A1 and (4.7), we obtain

(4.8)

∫
A1∩Bρ

|∇u−∇v|p(x) dx ≤ C

η2/pmin

∫
A1∩Br

(|∇u|+ |∇v|)p(x)−2|∇u−∇v|2 dx

+ Cη

∫
Bρ∩A1

(|∇u|+ |∇v|)p(x) dx

≤ C

η2/pmin
rN + Cη

∫
Bρ∩A1

(|∇u|+ |∇v|)p(x) dx.

Therefore, by (4.6) and (4.8), we get

(4.9)

∫
Bρ

|∇u−∇v|p(x) dx ≤ C

η2/pmin
rN + Cη

∫
Bρ∩A1

(|∇u|+ |∇v|)p(x) dx,
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where C = C(pmin, pmax, N, λmax, λ0).
Since, |∇u|q ≤ C(|∇u−∇v|q+ |∇v|)q), for any q > 1, with C = C(q), we have, by (4.9), choosing

η small, that

(4.10)

∫
Bρ

|∇u|p(x) dx ≤ CrN + C

∫
Bρ

|∇v|p(x) dx,

where C = C(pmin, pmax, N, λmax, λ0).
Now let M ≥ 1 such that ||v||L∞(Br) ≤M and define

w(x) =
v(rx)

M
in B1.

Observe that M depends only on ‖u‖L∞(Br̂0 (x0)) if B(x, 0, 0) ≡ 0 or it depends also on the

structural conditions on F , A and B, on r̂0 and on the bound L of ‖∇p‖L∞ if not.
There holds that,

divĀ(x,w,∇w) = B̄(x,w,∇w) in B1

where

Ā(x, s, η) = A(rx,Ms, Mr η), B̄(x, s, η) = rB(rx,Ms, Mr η).

Now, let

Ã(x, s, η) =
( r
M

)p−r −1
Ā(x, s, η), B̃(x, s, η) =

( r
M

)p−r −1
B̄(x, s, η).

Observe that w ∈W 1,p̄(·)(B1) ∩ L∞(B1) satisfies

(4.11) divÃ(x,w,∇w) = B̃(x,w,∇w) in B1,

where p̄(x) = p(rx).
Let us see that (4.11) is under the conditions of Theorem 1.1 in [10].

First, we clearly have Ã(x, s, 0) = 0. Moreover, as 1 ≤ rp
−
r −p+

r ≤ CL < ∞ if r ≤ 1 and we have
assumed that M ≥ 1,

(4.12)

∑
ij

∂Ãi
∂ηj

(x, s, η)ξiξj =
( r
M

)p−r −1(M
r

)∑
ij

∂Ai
∂ηj

(rx,Ms, Mr η)ξiξj

≥ λ0

( r
M

)p−r −1(M
r

)p(rx)−1
|η|p̄(x)−2|ξ|2 ≥ λ0|η|p̄(x)−2|ξ|2.

On the other hand,

(4.13)
∑
ij

∣∣∣∂Ãi
∂ηj

(x, s, η)
∣∣∣ ≤ Λ0

( r
M

)p−r −1(M
r

)p(rx)−1
|η|p̄(x)−2 ≤ Λ0CLM

pmax−pmin |η|p̄(x)−2.

Then, assuming without loss of generality that p(rx1) ≥ p(rx2),

(4.14)

|Ã(x1, s, η)− Ã(x2, s, η)| ≤
( r
M

)p−r −1∣∣A(rx1,Ms, Mr η)−A(rx2,Ms, Mr η)
∣∣

≤
( r
M

)p−r −1
Λ0

((M
r

)p(rx1)−1
|η|p(rx1)−1 +

(M
r

)p(rx2)−1
|η|p(rx2)−1

)
(
1 +

∣∣ log
(
M
r |η|

)
|
)
rβ|x1 − x2|β

≤ Λ0CLM
pmax−pmin

(
|η|p̄(x1)−1 + |η|p̄(x2)−1

)(
1 +

∣∣ log |η|
∣∣)|x1 − x2|β
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if r ≤ rM,β.
Similarly,

|Ã(x, s1, η)− Ã(x, s2, η)| ≤ Λ4|s1 − s2||η|p̄(x)−1

with Λ4 = Λ0CLM
pmax−pmin+1.

On the other hand, denoting τ̄(x) = τ(rx),

|B̃(x, s, η)| ≤ Λ0r
( r
M

)p−r −1
+ Λ0CLM

pmax−pmin+1|η|p̄(x) + Λ0r
( r
M

)p−r −1
|Ms|τ̄(x)

≤ Λ5

(
1 + |η|p̄(x) + |s|τ̄(x)

)
with Λ5 depending on Λ0, L, pmax, pmin, M and ||τ ||L∞(Br̂0 (x0)).

Since |w| ≤ 1, we may assume that

B̃(x, s, η) ≤ Λ6

(
1 + |η|p̄(x)

)
,

with Λ6 depending on Λ0, L, pmin, pmax, M and ||τ ||L∞(Br̂0 (x0)).

From Theorem 1.1 in [10], it follows that w ∈ C1,α
loc (B1) for some 0 < α < 1 and that

sup
B1/2

|∇w| ≤ C,

with C depending only on β, pmax, pmin, N, L, λ0,Λ0, M and ||τ ||L∞(Br̂0 (x0)), which implies

(4.15) sup
Br/2

|∇v| ≤ CM

r
.

Therefore, from (4.10) and (4.15), we deduce that if r is small depending on M and β,

(4.16)

∫
Bρ

|∇u|p(x) dx ≤ CrN + CρNr−p+ ,

with p+ = sup{p(x), x ∈ Br0} and C depending on β, pmax, pmin, N, L, λ0,Λ0, λmax, M and
||τ ||L∞(Br̂0 (x0)).

Then, if we take ε ≤ pmin
N , we have by (4.16) and by our election of ρ, that

–

∫
–
Bρ

|∇u|p− dx ≤ –

∫
–
Bρ

|∇u|p(x) dx+
1

|Bρ|

∫
Bρ∩{|∇u|<1}

|∇u|p− dx

≤ –

∫
–
Bρ

|∇u|p(x) dx+ 1

≤ 1 + C
(r
ρ

)N
+ Cr−p+

≤ 1 + Cr−εN + Cr−p+

≤ Cr−p+ = Cρ
− p+

(1+ε) .

Now let r0 ≤ r0(ε, pmin, L) so that

p+

p−
=
p+(Br0)

p−(Br0)
≤ 1 +

ε

2
,
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and small enough so that, in addition, rε0 ≤ 1/2. Then, if ρ ≤ ρ0 = r1+ε
0 and moreover, r0 is small

depending on M and β,

–

∫
–
Bρ

|∇u|p− dx ≤ Cρ−
(1+ ε

2 )

(1+ε)
p− = Cρ−(1−γ)p− ,

where γ =
ε
2

(1+ε) = γ(N, pmin). That is, if ρ ≤ ρ0 = r1+ε
0(

–

∫
–
Bρ

|∇u|p− dx
)1/p−

≤ Cργ−1.

