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ABSTRACT

The understanding of the causes that produce the deflection of coronal mass ejections (CMEs) is

essential for the space weather forecast. In this article, we study the effects on CMEs trajectories

produced by the different properties of a coronal hole close to the ejection area. For this analysis, we

perform numerical simulations of the ideal magnetohydrodynamics equations that emulate the early

rising of the CME in presence of a coronal hole. We find that, the stronger the magnetic field and the

wider the coronal hole area, the larger the CME deflection. This effect is reduced when the coronal

hole moves away from the ejections region. To characterize this behavior, we propose a dimensionless

parameter that depends on the coronal hole properties and properly quantifies the deflection. Also,

we show that the presence of the coronal hole near a CME magnetic structure produces a minimum

magnetic energy region which is responsible for the deflection. Thus, we find a relationship between

the coronal hole properties, the location of this region and the CME deflection.

Keywords: magnetohydrodynamics (MHD) — methods: numerical — Sun: coronal mass ejections

(CMEs) — Sun: magnetic fields

1. INTRODUCTION

Coronal mass ejections (CMEs) are eruptive events

in which large amounts of solar mass are released to-

wards the interplanetary medium. They often interact

with the Earth’s magnetosphere and cause geomagnetic

storms, making them objects of great interest for space

weather forecasting studies. It is known that CMEs

do not always evolve in a radial direction but can de-

viate due to multiple factors dificulting the prediction

of Earth encounters (Zhuang et al. 2017). In this con-

text, the analysis of the coronal environment during the

early stages of the CME’s evolution is of utmost impor-

tance to estimate a probable trajectory. The CMEs de-

viations from the radial direction (deflection, hereafter)

are mainly attributed to the distribution of several mag-

netic structures surrounding the CME formation area,

namely: coronal holes (e.g., Cremades et al. 2006; Xie

et al. 2009; Gopalswamy et al. 2009; Kilpua et al. 2009;
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Panasenco et al. 2013), active regions (e.g., Kay et al.

2015; Möstl et al. 2015), pseudostreamers (e.g., Lynch &

Edmondson 2013), streamer belts (e.g., Zuccarello et al.

2012; Kay et al. 2013; Yang et al. 2018), and helio-

spheric current sheets (e.g., Liewer et al. 2015; Wang

et al. 2019).

Currently in literature, mainly coronal magnetic

structures like pseudostreamers (PSs), streamer belts

(SBs) or heliospheric current sheets (HCSs) are related

with low magnetic energy regions. These structures act

as potential wells where the CMEs are believed to “fall”

changing their radial trajectory. On the other hand, ac-

tive regions (ARs) act in a different way, since the strong

gradients of the magnetic field strength present in the

neighborhood of these regions are responsible for the

CME deflection. Moreover, coronal holes (CHs) seem to

act as magnetic walls, because CMEs cannot penetrate

their open magnetic field and are pushed in the opposite

direction.

There are several case studies (see, e.g., Jin et al. 2017;

Yang et al. 2018; Cécere et al. 2019), where the deflec-

tion of the analyzed CME seems to be produced by the

interaction with a CH. In these studies, it is observed
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that the CMEs move away from the CH region. In stud-

ies of observational multievents, the influence of coronal

holes in the CMEs trajectory is studied by means of a

quantity that represents a “fictitious force” which de-

pends on both, the area of the CH and its distance to

the CME (Cremades et al. 2006). These studies show

a good agreement between the measured deviation and

the sum of all fictitious forces of the holes.

In addition to these studies, Gopalswamy et al. (2009)

analyzed the influence of coronal holes in the propaga-

tion of six CMEs using an “influence parameter”, which

includes the CH magnetic field strength. They conclude

that the open field lines of the coronal holes act as a

“magnetic wall that constrains the CME propagation.”

Also, the study of a large amount of magnetic clouds

(MCs) and non-MCs, show that the deflection of inter-

planetary CMEs is influenced by CHs (Mäkelä et al.

2013).

Many efforts have been carried out to understand the

behavior of coronal mass ejections, in which the numer-

ical simulations of the magnetohydrodynamics (MHD)

equations play a preponderant role. Several works in the

literature are devoted to study the CME deflection an-

alyzing the ability of different magnetic structures sur-

rounding a CME event to produce a deflection (see, e.g.,

Lugaz et al. 2011; Zuccarello et al. 2012; Lynch & Ed-

mondson 2013; Zhou et al. 2014). Other simulations

of multicases (see, e.g., Zhou & Feng 2013) study mag-

netic structures containing regions of low magnetic en-

ergy, imbalance in the magnetic pressure and tension,

magnetic tension and pressure gradient or reconnections

that produce magnetic forces giving rise to the CME de-

viation.

A method to analyze how the trajectory of CMEs is

altered is the ForeCAT model (Kay et al. 2013, 2015).

