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Abstract
Aim of study: To validate and characterize new microsatellites or Simple Sequence Repeats (SSR) markers, located within genomic 

transcribed sequences related to growth and plant developmental traits, in Eucalyptus species.
Area of study: Eucalyptus species from different Australian origins planted in Argentina.
Material and methods: In total, 134 SSR in 129 candidate genes (CG-SSR) involved in plant development were selected and physically 

mapped to the E. grandis reference genome by bioinformatic tools. Experimental validation and polymorphism analysis were performed 
on 48 individuals from E. grandis and interspecific hybrids (E. grandis x E. camaldulensis; E. grandis x E. tereticornis), E. globulus, E. 
maidenii, E. dunnii and E. benthamii.

Main results:  131 out of 134 CG-SSR were mapped on the 11 chromosomes of E. grandis reference genome. Most of the 134 analyzed 
SSR (> 75%) were positively amplified and 39 were polymorphic in at least one species. A search of annotated genes within a 25 kbp up and 
downstream region of each SSR location retrieved 773 genes of interest.

Research highlights: The new validated and characterized CG-SSR are potentially suitable for comparative QTL mapping, molecular 
marker-assisted breeding (MAB) and population genetic studies across different species within Symphyomyrtus subgenus.
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Introduction
The Eucalyptus genus groups forest species and hy-

brids widely cultivated in the world as forestry plan-
tations for the wood industry as renewable sources for 
timber, paper and pulp production (Govindan, 2005; 
Bauhus et al., 2010). The high number of species within 
this genus, with different agroecological requirements 
and wood quality characteristics, makes Eucalyptus a 
very valuable resource for its adaptation to the numerous 
ecosystems worldwide. In this context, the Eucalyptus 
global production is estimated at 20 million hectares 
(Wingfield et al., 2015).

Over the last 20 years, forest breeding programs, which 
require long developmental periods, have incorporated di-
fferent molecular tools (Gudeta, 2018). Molecular mar-
kers detect differences between individuals directly from 
the genome and provide extensive discrete data that can 
be useful for statistical analyses. These tools are suitable 
to control the genetic traceability during multiplication 
processes, evaluate the genetic diversity and make pre-
dictions of more reliable breeding values (Cappa et al., 
2016; Gudeta, 2018).

SSR or microsatellites, short repetitive DNA sequen-
ces distributed throughout the genome showing a high le-
vel of polymorphism (first reviewed in plants by Powell  
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et al., 1996), are the most widely used markers for diffe-
rent applications (Hodel et al., 2016).

The development of microsatellite markers in Eu-
calyptus has evolved over the years in parallel with the 
increased availability of sequence information. To date, 
different types of neutral microsatellites are being used 
in Eucalyptus and new SSR markers have been deve-
loped within the transcribed regions of the genome. In 
addition, researchers have designed SSR markers after 
mining the increasingly larger EST (Expressed Sequence 
Tags) collections deposited in sequence databases (Kirst 
et al., 2005; Lehouque et al., 2008; Faria et al., 2010; 
Acuña et al., 2012 (a, b); Zhou et al., 2014; Grattapaglia  
et al., 2015).

Several strategies have been explored to find loci con-
trolling traits of interest in woody species. Thus, many 
genomic studies have reported the analysis of genes and 
transcription factors expressed during wood formation 
and xylogenesis in Eucalyptus (reviewed by Foucart et 
al., 2006; Paux et al., 2004; Rengel et al., 2009). Besi-
des, for genes controlling plant growth traits several QTL 
(Quantitative Trait Loci) approaches have been carried 
out (revised in Gion et al., 2015; Li et al., 2015; Du et al., 
2018; Müller et al., 2019; Kainer et al., 2019).

Therefore, the use of already well-established poly-
morphic markers located in CG for plant traits is an in-
teresting approach for mapping purposes and population 
genetic studies with an emphasis in non-model species 
(Acuña et al., 2012b, 2014; Pomponio et al., 2015; Azpi-
licueta et al., 2016). Also, the availability of E. grandis 
genome sequence, with annotated and classified genes, is 
an important information source to study and characterize 
different traits of interest (Myburg et al., 2014).