Thus (4.3) holds, with C depending only on β, pmax, pmin, N, L, r̂0, λ0,Λ0, ‖g‖L1(Br̂0 (x0)), ν, c1,

λmax, ‖u‖L∞(Br̂0 (x0)), ||τ ||L∞(Br̂0 (x0)) and δ.

Applying Morrey’s Theorem, see e.g. [18], Theorem 1.53, we conclude that u ∈ Cγ(Bρ0(x0))
and ‖u‖

Cγ(Bρ0/2(x0))
≤ C for C depending only on β, pmax, pmin, N, L, r̂0, λ0,Λ0, ‖g‖L1(Br̂0 (x0)), ν,

c1, λmax, ‖u‖L∞(Br̂0 (x0)), ||τ ||L∞(Br̂0 (x0)) and δ. �

As a corollary we obtain

Corollary 4.1. Let p, F,A,B and λ be as in Section 2. Assume that F satisfies (3.8) and (3.9)
with τ satisfying (2.7). Assume that A,B satisfy condition (3.14) and either B(x, 0, 0) ≡ 0 for

x ∈ Ω or B satisfies (3.32) for x ∈ Ω. Let u ∈W 1,p(·)(Ω)∩L∞(Ω) be a nonnegative local minimizer
of (1.1). Then, there exists 0 < γ < 1, γ = γ(N, pmin) such that u ∈ Cγ(Ω). Moreover, if Ω′ ⊂⊂ Ω,
then ‖u‖Cγ(Ω′) ≤ C with C depending only on dist(Ω′, ∂Ω), β, N , pmin, pmax, L, λmax, λ0, Λ0, ν,

c1, ‖u‖L∞(Ω), ||τ ||L∞(Ω) and δ.

Then, under the assumptions of the previous corollary we have that u is continuous in Ω and
therefore, {u > 0} is open. We can now prove the following property for nonnegative local mini-
mizers of (1.1)

Lemma 4.2. Let p, F,A,B and λ be as in Corollary 4.1. If u ∈W 1,p(·)(Ω)∩L∞(Ω) is a nonnegative
local minimizer of

J(v) =

∫
Ω

(
F (x, v,∇v) + λ(x)χ{v>0}

)
dx,

there holds that,

(4.17) divA(x, u,∇u) = B(x, u,∇u) in {u > 0},

where A(x, s, η) = ∇ηF (x, s, η) and B(x, s, η) = Fs(x, s, η).

Proof. From Lemma 4.1 we already know that (4.1) holds. In order to obtain the opposite inequality
in {u > 0}, we let 0 ≤ ξ ∈ C∞0 ({u > 0}) and consider u− tξ, for t < 0, with |t| small.

Using the minimality of u we have

0 ≥ 1

t
(J(u− tξ)− J(u)) =

1

t

∫
Ω

(
F (x, u− tξ,∇u− t∇ξ)− F (x, u,∇u)

)
dx

and if we take t→ 0, we obtain

0 ≥ −
∫

Ω
∇ηF (x, u,∇u) · ∇ξ dx−

∫
Ω
Fs(x, u,∇u)ξ dx,

which gives the desired inequality, so (4.17) follows. �
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We will next prove the Lipschitz continuity of nonnegative local minimizers of (1.1).

Before getting the Lipschitz continuity we prove the following result

Theorem 4.4. Let p, F,A,B, λ and u be as in Corollary 4.1. Let Ω′ ⊂⊂ Ω. There exist constants
C > 0, r0 > 0 such that if x0 ∈ Ω′ ∩ ∂{u > 0} and r ≤ r0 then

sup
Br(x0)

u ≤ Cr.

The constants depend only on dist(Ω′, ∂Ω), β, N , pmin, pmax, L, λmax, λ0, Λ0, ν, c1, ‖u‖L∞(Ω),
||τ ||L∞(Ω) and δ.

Proof. Let us suppose by contradiction that there exist a sequence of nonnegative local minimizers
uk corresponding to functionals Jk given by

Jk(v) =

∫
Ω

(
Fk(x, v,∇v) + λk(x)χ{v>0}

)
dx,

with uk ∈ W 1,pk(·)(Ω) ∩ L∞(Ω), pmin ≤ pk(x) ≤ pmax, ‖∇pk‖L∞ ≤ L, 0 ≤ λk(x) ≤ λmax,
||uk||L∞(Ω) ≤M , for some M ≥ 1, and points x̄k ∈ Ω′ ∩ ∂{uk > 0}, such that

sup
Brk/4(x̄k)

uk ≥ krk and rk ≤
1

k
.

We denote Ak(x, s, η) = ∇ηFk(x, s, η) and Bk(x, s, η) = (Fk)s(x, s, η) and we also suppose that
pk, Fk, Ak, Bk and τk satisfy the assumptions in Section 2 with constants λ0, Λ0 and β, we assume
that Ak, Bk satisfy condition (3.14) and Fk satisfy (3.8) and (3.9) with τk satisfying (2.7) and either
and Bk(x, 0, 0) ≡ 0 for x ∈ Ω or Bk satisfy (3.32) for x ∈ Ω. All these conditions with exponent pk
and constants independent of k and with ||τk||L∞(Ω) ≤ τ0, for some τ0 > 0 .

Without loss of generality we will assume that x̄k = 0.
Let us define in B1, for k large, ūk(x) = 1

rk
uk(rkx), p̄k(x) = pk(rkx) and λ̄k(x) = λk(rkx). Then

pmin ≤ p̄k(x) ≤ pmax, ‖∇p̄k‖L∞(B1) ≤ Lrk and 0 ≤ λ̄k(x) ≤ λmax. Moreover, ūk is a nonnegative

minimizer in ūk +W
1,p̄k(·)
0 (B1) of the functional

(4.18) J̄k(v) =

∫
B1

(
F̄k(x, v,∇v) + λ̄k(x)χ{v>0}

)
dx,

where
F̄k(x, s, η) = Fk(rkx, rks, η),

with
ūk(0) = 0 and max

B1/4

ūk(x) > k.

Let dk(x) = dist(x, {ūk = 0}) and Ok =
{
x ∈ B1 : dk(x) ≤ 1− |x|

3

}
. Since ūk(0) = 0 then

B1/4 ⊂ Ok, therefore

mk := sup
Ok

(1− |x|)ūk(x) ≥ max
B1/4

(1− |x|)ūk(x) ≥ 3

4
max
B1/4

ūk(x) >
3

4
k.

For each fixed k, ūk is bounded, then (1 − |x|)ūk(x) → 0 when |x| → 1 which means that there
exists xk ∈ Ok such that (1− |xk|)ūk(xk) = supOk(1− |x|)ūk(x), and then

(4.19) ūk(xk) =
mk

1− |xk|
≥ mk >

3

4
k
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as xk ∈ Ok. Observe that δk := dk(xk) ≤ 1−|xk|
3 . Let yk ∈ ∂{ūk > 0} ∩B1 such that |yk − xk| = δk.