This model takes into account the properties of the CME

(e.g., mass, expansion, velocity, etc.) and analyze how

the magnetic forces, produced by different background

magnetic structures, affect the radial trajectory of a

CME. Using this model, Capannolo et al. (2017) ana-

lyzed the deviation of the CME event of April 9, 2008,

and suggested for this particular case that the promi-

nence dynamics itself is the cause of the CME deviation.

In most observational cases the CMEs deflections have

been detected at coronagraph altitudes (>1.5 R�), with

a few cases at altitudes larger than 1.12 R� (see, e.g.,

Landi et al. 2010; Panasenco et al. 2011; Zuccarello et al.

2012; Panasenco et al. 2013; Capannolo et al. 2017). To

study the cases where a deflection occurs, it is neces-

sary to characterize the coronal environment during the

first evolution stages of the ejection at low coronal lev-

els (until 1.5 R�). Although it is well known that the

magnetic structures surrounding the CME affect its tra-

jectory, due to the complexity of the configurations, it is

difficult to quantify the specific action of each structure

of the magnetic environment on the CME trajectory.

In the present work we numerically study the effect of

coronal holes in an isolated CME flux rope with the aim

of characterizing the deflection as a function of the CH

features and the magnetic environment configuration.

For this purpose, we carry out numerical simulations of

the ideal MHD equations in 2.5 dimensions to model the

CME evolution in different magnetic scenarios with the

presence of a coronal hole. This allows us to analyze

the effect of each property of the CH (area, distance,

and magnetic field strength) in the early stages of the

CME evolution. We think that this systematic study

contributes to the understanding of the CME behavior

and its interaction with coronal holes.

2. THE MODEL

The basic model starts with the ideal MHD equations

in presence of a gravitational field, which arise from

considering the macroscopic behavior of a compressible

ideal fully ionized plasma. The ideal MHD equations for

a Cartesian system in its conservative form and in CGS

units are written as:

∂ρ
∂t +∇·(ρv) = 0 , (1)

∂(ρv)
∂t +∇·

(
ρvv − 1

4πBB
)

+∇p+ 1
8π∇B

2 = ρg , (2)

∂E
∂t +∇·

[(
E + p+ B2

8π

)
v − 1

4π (v ·B)B
]

= ρgv , (3)

∂B
∂t +∇· (vB −Bv) = 0 , (4)

where ρ indicates the plasma density, p the thermal pres-

sure, v the velocity, B the magnetic field, g is the gravity

acceleration, and E is the total energy (per unit volume)

given by

E = ρε+ 1
2ρv

2 + B2

8π ,

where ε is the internal energy and

j = c
4π ∇×B,

is the current density, with c the speed of light.

In addition to the MHD equations, the divergence-free

condition of the magnetic field, i.e.

∇·B = 0 , (5)

must be fulfilled.
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Figure 1. (a) Flux rope and coronal hole scheme. Black dashed-lines represent the magnetic field, the orange thick line
represents a FR, and the violet region represents a CH. Shaded plane indicates the photospheric surface. (b) Current wire
layers: r is the current wire radius, ∆ is the thickness of the transition layer between the current wire and the exterior and R
is the radial coordinate from the center of the current wire (in this case, the FR). (c) Components of the magnetic field with
their relative two-dimensional positions.

To complete the set of MHD equations a closure re-

lation among the thermodynamic variables must be im-

posed. We assume a calorically perfect gas for which

p = 2ρkBT/mi = (γ − 1)ρε, where kB is the Boltz-

mann constant, T the plasma temperature, mi the pro-

ton mass (assuming that the plasma is fully ionized hy-

drogen), and γ = 5/3 is the specific heats relation.

2.1. Numerical code

In order to evaluate the plasma behavior, the MHD

equations (1)–(4) are numerically solved in a two-

dimensional Cartesian grid of co-located finite volumes.

We perform 2.5D simulations to consider the z-direction

magnetic field component in the interior of the flux

rope, which are carried out using the FLASH Code

(Fryxell et al. 2000), an open-source publicly avail-

able suite of high-performance simulation tools devel-

oped at the Center for Astrophysical Thermonuclear

Flashes (Flash Center) of the University of Chicago.

This code, currently in its fourth version, uses the finite

volume method with Godunov-type schemes to solve

the high energy compressible MHD equations on reg-

ular grids with adaptive mesh refinement (AMR) capa-

bilities. For our simulations we choose the USM (unsplit

staggered mesh) solver available in FLASH, for which it

uses a second-order directionally unsplit scheme with a

MUSCL-type reconstruction. This solver implements a

more consistent treatment of the magnetic field, since

its formulation is based on the constrained transport

method and the corner transport upwind method, which

avoids the generation of non-physical magnetic field di-

vergence (Lee & Deane 2009). To solve the interface

Riemann problems we set the Roe’s solver among the

available options.