Although high-throughput sequence-based SNP mar-
ker assays are increasingly becoming available (Silva-Ju-
nior et al., 2015, Aguirre et al., 2019), microsatellites 
still constitute a very useful and accessible tool for fast 
and precise genetic analysis in Eucalyptus (Grattapaglia 
et al., 2015). Besides genetic diversity studies, SSR have 
numerous uses, including cultivar or clone fingerprinting, 
population structure, marker-assisted selection, linkage 
map development and QTL mapping, among others, thus 
showing an important role in this genomic age (Hodel  
et al., 2016).

In this study, we in silico characterized and in vi-
tro validated new microsatellite markers located in CG 
(structural genes and transcriptional factors) related to 
plant growth and development. The selection of SSR 
located on these genes was based on data from a pre-
vious study of our group (Acuña et al, 2012a), with a 
focus on genome regions potentially involved in these 
important characteristics for tree breeding. The identi-
fied SSR markers were wet-lab validated in five diffe-
rent Eucalyptus species and hybrids, and physically  
mapped on the E. grandis reference genome. Furthermo-

re, we also identified and analyzed known predicted genes  
contiguous (<25kbp) to these SSR markers.

Materials and Methods
Leaves from 48 individuals of Eucalyptus sp. were 

analyzed: 12 individuals of Eucalyptus grandis (4 in-
dividuals from a clonal population, 4 individuals from 
two controlled crosses and 4 individuals from their 
offspring), E. globulus (6 individuals), E. maidenii (8 
individuals), E. dunnii (8 individuals), E. benthamii (8 
individuals) and the hybrids E. grandis x E. camaldulen-
sis (3 individuals) and E. grandis x E. tereticornis (3 in-
dividuals). Trees were planted in EEA INTA Concordia 
(31°22'28.9"S 58°07'01.0"W) and IRB-CIRN-CNIA-IN-
TA (34°36'58.6"S 58°40'06.2"W), Argentina. Total DNA 
was extracted from young leaves using the CTAB me-
thod with modifications, as described in Marcucci Poltri  
et al. (2003).

We selected SSR markers on CG from a previous study 
(Acuña et al., 2012a), 1,140 SSR within 952 CG were in 
silico characterized. These CG had been selected for their 
possible biological function predicted according to Gene 
Ontology (GO) (Ashburner et al., 2000; http://www.ge-
neontology.org/) using Blast2GO (Conesa et al., 2005). 
From those genes, in the present study, 129 CG with 134 
SSR sequences were selected based on their correspon-
dence to genes and transcriptional factors involved in 
different plant growth and developmental features.

Validation was carried out using PCR reactions in a 
final volume of 12 µl with 20 ng of genomic DNA, 0.25 
µM of each primer (Alpha DNA, Canada), 2mM MgCl2, 
0.2 mM of each dNTP, 1X reaction buffer and 1U Plati-
num Taq polymerase (Invitrogen, Waltham, USA). Am-
plifications were performed following a denaturation step 
of 5 min at 94 °C, 35 cycles of 1 min at 94 °C, 1 min 
at annealing temperature and 1 min at 72 °C. The final 
extension step was for 10 min at 72 °C. The SSR ampli-
fication products were denatured for 5 min in denaturing 
loading buffer at 95 °C and separated by a 6% polyacryla-
mide gel electrophoresis (6% acrylamide/bisacrylamide 
20:1, 7.5 M urea, 0.5 × TBE) along with a 25 bp DNA la-
dder standard (Invitrogen, Waltham, USA). The DNA sil-
ver-staining procedure of Promega (Madison, WI, USA) 
was used for visualization. Details on primer sequences, 
SSR location, annealing temperature and product sizes 
are described in Table S1 [supplementary].

We carried out the in silico characterization of the CG-
SSR through physical mapping and nearby gene search. 
The 134 SSR obtained sequences were mapped to the E. 
grandis reference genome (Myburg et al., 2014) (http://
phytozome.jgi.doe.gov, version 2.0). Mapping was per-
formed using the Bowtie2 alignment tool with default 
settings (Langmead & Salzberg, 2012). A custom Perl 
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script was used to determine the annotated genes of the E. 
grandis genome within a flanking region of 50 kbp (up to 
25 kbp from each SSR locus). The predicted genes clas-
sified and reported by Myburg et al. (2014) were used to 
describe some of the genes found within the window su-
rrounding each SSR.