Then,

(1) B2δk(yk) ⊂ B1,

since if y ∈ B2δk(yk)⇒ |y| < 3δk + |xk| ≤ 1,

(2) B δk
2

(yk) ⊂ Ok,

since if y ∈ B δk
2

(yk)⇒ |y| ≤
3

2
δk + |xk| ≤ 1− 3

2
δk ⇒ dk(y) ≤ δk

2
≤ 1− |y|

3
and

(3) if z ∈ B δk
2

(yk)⇒ 1− |z| ≥ 1− |xk| − |xk − z| ≥ 1− |xk| −
3

2
δk ≥

1− |xk|
2

.

By (2) we have

max
Ok

(1− |x|)ūk(x) ≥ max
B δk

2

(yk)
(1− |x|)ūk(x) ≥ max

B δk
2

(yk)

(1− |xk|)
2

ūk(x),

where in the last inequality we are using (3). Then,

(4.20) 2ūk(xk) ≥ max
B δk

2

(yk)
ūk(x).

As Bδk(xk) ⊂ {ūk > 0}, then Brkδk(rkxk) ⊂ {uk > 0}. Hence, divAk(x, uk,∇uk) = Bk(x, uk,∇uk)
in Brkδk(rkxk). Recalling that ||uk||L∞(Brkδk (rkxk)) ≤ M , we can replace |s|τk(x) in (2.6) for Bk by

M τ0 . Then we can apply Harnack’s inequality (Theorem 3.2 in [23]) and we thus have

(4.21) max
B 3

4 rkδk
(rkxk)

uk(x) ≤ C
[

min
B 3

4 rkδk
(rkxk)

uk(x) + rkδk
]
,

with C a positive constant depending only on N, pmin, pmax, L, M , λ0, Λ0 and τ0.
It follows that

(4.22) max
B 3

4 δk
(xk)

ūk(x) ≤ C
[

min
B 3

4 δk
(xk)

ūk(x) + δk
]
.

Recalling (4.19), we get from (4.22), for k large,

(4.23) min
B 3

4 δk
(xk)

ūk(x) ≥ cūk(xk),

with c a positive constant depending only on N, pmin, pmax, L M , λ0, Λ0 and τ0. As B 3
4
δk

(xk) ∩
B δk

4

(yk) 6= ∅ we have by (4.23)

(4.24) max
B δk

4

(yk)
ūk(x) ≥ cūk(xk).

Let wk(x) =
ūk(yk + δk

2 x)

ūk(xk)
. Then, wk(0) = 0 and, by (4.20) and (4.24), we have

max
B1

wk ≤ 2 max
B1/2

wk ≥ c > 0.(4.25)
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Now, recalling that ūk is a nonnegative minimizer in ūk+W
1,p̄k(·)
0 (B1) of the functional J̄k in (4.18)

and that B δk
2

(yk) ⊂ B1, we see that wk is a nonnegative minimizer of Ĵk in wk+W
1,p̄k(yk+

δk
2
x)

0 (B1),

where

Ĵk(v) =

∫
B1

(
F̂k(x, v,∇v) + λ̂k(x)χ{v>0}

)
dx,

F̂k(x, s, η) = F̄k
(
yk +

δk
2
x, ūk(xk)s,

2ūk(xk)

δk
η
)

and λ̂k(x) = λ̄k(yk +
δk
2
x).

We let ck = 2ūk(xk)
δk

and we notice that ck →∞. So we define p̃k(x) = p̄k(yk + δk
2 x) and divide the

functional Ĵk by c
p̃−k
k , with p̃−k = infB1 p̃k. Then, it follows that wk is a nonnegative minimizer of

J̃k in wk +W
1,p̃k(·)
0 (B1), where

J̃k(v) =

∫
B1

(
F̃k(x, v,∇v) + λ̃k(x)χ{v>0}

)
dx,

F̃k(x, s, η) = c
−p̃−k
k F̂k(x, s, η) and λ̃k(x) = c

−p̃−k
k λ̂k(x).

We claim that

(4.26) λ̃k → 0 uniformly in B1,

(4.27) c
p̃k(x)−p̃−k
k → 1 uniformly, 1 ≤ cp̃k(x)−p̃−k

k ≤M1 in B1,

(4.28) p̃k → p0 uniformly and pmin ≤ p0 ≤ pmax in B1,

up to a subsequence, for some constants M1 and p0, where M1 = M1(M,L).

On the one hand, 0 < λ̃k(x) ≤ λmaxc
−1
k → 0 gives (4.26).

In addition, in B1 there holds, for k large, that 1 ≤ c
p̃k(x)−p̃−k
k ≤ e2‖∇p̃k‖L∞ log ck . But we have

‖∇p̃k‖L∞ log ck ≤ Lrk δk2 log
(

2M
rkδk

)
→ 0, which implies (4.27).

To see (4.28) we observe that pmin ≤ pk(x) ≤ pmax and ‖∇pk‖L∞(Ω) ≤ L and then, for a

subsequence, pk → p uniformly on compacts of Ω, so p̃k(x) = pk(rk(yk + δk
2 x)) → p0 = p(0)

uniformly in B1.
We define Ãk = ∇ηF̃k and B̃k = (F̃k)s and we observe that

p̃k(x) = pk(rk(yk +
δk
2
x)), τ̃k(x) = τk(rk(yk +

δk
2
x)),

F̃k(x, s, η) = c
−p̃−k
k F̂k(x, s, η) = c

−p̃−k
k F̄k

(
yk +

δk
2
x, ūk(xk)s,

2ūk(xk)

δk
η
)

= c
−p̃−k
k Fk

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
,

Ãk(x, s, η) = c
−p̃−k
k ckAk

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
,

B̃k(x, s, η) = c
−p̃−k
k rkūk(xk)Bk

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
.

There holds that p̃k, F̃k, Ãk, B̃k and τ̃k are under the assumptions of Section 2, with constants
independent of k. In fact, recalling (4.27), we get for k large

pmin ≤ p̃k(x) ≤ pmax, ‖∇p̃k‖L∞(Ω) ≤ L, p̃k(x) ≤ τ̃k(x) ≤ τ0,
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Ãk(x, s, 0) = 0,

(4.29)

∑
i,j

∂(Ãk)i
∂ηj

(x, s, η)ξiξj =c
−p̃−k
k c2

k

∑
i,j

∂(Ak)i
∂ηj

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
ξiξj

≥λ0c
p̃k(x)−p̃−k
k |η|p̃k(x)−2|ξ|2 ≥ λ0|η|p̃k(x)−2|ξ|2,

(4.30)

∑
i,j

∣∣∣∂(Ãk)i
∂ηj

(x, s, η)
∣∣∣ =c

−p̃−k
k c2

k

∑
i,j

∣∣∣∂(Ak)i
∂ηj

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)∣∣∣
≤Λ0c

p̃k(x)−p̃−k
k |η|p̃k(x)−2 ≤ Λ0M1|η|p̃k(x)−2.