Cartesian 2D rectangular grids are used to represent

the physical domain of [−1 000, 1 000]Mm× [0, 1 000]Mm

with an initial 80×40 discretization and nine refinement

levels that take into account the pressure and temper-

ature gradients. With this discretization we obtained a

resolution of ∼ [0.1 × 0.1]Mm2 for the maximum refine-

ment. Boundary conditions are set as follows. At both

lateral ends outflow conditions (zero-gradient) are ap-

plied for the thermodynamic variables and the velocity

to allow waves to leave the domain without reflection.

The boundary conditions of the magnetic field at lateral

ends require to extrapolate the initial force-free config-

uration to ghost cells in order to avoid the generation

of spurious magnetic forces produced when assuming a

zero-gradient evolution extrapolation in a non-constant

magnetic field. Obviously, this model is valid as long

as shocks or disturbances do not reach the lateral ends

of the domain. In the lower and the upper limits the

hydrostatic boundary conditions must be imposed due

to the effect of gravity, which acts in the y-direction

and produces spurious fluxes through the top and the

bottom of the domain if pressure and density are not

correctly extrapolated. Therefore, to guarantee the con-

servation of the hydrostatic equilibrium at both ends we

use the extrapolation proposed by Krause (2019) consid-

ering constant temperature through the boundary. The

remaining variables (velocity and magnetic field com-

ponents) at the upper boundary are extrapolated with

a zero-gradient assumption, while for the lower bound-

ary we impose the condition described by Robertson &
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Priest (1987) to ensure the line-tied magnetic field condi-

tion that is present in the solar surface during the CME

evolution.

In addition to the described features of the numerical

model, a particular treatment is required to correctly

simulate the strong stratification of the background at-

mosphere. Then, to avoid spurious vertical velocities as-

sociated to the unbalance between the numerical fluxes

and the discrete gravitational source term when stan-

dard MUSCL-type schemes are used in strongly strat-

ified atmospheres, we implement the local hydrostatic

reconstruction scheme proposed by Krause (2019) to im-

prove the preservation of hydrostatic equilibrium during

the simulation.

Regarding the diffusive effects, we already established

that the ideal MHD equations are used, therefore there is

no physical diffusion added to our experiments. Analyt-

ically, the ideal MHD model do not permit the magnetic

reconnection, thus a current sheet should be formed in

the region below the flux rope where the magnetic lines

are strongly stretched, which eventually causes the stop-

ping of the flux rope rising (Forbes 1990). However, the

numerical diffusion present in the simulations provides

the necessary disipation to prevent the current sheet for-

mation allowing the ejection. We performed this analy-

sis in a previous paper (Krause et al. 2018) where it is

showed that the presence of anomalous magnetic resis-

tivity in the region of the current sheet formation do not

change the ejection velocity of the flux rope with respect

to the ideal model. In this way, we can neglect the mag-

netic resistivity and use the ideal MHD equations, which

allows a significant reduction in the computational cost.

2.2. Stratified atmosphere

To simulate the solar atmosphere we adopt a multi-

layer atmosphere structure (Mei et al. 2012). The chro-

mosphere is located between y = 0 and y = hch with

constant temperature Tch. Above this, the transition

region is extended to the base of the corona (y = hc)

where the temperature grows linearly until Tc, the con-

stant temperature of the corona. Then the initial tem-

perature distribution is given by

T (y) =


Tch if 0≤y<hch

(Tc − Tch)
[
y−hch
hc−hch

]
+ Tch if hch≤y<hc

Tc if hc≤y.

(6)

We set up a temperature of Tch = 10 000 K at the chro-

mosphere and Tc = 106 K at the corona. The height of

the chromosphere is hch = 10 Mm, the transition region

extends for 5 Mm until hc = 15 Mm, the base of the

corona.

Considering the atmosphere in hydrostatic equilib-

rium and current free, the pressure is obtained from the

combination of the equation of state and eq. (2) with

v = 0. Then, taking a system with the y-axis aligned

to the gravity acceleration but in the opposite direction

(i.e., g = (0,−GM�/(y+R�)2, 0), where G is the gravi-

tational constant, M� is the Sun’s mass, R� is the solar

radius, and y = 0 corresponds to the solar surface), the

hydrostatic pressure distribution is only a function of y:

p(y) =


pch exp

[(
hch

1+hch/R�
− y

1+y/R�

)
α
Tch

]
if 0≤y<hch

pch exp

[
−
∫ y
hch

α
T (y′)

(
1 + y′

R�

)−2

dy′
]

if hch≤y<hc

pc exp
[
− (y−hc)

1+(y−hc)/R�
α
Tc

]
if hc≤y

where

pch(y) = pc exp

[∫ hc

hch

α
T (y′)

(
1 + y′

R�

)−2

dy′
]
,

and α = mig�/2kB , with g� = GM�/R
2
�.