Assuming, without loss of generality, that p̃k(x1) ≥ p̃k(x2) and using that (rk
δk
2 )β1 log ck ≤

(rk
δk
2 )β1 log

(
2M
rkδk

)
→ 0, we get

(4.31)

∣∣Ãk(x1, s, η)−Ãk(x2, s, η)
∣∣ ≤ c−p̃−kk ckΛ0(rk

δk
2

)β1 |x1 − x2|β
(
|ckη|p̃k(x1)−1 + |ckη|p̃k(x2)−1

)
(
1 +

∣∣ log |ckη|
∣∣) ≤ 2M1Λ0|x1 − x2|β

(
|η|p̃k(x1)−1 + |η|p̃k(x2)−1

)(
1 +

∣∣ log |η|
∣∣).

Finally, recalling that rkūk(xk) ≤M , we obtain

(4.32)

∣∣Ãk(x, s1, η)− Ãk(x, s2, η)
∣∣ ≤c−p̃−kk ckΛ0rkūk(xk)|s1 − s2||ckη|p̃k(x)−1

≤Λ0M1M |s1 − s2||η|p̃k(x)−1,

(4.33)∣∣B̃k(x, s, η)
∣∣ ≤c−p̃−kk rkūk(xk)Λ0

(
1 + |ckη|p̃k(x) + |rkūk(xk)s|τ̃k(x)

)
≤MΛ0

(
c
−p̃−k
k +M1|η|p̃k(x) + c

−p̃−k
k |Ms|τ̃k(x)

)
≤M1MΛ0

(
1 + |η|p̃k(x) +M τ0 |s|τ̃k(x)

)
.

On the other hand, Ãk and B̃k satisfy condition (3.14). In fact, since Ak and Bk satisfy condition
(3.14),

1

2

∑
i,j

∂(Ãk)i
∂ηj

(x, s, η)ξiξj + (B̃k)s(x, s, η)w2

=
1

2
c
−p̃−k
k c2

k

∑
i,j

∂(Ak)i
∂ηj

(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
ξiξj

+ c
−p̃−k
k (rkūk(xk))

2(Bk)s
(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
w2

≥ c−p̃
−
k

k 2
∣∣(Ak)s(rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
· (ckξ)(rkūk(xk)w)

∣∣
= 2
∣∣(Ãk)s(x, s, η) · ξw

∣∣.
Also, since Fk satisfy (3.8) and (3.9) with τk satisfying (2.7), with exponent pk and constants

independent of k, then F̃k satisfy (3.8) and (3.9) with τ̃k satisfying (2.7), with exponent p̃k and
constants independent of k. In fact,

(4.34)
F̃k(x, s, η) ≥ c−p̃

−
k

k ν|ckη|p̃k(x) − c−p̃
−
k

k c1

(
|rkūk(xk)s|p̃k(x)−δ + 1

)
≥ ν|η|p̃k(x) − c1M

pmax
(
|s|p̃k(x)−δ + 1

)
.
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Analogously,

(4.35)
F̃k(x, s, η) ≤ c−p̃

−
k

k ν−1|ckη|p̃k(x) + c
−p̃−k
k c1

(
|rkūk(xk)s|τ̃k(x) + 1

)
≤M1ν

−1|η|p̃k(x) + c1M
τ0
(
|s|τ̃k(x) + 1

)
.

If Bk(x, 0, 0) ≡ 0 for x ∈ Ω, then B̃k(x, 0, 0) ≡ 0 for x ∈ B1.
On the other hand, if Bk satisfy (3.32) for x ∈ Ω with exponent pk and constant independent of

k, then B̃k satisfy (3.32) for x ∈ B1 with exponent p̃k and constant independent of k. In fact,

(4.36)

|B̃k(x, s, η)| =c−p̃
−
k

k rkūk(xk)|Bk
(
rk(yk +

δk
2
x), rkūk(xk)s, ckη

)
|

≤c−p̃
−
k

k rkūk(xk)Λ0(1 + |rkūk(xk)s|p̃k(x)−1 + |ckη|p̃k(x)−1)

≤c−1
k M1M

pmaxΛ0(1 + |s|p̃k(x)−1 + |η|p̃k(x)−1)

≤M1M
pmaxΛ0(1 + |s|p̃k(x)−1 + |η|p̃k(x)−1).

We now take vk the solution of

(4.37) divÃk(x, vk,∇vk) = B̃k(x, vk,∇vk) in B3/4, vk − wk ∈W
1,p̃k(·)
0 (B3/4).

In fact, from Corollaries 3.3, 3.4 and 3.2 and the upper bound in (4.25), it follows that if k is
large enough

(4.38) ||vk||L∞(B3/4) ≤ C̄,

where C̄ depends only on N , pmin, pmax, L, λ0, Λ0, ν, c1, δ, M and τ0. Here we have used that
supB3/4

p̃k − infB3/4
p̃k ≤ ‖∇p̃k‖L∞ 3

2 ≤ 3Lrk
δk
4 < δ in (3.8), for k large.

Then, by (4.38), we can replace |s|τ̄k(x) in (4.33) by 1 + C̄τ0 and applying Theorem 1.1 in [10]
we obtain that, for k large,

(4.39) ||vk||C1,α(B1/2) ≤ Ĉ with 0 < α < 1

where Ĉ depends only on β, N , pmin, pmax, L, λ0, Λ0, ν, c1, δ, M and τ0. Therefore, there is a
function v0 ∈ C1,α(B1/2) such that, for a subsequence,

(4.40) vk → v0 and ∇vk → ∇v0 uniformly in B1/2.

Let us now show that

(4.41) wk − vk → 0 in Lpmin(B3/4).

From the minimality of wk we have

(4.42)

∫
B3/4

F̃k(x,wk∇wk)− F̃k(x, vk∇vk) ≤ C(N)‖λ̃k‖L∞(B3/4),

which together with Proposition 3.3 gives∫
Ak2

|∇wk −∇vk|p̃k(x) dx ≤ C‖λ̃k‖L∞(B3/4),(4.43) ∫
Ak1

|∇wk −∇vk|2(|∇wk|+ |∇vk|)p̃k(x)−2 dx ≤ C‖λ̃k‖L∞(B3/4),(4.44)

where Ak1 = B3/4 ∩ {p̃k(x) < 2}, Ak2 = B3/4 ∩ {p̃k(x) ≥ 2} and C = C(pmin, pmax, N, λ0).
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Applying Hölder’s inequality (Theorem A.3) with exponents 2
p̃k(x) and 2

2−p̃k(x) , we get

(4.45)

∫
Ak1

|∇wk −∇vk|p̃k(x) dx ≤ 2 ‖Gak‖L2/p̃k(·)(Ak1)‖G
b
k‖L2/(2−p̃k(·))(Ak1),

where

Gak = |∇wk −∇vk|p̃k(|∇wk|+ |∇vk|)(p̃k−2)p̃k/2

Gbk = (|∇wk|+ |∇vk|)(2−p̃k)p̃k/2.