The associated density is obtained from the equation

of state, i.e.:

ρ = mip(y)
2kBT (y) . (7)

2.3. CME model

The catastrophe model by Forbes (1990) consists of

a magnetic configuration out of equilibrium driving the

ejection of the flux rope (FR hereafter). Forbes pro-

posed that the magnetic field of the FR is produced by

a current wire (originally proposed by van Tend & Ku-

perus (1978)). An image current wire is located below

the photosphere with opposite direction to generate a re-

pulsive force. Also, the model includes a line dipole be-

low the photosphere which provides an attractive force

to the CME’s wire and emulates the photospheric field.

Figure 1(a) shows a scheme of the magnetic field (black

dashed-lines) of a flux rope (orange thick line) and a

coronal hole (violet region). In Figure 1(b) a current

wire (the FR or the image current wire) is schematized,

where we can describe three zones (Mei et al. 2012):

Z1: Inside a current wire, 0 ≤ R < r − ∆
2 .

Z2: Throughout the transition layer, r− ∆
2 ≤R< r+ ∆

2 .

Z3: Outside a current wire, r + ∆
2 ≤ R,

where r is the current wire radius and ∆ is the thickness

of the transition layer between the current wire and the

exterior and R the radial coordinate from the center of

the current wire.
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The magnetic field component Bφ generated by a cur-

rent wire with current distribution jz, which are given

by eq. (8) and (9):

Bφ(R)=



2π
c j0R at Z1

2πj0
cR

{
1
2

(
r − ∆

2

)2 − (∆
2

)2
+

R2

2 + ∆R
π sin

[
π
∆

(
R− r + ∆

2

)]
+(

∆
π

)2
cos
[
π
∆

(
R− r + ∆

2

)]}
at Z2

2πj0
cR

[
r2 +

(
∆
2

)2 − 2
(

∆
π

)2]
at Z3,

(8)

jz(R)=


j0 at Z1

j0
2

{
cos
[
π
∆

(
R− r + ∆

2

)]
+ 1
}

at Z2

0 at Z3;

(9)

where j0 is a current density.

In order to obtain a helical magnetic field in the FR, to

achieve densities and temperatures consistent with ob-

servational data of flux ropes, we include to the catastro-

phe model a magnetic field in z-axis of strength Bz. In

this way, we avoid excessive gas pressure values needed

to balance the magnetic pressure inside the flux rope

in the initial equilibrium state. The component Bz of

the magnetic field, and the current distribution jφ, are

described by:

Bz(R) =
√

8πj1
c

√(
r − ∆

2

)2 −R2 , (10)

jφ(R) = j1R

[√(
r − ∆

2

)2 −R2

]−1

, (11)

where j1 is a current density. These expressions are valid

inside the flux rope (Z1) and are null in the rest of the

domain.

Then, the Cartesian components of the magnetic field

in the whole computational domain are given by (Mei

et al. 2012):

Bx = −Bφ(R−)
(y−h0)
R−

+Bφ(R+)
(y+h0)
R+

−

MdBφ
(
r+

∆
2

) (
r + ∆

2

) x2−(y+d)2

R4
d

,

By =Bφ(R−)
x
R−

−Bφ(R+)
x
R+

−

MdBφ
(
r+

∆
2

) (
r + ∆

2

) 2x(y+d)

R4
d

,

Bz =Bz(R−) . (12)

where h0 is the initial vertical position of the FR and

M is the intensity of the line dipole at depth d. The

distances R are:

R± =
√
x2 + (y ± h0)2,

Y
 [M
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]
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Figure 2. Initial density distribution (color-map) and mag-
netic field lines (white lines). An animated version of this
figure, showing the magnetic field lines and density evolu-
tion, is available in the HTML version.

Rd =
√
x2 + (y + d)2,

where R−, R+ and Rd are taken from having their ori-

gins in the FR, image current wire and line dipole, re-

spectively. In this way, the first, second and third terms,

for example of Bx correspond to the x-component of the

magnetic field produced by the FR, image current wire

and line dipole, respectively. Fig. 1 (c) shows a scheme

with the relative positions between the components of

the magnetic field, including the coronal hole.

The temperature inside the FR (TFR) varies according

to the following temperature distribution:

T (R−)=


TFR at Z1

(Tc−TFR)
[
R−−(r+∆/2)

∆

]
+TFR at Z2

Tc at Z3.

(13)

The internal pressure of the FR is obtained by propos-

ing a solution close to equilibrium:

pFR(x,y) =p(y) + 1
c

∫ r+ ∆
2

R

Bφ(R′)jz(R′)dR′

− 1
c

∫ r+ ∆
2

R

Bz(R′)jφ(R′)dR′, (14)

where p(y) is the background hydrostatic pressure.

We consider that the flux rope length is large enough

in order to satisfy the 2.5D assumption, which is in

agreement with the observations where lengths of (100−
500) Mm are registered (Berger 2014).

2.4. Coronal hole model
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The initial magnetic field of the coronal hole is de-

scribed by (Pascoe et al. 2014):

Bx =B0 sin

(
x−D

W

)
e−y/W ,

By =B0 cos

(
x−D

W

)
e−y/W ,

Bz =0. (15)

The parameter B0 is the radial magnetic field strength

of the coronal hole at the distance D on the x-axis. The

parameter W is related to the width of the coronal hole,

and modifies the decay of the strength of magnetic field

in the y-direction.

The total initial magnetic field is the sum of the mag-

netic field of the FR (eqs. (12)) and the corresponding

to the CH (eqs. (15)). Fig. 2 shows the total magnetic

field in white lines and the plasma density distribution

in color-map. As can be noted, a point of minimum

magnetic energy located at the left of the flux rope

(∼ (−50, 50)Mm) is present in this configuration. The

FR evolves toward the minimum magnetic energy re-

gion, as can be seen in the animated version of Fig. 2.

The relation between the location of the minimum mag-

netic energy (MME) region and the CME deflection is

analyzed with more detail in Section 3.

2.5. Parameter selection

To this study, we simulate warm flux ropes (with tem-

peratures equal to or greater than coronal ones), outside

active regions, at a height of 30 Mm with a diameter of

5 Mm (Berger 2014). These FRs usually have extensions

of (100 − 500) Mm, therefore we consider a characteris-

tic length of L0 = 100 Mm in the z -direction. By the

proposed model we obtain number density values inside

the FR in the range of (5× 108 − 1× 1010) cm−3, which

are comparable to the observations reported by Cheng

et al. (2012); Syntelis et al. (2016). To achieve B ∼ 1 G

nearby, for the background magnetic field, we choose the

relative intensity and depth of the dipole as were used

in Krause et al. (2018).

Our purpose is to analyze how the different character-

istics of a coronal hole influence the deflection of coro-

nal mass ejections. To do this, we change the parame-

ters that define the CH and analyze how these changes

modify the rising trajectory of the CME. In addition,

we want to analyze the dependence of the FR’s con-

figuration with regard to the modifications of the CHs.

For this, we study the influence of the CH in two dif-

ferent flux ropes (FR1, FR2) embedded in two differ-

ent coronal environments, whose number density values

at the base of the corona are: nc,FR1 = 3 × 108 cm−3

and nc,FR2 = 4.5 × 108 cm−3 (van der Holst et al. 2010;

Table 1. Coronal holes parameters
for each case.

Case B0 [G] D [Mm] W [Mm]

1 0.4 150 400

2 0.8 150 400

3 1.2 150 400

4 1.6 150 400

5 0.8 180 400

6 0.8 250 400

7 0.8 350 400

8 0.8 150 300

9 0.8 150 500

10 0.8 150 600

Vásquez 2016). The two simulated FRs have different

current densities j0 and j1, whose magnetic field values

are between (10 − 100) G inside them.

As described in Section 2.4, the parameters of a CH

are B0, D, and W . We choose values to obtain typical

non-polar CH scenarios. Statistical studies found the

absolute value of the magnetic field strength to be dis-

tributed from 0.2 G to 14.0 G, with areas (A ∼ WL0)

between (1.6 × 103 − 1.8 × 105) Mm2 (Hofmeister et al.

2017; Heinemann et al. 2019).

Under these considerations, we perform a parametric

study varying the CH features, which is carried out con-

sidering the values of Table 1. In Table 2 we show the

two configurations of the FR1 and FR2, and the remain-

ing fixed parameters.

3. RESULTS

In this section, we present the analysis of the per-
formed numerical simulations with the aim of quantify-

ing the influence of the CH parameters in the deviation

of the CME trajectory from the radial direction, and to

understand how this deflection is driven by a coronal

hole. In addition, we also analyze the relation between

the location of the minimum magnetic energy region and

the CME deflection. Given a set of CH parameters, we

separately analyze the dynamics of the FR1 and the FR2

configurations.

3.1. Deflection dependence on CH parameters

To quantify the deflection we measure the angle

formed between the vertical line that passes through

the initial position of the FR center, and the line de-

fined by the position of the densest point of the FR and

the solar center, as shown in Fig. 3. Case 2 (see Ta-

ble 2) is the reference coronal hole with magnetic field



Coronal holes influence on CME deflections 7

Table 2. Initial state parameters.