Since ∫
Ak1

|Gak|2/p̃k(x) dx =

∫
Ak1

|∇wk −∇vk|2(|∇wk|+ |∇vk|)p̃k(x)−2 dx,

then, from (4.44), (4.26) and Proposition A.1, we get, for k large,

(4.46) ‖Gak‖L2/p̃k(·)(Ak1) ≤ C‖λ̃k‖
pmin/2
L∞(B3/4),

C = C(pmin, pmax, N, λ0). On the other hand, (4.37) and the bounds (4.34), (4.35) and (4.38) give

C1

∫
B3/4

|∇vk|p̃k(x) ≤
∫
B3/4

F̃k(x, vk∇vk) + C2

≤
∫
B3/4

F̃k(x,wk∇wk) + C2

≤C
(
1 +

∫
B3/4

|∇wk|p̃k(x)
)
.

This implies

(4.47)

∫
Ak1

|Gbk|2/(2−p̃k(x)) dx ≤ C
∫
B3/4

(|∇wk|p̃k(x) + |∇vk|p̃k(x)) dx ≤ C̃
(
1 +

∫
B3/4

|∇wk|p̃k(x)
)
,

for some C̃ ≥ 1, depending only on pmin, pmax and the uniform constants and functions in (4.34),
(4.35) and (4.38). Now (4.47) and Proposition A.1 give

(4.48) ‖Gbk‖L2/(2−p̃k(·))(Ak1) ≤ C̃
(
1 +

∫
B3/4

|∇wk|p̃k(x)
)
.

Let us show that the right hand side in (4.48) can be bounded independently of k.
In fact, let ṽk be the solution of

(4.49) divÃk(x, ṽk,∇ṽk) = B̃k(x, ṽk,∇ṽk) in B7/8, ṽk − wk ∈W
1,p̃k(·)
0 (B7/8).

Then, similar arguments to those leading to (4.38) and (4.39), give, for k large enough,

(4.50) ||ṽk||L∞(B7/8) ≤ C̄,

and

(4.51) ||ṽk||C1,α(B3/4) ≤ Ĉ with 0 < α < 1,

where C̄ and Ĉ depend only β, N , pmin, pmax, L, λ0, Λ0, ν, c1, δ, M and τ0.
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Since wk is a nonnegative minimizer of J̃k in B1, then we can argue as in the proof of Theorem
4.3 and get estimate (4.10) for u = wk, v = ṽk, p(x) = p̃k(x), λ(x) = λ̃k(x), r = 7/8 and ρ = 3/4.
That is,

(4.52)

∫
B3/4

|∇wk|p̃k(x) dx ≤ C + C

∫
B3/4

|∇ṽk|p̃k(x) dx,

where C = C(pmin, pmax, N, λmax, λ0). Therefore (4.52) and (4.51) give, for k large, a uniform
bound for the right hand side in (4.48). That is,

(4.53) ‖Gbk‖L2/(2−p̃k(·))(Ak1) ≤ C̄,

with C̄ a constant depending only on β, N , pmin, pmax, L, λ0, Λ0, ν, c1, δ, M and τ0.
Now, putting together (4.43), (4.45), (4.46), (4.53) and (4.26), we obtain

(4.54)

∫
B3/4

|∇wk −∇vk|p̃k(x) → 0.

Thus, using Poincare’s inequality (Theorem A.4 ) and Theorem A.2, we get (4.41).

In order to conclude the proof, we now observe that, since p̃k, F̃k, Ãk, B̃k, τ̃k, λ̃k and wk fall
(uniformly) under the assumption of Corollary 4.1 in B1, there exists 0 < γ < 1, γ = γ(N, pmin),
such that

‖wk‖Cγ(B1/2) ≤ C

with C depending only on β, N , pmin, pmax, L, λmax, λ0, Λ0, ν, c1, τ0 and δ (recall that
‖wk‖L∞(B1) ≤ 2).

Therefore, there is a function w0 ∈ Cγ(B1/2) such that, for a subsequence,

(4.55) wk → w0 uniformly in B1/2.

In addition, recalling (4.40) and (4.41), we get v0 = w0 in B1/2.
We then observe that, since there holds that wk ≥ 0, wk(0) = 0 and (4.25), then (4.55) implies

w0 ≥ 0, w0(0) = 0, max
B1/2

w0 ≥ c > 0.

That is,

(4.56) v0 ≥ 0, v0(0) = 0, max
B1/2

v0 ≥ c > 0.

Let us show that (4.56) gives a contradiction. We will divide the proof in two cases.

Case I. Assume that B̃k(x, 0, 0) ≡ 0 for x ∈ B1.
We first observe that, since wk ≥ 0, from Proposition 3.6 we deduce that vk ≥ 0.
Recalling (4.39), we choose M0 > 0 such that, for every k,

||vk||L∞(B1/2) ≤M0, ||∇vk||L∞(B1/2) ≤M0,

and define
˜̃Ak(x, s, η) = a(s, η)Ãk(x, s, η) + (1− a(s, η))|η|p0−2η,

˜̃Bk(x, s, η) = a(s, η)B̃k(x, s, η),

where

a(s, η) = χ{|s|≤M0,|η|≤M0}.
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Then,

div ˜̃Ak(x, vk,∇vk) = ˜̃Bk(x, vk,∇vk) in B1/2.

From (4.29) and (4.30) (recall Remark 2.1) we deduce

(4.57)
|Ãk(x, s, η)| ≤ Λ̃0|η|p̃k(x)−1,

Ãk(x, s, η) · η ≥ Λ̃−1
0 |η|

p̃k(x),

for some constant Λ̃0 > 0 independent of k.
Let us now fix ε > 0. Then, if k ≥ k0(ε), (4.57), (4.33) and (4.28) give, for large k,

| ˜̃Ak(x, s, η)| ≤ ˜̃Λ0|η|p0−1 + cε,

˜̃Ak(x, s, η) · η ≥ ˜̃Λ
−1

0 |η|p0 − cε,

| ˜̃Bk(x, s, η)| ≤ ˜̃Λ0|η|p0−1 + cε,

for some positive constants ˜̃Λ0 and c (independent of ε and k).
Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get for any

0 < r < 1

max
Br/2

vk ≤ Cr
(

min
Br/2

vk + ε
1
p0

)
,

with Cr a positive constant.
Now, letting k →∞ first, and then ε→ 0, we get

(4.58) max
Br/2

v0 ≤ Cr min
Br/2

v0,

with

(4.59) v0 ≥ 0, v0(0) = 0.

Since 0 < r < 1 is arbitrary, we get v0 ≡ 0 in B1/2. This is in contradiction with (4.56) and
concludes the proof of Case I.