Parameter Value

FR 1 FR 2

j0 [stA cm−2] 435 525

j1 [stA cm−2] 455 300

TFR [MK] 1 4

nc [cm−3] 3 × 108 4.5 × 108

h0 [Mm] 30

r [Mm] 2.5

∆ [Mm] 0.25

d [Mm] 3.125

M 1

Note—Parameters j0 and j1 are the
current densities inside the flux rope
in z-direction and in φ-direction, re-
spectively, TFR is the internal FR
temperature, nc is the numerical
density at the base of the corona,
h0 is the vertical position (height)
of the FR, r is its radius, and ∆ is
the thickness of the transition layer
between the FR interior and the
corona. Parameters d and M are the
depth of the line dipole below the
boundary surface and its relative in-
tensity, respectively.
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Figure 3. Measurement of the angular deviation of the FR
center from the radial direction (deflection angle). The R�
is the solar radius. The color scale and white lines are like
in Fig. 2.

strength Bref = 0.8 G and width Wref = 400 Mm at a

distance of Dref = 150 Mm. We simulate the first 600

seconds (i.e. 10 minutes) of the evolution to analyze the

early development of the CME. In order to compare the

influence of each parameter on the deflection, we nor-

malize the results with respect to the angle obtained by

the FR in case 2 at the final time of the simulation, i.e.

θ0 = θref(t = 600 s). It has to be noted that there are

two different reference deflection angles corresponding

to each FR1 and FR2 scenario. With these definitions,

we can evaluate the relative effect of each parameter of

the CH in the CME evolution, and compare the results

for each FR scenario.

In Fig. 4 we show the deviations obtained for FR1

(left panels) and FR2 (right panels) for the different CH

configurations. It is noticeable that the influence of the

different coronal holes on both flux rope configurations

is similar. All the cases showed a quasi-linear tendency,

with a low deceleration. The results could be fitted by a

quadratic function (θ/θ0 = at2+vt+c). A more detailed

description in terms of the relative deflection velocities

v/v0 (with v0 the velocity of the reference case) is as

follows:

• The top panels of Fig. 4 show the results for

cases 1, 2, 3, and 4, for which we simulate coro-

nal holes of width Wref = 400 Mm at a distance

Dref = 150 Mm measured from the flux rope,

with different strengths of their magnetic field

(B0 = [0.4, 0.8, 1.2, 1.6] G). The CH of Case 1

(B0 = 0.4 G) triggers a deflection 52 % and 49 %

slower than the reference case (Case 2) for FR1

and FR2, respectively. For Case 3 (B0 = 1.2 G),

the CH leads a deflection velocity 1.3 and 1.15

faster than the reference case for FR1 and FR2,
respectively. And, for Case 4 (B0 = 1.6 G), the

CH leads a deflection velocity 1.5 and 1.2 faster

than the reference case for FR1 and FR2, respec-

tively.

• Cases 2, 5, 6 and 7 are shown in the middle panels

of Fig. 4. These CH configurations have the same

magnetic field strength (Bref = 0.8 G) and the

same width (Wref = 400 Mm), with different dis-

tances from the FR (D = [150, 180, 250, 350] Mm).

The CH of Case 5 (D = 180 Mm) triggers a deflec-

tion 4 % slower than the reference case (Case 2) for

both FRs. In Case 6 (D = 250 Mm) the deflection

velocity presents a reduction with respect to the

reference case of 15 % for FR1 and 14 % for FR2.

For Case 7 (D = 350 Mm) the deflection velocity

decreases 36 % and 34 %, respectively.
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FR 1 FR 2

(a)

(b)

(c)

Figure 4. Angular deviation of the FR’s center from the vertical direction (deflection), as a function of time for different (a)
magnetic field strengths, (b) distances, and (c) widths of CH.

• The bottom panels of Fig. 4 show the results of

cases 8, 2, 9 and 10, where the simulated coro-

nal holes have the same magnetic field strength

(Bref = 0.8 G) and are located at the same distance

from the flux rope (Dref = 150 Mm), with differ-

ent widths (W = [300, 400, 500, 600] Mm). The re-

sults for the coronal hole of Case 8 (W = 300 Mm)

exhibit a reduction of the deflection velocity of

10 % for FR1 and 9 % for FR2 in relation to the

reference case. For Case 9 (W = 500 Mm) the

deflection velocity increases in a factor of 1.06

for both FR1 and FR2. Finally, the Case 10

(W = 600 Mm) show an increment in deflection

velocity of 1.1 for both FRs.

Following the idea of the “influence parameter” calcu-

lated by Gopalswamy et al. (2009) where f ∼ B0A/D
2,

and given the quasi-linear trend of the relative deflection

velocities v/v0 described above, we analyze how this di-

mensionless quantity (named f hereafter) is a function

of B0, W and D−2. Fig. 5 shows the linear fit (orange

filled line) and its standard deviation (orange shadow

area) obtained for the different CHs parameters. The
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Figure 5. Linear fit for the CH’s parameters (orange line)
with their standard deviation (orange shadow area). The
black dashed-line represents the dimensionless parameter av-
erage with its standard deviation (gray shadow area).

top, middle, and bottom panels show the fits:

fB = αBWrefD
−2
ref B0 ,

fD = αDWrefBrefD
−2 ,

fW = αWBrefD
−2
ref W ,

taking into account the results of both FRs. The green

square and magenta diamond symbols represent the val-

ues of v/v0 obtained from FR1 and FR2, respectively.

From these fits we obtained αB = (48 ± 8), αD =

(31 ± 7), and αW = (18 ± 3) in units of [Mm/G].

With black dotted-line we show the average f̄ = ᾱBW
D2 ,

where ᾱ = (32 ± 4)[Mm/G] is the average of αi, with

i = B0, D,W . This dimensionless parameter average is

in agreement with the fit values obtained for the mag-

netic field strength and the inverse square of the dis-

tance, but overestimates the relative deflection velocities

obtained for the variation of the width (ᾱ > αW ).

3.2. Deflection dependence on the MME position

In previous works it is mentioned that coronal holes

can act as magnetic walls that avoid the radial evolu-

tion of CMEs (Gopalswamy et al. 2009), but there is

not enough explanation about the physical mechanisms

involved in this process. As shown in Section 2.4, the

presence of the coronal hole in the magnetic configura-

tion generates a region of minimum magnetic energy to

the left of the FR. To understand which is the role of

this null point in the CME deflection, in Figure 6 we

plot the FR path for each case, up to time t = 600 s,

overlapped to the position of the corresponding mini-

mum of magnetic energy at the initial time (“x” marks

in the plots).

In this analysis we can see again that even though both

flux ropes follow different paths, they show a similar be-

havior under the variation of CH parameters. Below we

analyze the path of each case according to the variation

of the used parameters:

• The top panels of Fig. 6 show the paths for cases

1, 2, 3, and 4, where the magnetic field strength

is varied (B0 = [0.4, 0.8, 1.2, 1.6] G). As can be

seen, the stronger the magnetic field, the closer

the position of the minimum magnetic energy to

the FR. This produces a strong difference in the

early stages of the FR evolution and in their ve-

locities. For the later evolution all cases seem to
be channeled in a same path. It must be noted

that the CHs of these cases have field lines of the

same shape, as discussed below.

• Cases 2, 5, 6 and 7 are shown in the mid-

dle panels of Fig. 6. These CH configura-

tions have different distances from the FR (D =

[150, 180, 250, 350] Mm). For these cases we can

see that the closer the CH to the FR the closer

the position of the MME to the FR too. In ad-

dition, apparently the lower (in y-direction) the

position of the minimum magnetic energy region,

the slower the rising of the flux rope.

• The bottom panels of Fig. 6 show the paths

of cases 8, 2, 9 and 10, where the simu-

lated coronal holes have different widths (W =

[300, 400, 500, 600] Mm). The wider the CH, the
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FR 1 FR 2

(a)

(b)

(c)

Figure 6. Path of the FR center (dots) up to t = 600 s, and the position of the MME at t = 0 s (x), for different (a) magnetic
field strengths, (b) distances, and (c) widths of the CH.

closer the position of the MME to the FR. For

these cases, as in the previous item, the lower (in

y−direction) the position of the minimum mag-

netic energy region, the slower rising of the flux

rope.

For this qualitative analysis we note that the distance

from the point of minimum magnetic energy to the flux

rope (measured at t = 0 s) seems to play an important

role mainly in the first stage of the evolution.

In order to evaluate the relation between the position

of the minimum magnetic energy region and the CME

deflection, we compare the relative change in the ini-

tial distance between the MME point and the FR with

respect to the reference case ((d0 − d)/d0 [%]) and the

corresponding relative change in the deflection velocities

(v − v0)/v0 [%]. In other words, we want to know how

much closer is the MME point to the FR for a given

change in the deflection velocity. In the top panel of

Fig. 7 we plot the relative changes of the initial MME

distances and the deflection velocities for different mag-

netic field strengths. It can be seen a trend where the

stronger the magnetic field the closer the MME point

to the FR and the larger the deflection, but the change

in the deflection velocity can be greater or lesser than
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the change in the MME distance depending on the FR

configuration. In addition, it is observed that, for weak

magnetic fields, there is a direct relationship between

the relative change in the MME distance and the rela-

tive variation of the deflection velocity. To consider now

the effect of the distance from the flux rope to the coro-

nal hole, we plot the middle panel of Fig. 7, where a

similar trend to the previous case is observed: the closer

the distance to the CH the closer the MME region to

the FR and the larger the deflection. However, in these

results we can see that the relative changes in the deflec-

tion velocities is quite greater than the relative variation

of the MME distance for both FR configurations. The

influence of the width of the coronal hole is presented in

the bottom panel of Fig. 7. Here we see again a similar

trend that, for this case, implies that the wider the CH

the closer the MME point to the FR and the larger the

deflection. Contrarily to the results of the effect of dis-

tance to the CH analysis, in this case the relative change

in the MME distance is larger than the relative variation

of the deflection velocity.