Case II. Assume that B̃k satisfy (3.32) for x ∈ B1 with exponent p̃k and constant independent
of k. Then, (4.30), (4.31), (4.32) and (4.36) imply that, for a subsequence,

Ãk → Ã uniformly on compacts of B1/2 × R× RN \ {0} and pointwise on B1/2 × R× RN ,

B̃k → 0 uniformly on compacts of B1/2 × R× RN ,

and from (4.29) and (4.30) (recall Remark 2.1) we deduce

|Ã(x, s, η)| ≤ Λ̃0|η|p0−1,

Ã(x, s, η) · η ≥ Λ̃−1
0 |η|

p0 ,

for some constant Λ̃0 > 0. Then, (4.37) and (4.40) imply that

divÃ(x, v0,∇v0) = 0 in B1/2.

Applying Harnack’s inequality (see [22], Theorems 5 and 6 and Section 5), we get again, that (4.58)
and (4.59) holds for any 0 < r < 1. This contradicts once more (4.56) and concludes the proof. �

We can now prove the Lipschitz continuity of nonnegative local minimizers of (1.1)
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Theorem 4.5. Let p, F,A,B, λ and u be as in Corollary 4.1. Then u is locally Lipschitz continuous
in Ω. Moreover, for any Ω′ ⊂⊂ Ω the Lipschitz constant of u in Ω′ can be estimated by a constant
C depending only on dist(Ω′, ∂Ω), β, N , pmin, pmax, L, λmax, λ0, Λ0, ν, c1, ‖u‖L∞(Ω), ||τ ||L∞(Ω)

and δ.

Proof. The result is a consequence of Corollary 4.1, Lemma 4.2 and Theorem 4.4 above, and
Proposition 2.1 in [16]. We point out that, although the proof of Proposition 2.1 in [16] is written

for the particular case in which A(x, s, η) = |η|p(x)−2η and B(x, s, η) = f(x), this same proof is
valid for general A and B under the present assumptions, without changes. �

5. Examples

In this section we present some examples of application of our results.

Theorem 5.1. Let f(x, s) be a measurable function such that f(x, ·) ∈ C2(R) for every x ∈ Ω. Let
a(x, s) be a Hölder continuous function with exponent α, a(x, ·) ∈ C2(R) for every x ∈ Ω. Let p,
τ and λ as in Section 2 and 0 < δ < pmin. Assume that there exist positive constants a0, a1, a2, c1

and Λ0 such that

f1 −c1(1 + |s|p(x)−δ) ≤ f(x, s) ≤ c1(1 + |s|τ(x)) in Ω× R.
f2 fs(x, 0) ≡ 0 in Ω.
f3 fss(x, s) ≥ 0 in Ω× R.

f4 |fs(x, s)| ≤ Λ0(1 + |s|τ(x)) in Ω× R.

And

a1 0 < a0 ≤ a(x, s) ≤ a1 <∞ in Ω× R.
a2 |as(x, s)| ≤ a2 in Ω× R.

a3
(
a(x, s)1−γ(x)

)
ss
≤ 0 in Ω× R with γ(x) = 2p(x)

min{1,p(x)−1} > 1.

Let

F (x, s, η) = a(x, s)
|η|p(x)

p(x)
+ f(x, s)

and let u ∈W 1,p(·)(Ω)∩L∞(Ω) a nonnegative, local minimizer of (1.1). Then, u is locally Lipschitz
continuous in Ω.

Proof. We only have to see that F,A,B satisfy the hypotheses of Theorem 4.5.
There holds that

A(x, s, η) = a(x, s)|η|p(x)−2η, B(x, s, η) = as(x, s)
|η|p(x)

p(x)
+ fs(x, s).

And
a0

pmax
|η|p(x) − c1(1 + |s|p(x)−δ) ≤ F (x, s, η) ≤ a1

pmin
|η|p(x) + c1(1 + |s|τ(x)).

Moreover,

(1) A(x, s, 0) = 0.

(2)
∑

i,j
∂Ai
∂ηj

(x, s, η)ξiξj ≥ λ0|η|p(x)−2|ξ|2. In fact,

(5.1)

∑
i,j

∂Ai
∂ηj

(x, s, η)ξiξj = a(x, s)
[
(p(x)− 2)|η|p(x)−4〈η, ξ〉2 + |η|p(x)−2|ξ|2

]
≥ a(x, s) min{1, p(x)− 1}|η|p(x)−2|ξ|2 ≥ λ0|η|p(x)−2|ξ|2

with λ0 = a0 min{1, pmin − 1}.
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(3)
∑

i,j

∣∣∣∂Ai∂ηj
(x, s, η)

∣∣∣ ≤ Λ0|η|p(x)−2 if Λ0 ≥ a1N(pmax + 3).

(4) |A(x1, s, η)−A(x2, s, η)| ≤ Λ0|x1−x2|α
(
|η|p(x1)−1+|η|p(x2)−1

)∣∣(1+
∣∣ log |η|

∣∣) for a big enough
constant Λ0. In fact, without loss of generality we may assume that p(x1) ≥ p(x2). There
holds,

|A(x1, s, η)−A(x2, s, η)| ≤ a(x1, s)
∣∣|η|p(x1)−1 − |η|p(x2)−1

∣∣+
∣∣a(x1, s)− a(x2, s)

∣∣|η|p(x2)−1.

Now, if |η| ≥ 1,∣∣|η|p(x1)−1 − |η|p(x2)−1
∣∣ ≤ L|x1 − x2||η|p(x1)−1

∣∣ log |η|
∣∣ ≤ L|x1 − x2|

(
|η|p(x1)−1 + |η|p(x2)−1

)∣∣ log |η|
∣∣.

A similar inequality holds if |η| ≤ 1. So that,

|A(x1, s, η)−A(x2, s, η)| ≤ a1L|x1 − x2|
(
|η|p(x1)−1 + |η|p(x2)−1

)∣∣ log |η|
∣∣+ Ca|x1 − x2|α|η|p(x2)−1,

where Ca is the Holder constant of the function a. And the result follows if Λ0 ≥ a1Ld(Ω)1−α+
Ca with d(Ω) the diameter of Ω.

(5) |A(x, s1, η)−A(x, s2, η)| ≤ a2|η|p(x)−1|s1 − s2|.
We clearly have,

(1) |B(x, s, η)| ≤ Λ0(1 + |η|p(x) + |s|τ(x)) (as we may assume, without loss of generality that
Λ0 ≥ a2

pmin
).

(2) B(x, 0, 0) = 0.

Finally, let us see that

2|As(x, s, η) · ξ w| ≤ 1

2

∑
i,j

∂Ai
∂ηj

(x, s, η)ξiξj +Bs(x, s, η)w2.

In fact, let

`(x) =
p(x)− 2

2(p(x)− 1)
ε(x, s) = a(x, s) min{1, p(x)− 1}.

Then,

2|As(x, s, η) · ξ w| ≤
(√

ε(x, s)|η|`(x)(p(x)−1)|ξ|
)( 2√

ε(x, s)
|as(x, s)||η|(1−`(x))(p(x)−1) |w|

)
≤ ε(x, s)

2
|η|p(x)−2|ξ|2 +

2

ε(x, s)
as(x, s)

2|η|p(x)w2

=
1

2
a(x, s) min{1, p(x)− 1}|η|p(x)−2|ξ|2 +

2as(x, s)
2

a(x, s) min{1, p(x)− 1}
|η|p(x)w2.

By (5.1), we only have to check that

Bs(x, s, η) ≥ 2as(x, s)
2

a(x, s) min{1, p(x)− 1}
|η|p(x).

Since fss(x, s) ≥ 0 it is enough to check that

(5.2) ass(x, s) ≥ γ(x)
as(x, s)

2

a(x, s)
with γ(x) =

2p(x)

min{1, p(x)− 1}
> 1.

And, (5.2) holds by hypothesis a3. �
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If a(x, s) is smooth in −M1 < s < M2 with M1,M2 > 0, condition a3 only holds in 0 ≤ s ≤M <
M2 and the local minimizer u satisfies that 0 ≤ u ≤M , we can still apply the results in this paper
and get that u is locally Lipschitz continuous.

Theorem 5.2. Let f(x, s) be a measurable function such that f(x, ·) ∈ C2(R) for every x ∈ Ω.
Let a(x, s) be a Hölder continuous function with exponent α, a(x, ·) ∈ C2(−M1,M2) ∩ Lip(R) for
almost every x ∈ Ω with M1,M2 > 0. Let p, τ and λ as in Section 2 and 0 < δ < pmin. Assume
that there exist positive constants a0, a1, a2, c1,Λ0 and 0 < M < M2 such that

f1 −c1(1 + |s|p(x)−δ) ≤ f(x, s) ≤ c1(1 + |s|τ(x)) in Ω× R.
f2 fs(x, 0) ≡ 0 in Ω.
f3 fss(x, s) ≥ 0 in Ω× R.

f4 |fs(x, s)| ≤ Λ0(1 + |s|τ(x)) in Ω× R.

And

a1 0 < a0 ≤ a(x, s) ≤ a1 <∞ in Ω× R.
a2 |as(x, s)| ≤ a2 a.e. in Ω× R.

a3’
(
a(x, s)1−γ(x)

)
ss
≤ 0 in Ω× [0,M ] with γ(x) = 2p(x)

min{1,p(x)−1} > 1.

Let

F (x, s, η) = a(x, s)
|η|p(x)

p(x)
+ f(x, s)

and let u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) be a local minimizer of (1.1) such that 0 ≤ u ≤ M . Then, u is
locally Lipschitz continuous in Ω.

Proof. By Proposition 3.7 for such a function f and with a satisfying a1 and a2, for every ball

Br(x0) ⊂ Ω with r small enough there exists a solution v ∈ u+W
1,p(·)
0 (Br(x0)) of (1.2) such that

0 ≤ v ≤ ‖u‖L∞(Br(x0)). And this result also holds for all the rescaled equations and functions that
appear in the proofs of Section 4. Hence, condition (3.14) is only needed for s ∈ (0,M) and this is
a consequence of a3’. �

Example 5.1. A possible example of functions a and f satisfying the assumptions of Theorem 5.2
is

a(x, s) =


(1 + s)−q(x) if − 1/2 ≤ s ≤M2,

2q(x) if s ≤ −1/2,

(1 +M2)−q(x) if s ≥M2,

with M2 > 0 and q ∈ L∞(Ω) a Hölder continuous function such that 0 < q(x) < 1
γ(x)−1 and

f(x, s) = b(x)|s|τ(x)

with 0 ≤ b ∈ L∞(Ω) and τ(x) ≥ 2 in Ω satisfying (2.7).
Another possible choice of f is

(5.3) f(x, s) = b(x)f̃(x, s)

with 0 ≤ b ∈ L∞(Ω) and

f̃(x, s) =

{
s2 if |s| ≤ 1,

ã(x)|s|τ(x) + b̃(x)|s|+ c̃(x) if |s| ≥ 1,

where τ(x) satisfies (2.7) and the functions ã, b̃, c̃ ∈ L∞(Ω) are chosen in such a way that f̃(x, ·) ∈
C2(R) for every x ∈ Ω.
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With this choice of a and f , for every 0 < M < M2 there holds that any local minimizer u such
that 0 ≤ u ≤M is locally Lipschitz continuous in Ω.

Observe that, by Theorem 4.2, if φ ∈W 1,p(·)(Ω) is such that 0 ≤ φ ≤M < M2, such a minimizers
always exists.

We have another example.

Theorem 5.3. Let f(x, s) be a measurable function such that f(x, ·) ∈ C2(R) for every x ∈ Ω. Let
G(x, η) be a measurable function such that G(x, ·) ∈ C1(RN ) ∩ C2(RN \ {0}) for every x ∈ Ω. Let
p and λ as in Section 2 and assume that either f satisfies conditions f1, · · · , f4 in Theorem 5.1 or
f satisfies f1, f3 in Theorem 5.1 and

f4’ |fs(x, s)| ≤ Λ0

(
1 + |s|p(x)−1

)
.

On the other hand, G satisfies

G1 ν
(
|η|p(x) − 1

)
≤ G(x, η) ≤ ν−1

(
|η|p(x) + 1

)
with ν > 0.

G2 ∇ηG(x, 0) ≡ 0 in Ω.

G3
∑

i,j
∂2G
∂ηi∂ηj

ξiξj ≥ λ0|η|p(x)−2|ξ|2.

G4
∑

i,j

∣∣∣ ∂2G
∂ηi∂ηj

∣∣∣ ≤ Λ0|η|p(x)−2.

G5 |∇ηG(x1, η) − ∇ηG(x2, η)| ≤ Λ0|x1 − x2|β
(
|η|p(x1)−1 + |η|p(x2)−1

)(
1 +

∣∣ log |η|
∣∣) for some

0 < β ≤ 1.

Let
F (x, s, η) = G(x, η) + f(x, s)

and let u ∈ W 1,p(·)(Ω) ∩ L∞(Ω) be a nonnegative, local minimizer of (1.1). Then, u is locally
Lipschitz continuous in Ω.

Proof. There holds that

A(x, s, η) = ∇ηG(x, η), B(x, s, η) = fs(x, s).

And it is clear that F,A and B satisfy the assumptions in Theorem 4.5. �

Example 5.2. A possible example of function G satisfying the assumptions of Theorem 5.3 is

G(x, η) = a(x)G̃
(
|η|p(x)

)
,

with p(x) as in Section 2, a(x) a Hölder continuous function such that a0 ≤ a(x) ≤ a1, with a0, a1

positive constants and G̃ ∈ C2
(
[0,∞)

)
a function satisfying:

c0 ≤ G̃′(t) ≤ C0,

0 ≤ G̃′′(t) ≤ C0

1 + t
c0, C0 positive constants.