Considering the previous analysis, we can conclude

that the closer de position of the MME point to the

FR the larger the deflection of the CME, but this re-

lation seems to be quite complex and depends on the

other parameters of the problem. This means that dif-

ferent configurations with equal initial distance between

the MME point and the FR center will not necessar-

ily exhibit similar deflections because other parameters

strongly affect the CME trajectory, as shown in Fig. 8.

In reference to the physical mechanisms involved in

the CME deflections by the presence of coronal holes we

identify the following aspects. Firstly, we note that the

MME point produced by the overlapping of the differ-

ent magnetic structures is initially an attracting point

to the flux rope, whose effect is more important in the

early evolution of the ejection. The reason by which

the FR does not reach the MME point is because this

minimum of magnetic energy is destroyed when the bow

shock generated by the FR rising impacts it. Therefore,

although the FR is initially attracted by the MME re-

gion, it is deflected by another factor when the magnetic

energy is homogenized. On the contrary, the FR should

follow an inertial path. Based on the results showed

in the first panel of Fig. 6, we think that the second

mechanism that triggers the deflection is the channel-

ing of the FR, which is evident in Fig. 8. The channel

where the FR continues its trajectory is a product of

the magnetic field lines of the CH in combination with

the background magnetic field. From our simulations,

we understand that the coronal hole acts as a magnetic

wall, which can have a remote repulsive action, through

Figure 7. Percentage of (d0 − d)/d0 [%] (dashed lines) and
percentage of (v − v0)/v0 [%] (solid lines) in function of the
CH parameters.

the formation of a MME and a channel that triggers the

deflection of the flux rope.

4. CONCLUSIONS AND DISCUSSION

The study of CME deflections is of great interest to

the space weather forecast. Many efforts have been car-

ried out to understand how the intrinsic properties of

the CME or the magnetic structures of the environment

can influence the deflections. One of the more studied

coronal magnetic structures are the coronal holes. To

quantify the influence of CHs on the CME deflections,
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Figure 8. Path of the FR center (dots), and the position
of the MME at t = 0 s (x), for different FRs and different
magnetic field strengths of CH. The color map represents
the magnetic energy density and the black lines represent
the magnetic field lines.

several authors use an “influence parameter” which de-

pends on the intrinsic features of the coronal holes (Cre-

mades et al. 2006; Gopalswamy et al. 2009; Mohamed

et al. 2012). In our analysis of the early stages of a CME

deflection in presence of a CH, we obtained that the de-

flection increases for wider CHs, with stronger magnetic

fields, and decreases when the CH moves away from the

flux rope. Also, we found similar behaviors for two dif-

ferent FRs which suggest that the influence of the pa-

rameters of the CH are mostly independent of the FRs

scenarios.

From the complete set of simulations a tendency is re-

vealed: the deviation angle grows almost linearly with a

low deceleration. This deceleration could be attributed

to the increasing distance between the CH and the CME

as it rises which consequently reduces the CH influence

in the CME trajectory. Moreover, we found a dimen-

sionless parameter related with the velocity of the de-

flection that behaves similarly to the “influence param-

eter” proposed by Gopalswamy et al. (2009). We ob-

tained that the relative deflection velocity increases lin-

early with the magnetic field strength and decreases with

the inverse square of the distance. However, the relative

deflection velocities obtained from the width variations

are lower than the values obtained from the proposed

linear behavior. It is worth mentioning that such over-

estimation could be explained either by the inaccuracy

of the proposed model as well as by an inaccurate defi-

nition of the CH width. The mathematical width used

could be overestimating the effective size of the coronal

hole.

On the physical insight of the influence of coronal

holes on CME deviations, we found some interesting

results. We showed that a minimum magnetic energy

(MME) point is produced by the overlapping of differ-

ent magnetic structures, which changes the trajectory

of the flux rope, mainly in its early evolution. There

is a relationship between the speed of deviation of the

CME and the initial distance between the point of MME

and the FR; this relationship shows that both quanti-

ties depend on the parameters of the CH. For the later

evolution of the ejection, we notice a channeling of the

flux rope. We proposed that the formation of the MME

point and the channel that lead to the deflection of the

FR, are a consequence of the presence of the CH, at-

tributing to it the remote action of a magnetic wall.

To conclude, we reinforce the fact that the presence

of coronal holes in the area of the CME formation is of

crucial importance in the later evolution of the event.

This systematic study of the influence of the coronal

hole properties in the CME early evolution can help to

characterize the effect of these magnetic structures in

the full evolution of coronal mass ejections.
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