In fact, since c0 ≤ G̃′(t) ≤ C0, condition G1 in Theorem 5.3 holds. We have ∇ηG(x, η) =

a(x)G̃′
(
|η|p(x)

)
p(x)|η|p(x)−2η, so we get condition G2. We obtain condition G3 by reasoning as

in (5.1), using that in the present case we have G̃′′(t) ≥ 0 and G̃′(t) ≥ c0.

We get condition G4 by using in our computations that G̃′(t) ≤ C0 and G̃′′(t)t ≤ C0.

Finally, applying again that G̃′′(t)t ≤ C0, we can obtain the estimate

|G̃′
(
|η|p(x1)

)
− G̃′

(
|η|p(x2)

)
| ≤ C0|p(x1)− p(x2)|| log |η||,

which combined with computations similar as those in (4) in Theorem 5.1 leads to condition G5.
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A possible example of function f satisfying the assumptions of Theorem 5.3 is

f(x, s) = g(x)s, with g ∈ L∞(Ω).

In fact, it is immediate that f satisfies conditions f1, f3 and f4’.
On the other hand, f(x, s) = b(x)|s|τ(x) with b and τ as in Example 5.1 and f(x, s) as in (5.3)

are other possible choices.

Let us present another example

Example 5.3. Another possible example of function G satisfying the assumptions of Theorem 5.3
is

G(x, η) = Ã(x)η · η|η|p(x)−2,

with p(x) as in Section 2 and Ã(x) ∈ RN×N , symmetric, Hölder continuous in Ω and such that

λ(x)I ≤ Ã(x) ≤ Λ(x)I.

Here λ0 ≤ λ(x) ≤ Λ(x) ≤ Λ0 with λ0,Λ0 positive constants and Λ(x)−λ(x) ≤ c0, with c0 a suitable
positive constant depending only on N , pmin, pmax and λ0.

In fact, conditions G1 and G2 in Theorem 5.3 are easy to verify. The computations leading to
G4 and G5 are similar to the computations in Theorem 5.1.

In order to verify G3, we observe that, denoting a(x) the smaller eigenvalue of Ã(x), there holds
that

Ã(x) = a(x)I + B̃(x), with ||B̃(x)||L∞(Ω) ≤ ||Λ(x)− λ(x)||L∞(Ω).

Then we can write
G(x, η) =a(x)|η|p(x) + B̃(x)η · η|η|p(x)−2

=G1(x, η) +G2(x, η).

Now, proceeding as in Theorem 5.1, we get

(5.4)
∑
i,j

∂2G1

∂ηi∂ηj
ξiξj ≥ cpminλ0|η|p(x)−2|ξ|2.

It is not hard to see that

(5.5)
∑
i,j

∣∣∣ ∂2G2

∂ηi∂ηj

∣∣∣ ≤ C||Λ(x)− λ(x)||L∞(Ω)|η|p(x)−2,

with C depending only on N , pmin and pmax. Then, combining (5.4) and (5.5) we deduce that
G(x, η) satisfies condition G3, if we take ||Λ(x)− λ(x)||L∞(Ω) ≤ c0, with c0 depending only on λ0,
N , pmin and pmax.

For choices of suitable functions f(x, s) for this G(x, η) we refer to Example 5.2.

Remark 5.1. We can present further examples of functions satisfying our assumptions. Let p
and λ be as in Section 2. Let F1 and F2 satisfy the assumptions on Theorem 4.5, with Bi = ∂sFi
satisfying Bi(x, 0, 0) ≡ 0 for x ∈ Ω, i = 1, 2. Then Theorem 4.5 also applies to the function

F (x, s, η) = a1(x)F1(x, s, η) + a2(x)F2(x, s, η),

for any choice of Hölder continuous functions a1(x), a2(x), which are bounded from above and below
by positive constants.

The same result holds if F1 and F2 satisfy the assumptions on Theorem 4.5, with Bi = ∂sFi
satisfying (3.32) for x ∈ Ω, i = 1, 2.

Similar consideration applies to functions F1 and F2 under the assumptions of Theorem 5.2.
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Appendix A

In Section 1 we included some preliminaries on Lebesgue and Sobolev spaces with variable
exponent. For the sake of completeness we collect here some additional results on these spaces.

Proposition A.1. There holds

min
{(∫

Ω
|u|p(x) dx

)1/pmin

,
(∫

Ω
|u|p(x) dx

)1/pmax
}
≤ ‖u‖Lp(·)(Ω)

≤ max
{(∫

Ω
|u|p(x) dx

)1/pmin

,
(∫

Ω
|u|p(x) dx

)1/pmax
}
.

Some important results for these spaces are

Theorem A.1. Let p′(x) such that

1

p(x)
+

1

p′(x)
= 1.

Then Lp
′(·)(Ω) is the dual of Lp(·)(Ω). Moreover, if pmin > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are reflexive.

Theorem A.2. Let q(x) ≤ p(x). If Ω has finite measure, then Lp(·)(Ω) ↪→ Lq(·)(Ω) continuously.

We also have the following Hölder’s inequality

Theorem A.3. Let p′(x) be as in Theorem A.1. Then there holds∫
Ω
|f ||g| dx ≤ 2‖f‖p(·)‖g‖p′(·),

for all f ∈ Lp(·)(Ω) and g ∈ Lp′(·)(Ω).

The following version of Poincare’s inequality holds

Theorem A.4. Let Ω be bounded. Assume that p(x) is log-Hölder continuous in Ω (that is, p has

a modulus of continuity ω(r) = C(log 1
r )−1). For every u ∈W 1,p(·)

0 (Ω), the inequality

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω)

holds with a constant C depending only on N, diam(Ω) and the log-Hölder modulus of continuity
of p(x).

The following Sobolev embedding holds. We assume for simplicity that the domain is C1, but
the result holds with weaker assumptions on the smoothness of the boundary.

Theorem A.5. Let Ω be a C1 bounded domain. Assume that p(x) is log-Hölder continuous in
Ω and 1 < pmin ≤ p(x) ≤ pmax < ∞. Let τ be such that τ(x) ≥ p(x) and τ ∈ C(Ω). Assume

moreover that τ(x) ≤ p∗(x) = Np(x)
N−p(x) if pmax < N , τ(x) is arbitrary if pmin > N , τ(x) = p(x) if

pmin ≤ N ≤ pmax.
Then, W 1,p(·)(Ω) ↪→ Lτ(·)(Ω) continuously. The embedding constant depends only on N , |Ω|, the

log-Hölder modulus of continuity of p(x), pmin, pmax, ||τ ||L∞ and the C1 norm of ∂Ω.

For the proof of these results and more about these spaces, see [9], [14], [20], [13] and the
references therein.
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[13] P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics 2236,

Springer, 2019.
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