Results and Discussion
Selected CG-SSR markers

Based on the results from a previous study (Acuña et 
al., 2012a), we selected sequences similar to structural 
genes and transcriptional factors involved in plant deve-
lopmental features and obtained 129 CG with 134 SSR 
sequences (details of SSR markers in Table S1 [suppl.]). 
This study revealed the following distribution of the se-
lected 129 GC within the GO terms: most of them belon-
ged to the “Biological Process” category and within this 
category, to the subcategories “Metabolic Process of Or-
ganic Substances” (17%), “Cellular Metabolic Process” 
(15%) and “Primary Metabolic Process” (15%), among 
other less represented subcategories. Also, most of the 
GO terms within the “Molecular Function” class belon-
ged to the subcategories “Binding to Heterocyclic Com-
pounds” (15%), “Binding to Organic Cyclic Compounds” 
(15%) and “Ion Binding” (14%). Among them, we detec-
ted SSR in transcriptional factor genes involved in xylo-
genesis (MYB, bZIP, WRKY, SWI/SNF, ARF) (Rengel 
et al., 2009) and responses to abiotic stress (BES, bZIP) 
(Bechtold & Field, 2018) (Table S1 [suppl.]).

Marker validation in different Eucalyptus spp.

Most of the SSR (75.4%) analyzed in the laboratory 
were positive PCR-amplified according to similar studies 
in Eucalyptus (Acuña et al., 2012a; He et al., 2012; Zhou 
et al., 2014). Nonspecific amplicons (17 SSR) or ampli-
cons with sizes above 500 bp (20 SSR) were discarded. 
Thus, 64 markers resulted in amplification products of the 
expected size according to bioinformatic analysis. Among 
them, 39 (29%) were polymorphic (i.e., they had at least 2 
alleles in at least one species) and 25 were monomorphic 
(Table S1 [suppl.]). The polymorphism rate of EST-SSR 
was similar to that described by Faria et al. (2011) (25%) 
and Acuña et al. (2012a) (30%), but lower than that ob-
served by Faria et al. (2010) (39%) and Grattapaglia et al. 
(2015) (65%) in Eucalyptus.

The relative proportions of repeated motifs in poly-
morphic SSR were 28.2% for di-, 56.4% for tri-, 10.2% 
for tetra-, and 5.2% for pentanucleotides. Our results are 
similar to those reported by other authors, in which tri-
nucleotide repeats were the most common, followed by 

di- and tetranucleotide repeats (Varshney et al., 2005, 
Grattapaglia et al., 2015).

The number of alleles per marker (between 2 and 7) 
(Table S1 [suppl.]) is equivalent to that reported by other 
authors for EST-SSR markers validated on a small num-
ber of samples (about 8 individuals per species) (Zhou et 
al., 2014). On the other hand, the values found in the pre-
sent study are lower than those described by Faria et al. 
(2010, 2011) and Grattapaglia et al. (2015) in Eucalyptus. 
These results could be explained by the marker selection 
criteria used. While these studies based their selection on 
the polymorphism level, we selected SSR markers focu-
sing on their putative function in growth and plant deve-
lopment. Nevertheless, the number of alleles per marker 
may increase with a larger sample size.

Physical mapping and nearby gene search

The alignment of the 134 CG-SSR sequences against 
the E. grandis public reference genome revealed that 131 
SSR were mapped on the 11 chromosomes, while three 
of the markers were located on scaffolds. The number of 
SSR by chromosome ranged between 4 (Chromosome 5) 
and 17 (chromosomes 3, 8 and 11), thus showing a good 
distribution in the genome (Table S2 [suppl.]).

According to an exhaustive bibliographic revision of 
the available publications that developed this kind of mar-
kers in Eucalyptus, only 16 of the 134 SSR validated here 
coincide with those of other studies (2 in Yasodha et al., 
2008; 8 in Rengel et al., 2009; 4 in He et al., 2012; 4 in 
Zhou et al., 2014 and 1 in Grattapaglia et al., 2015, where 
some markers were shared between studies). Nonetheless, 
none of these studies involved the characterization rela-
ted to plant growth and developmental traits. Moreover, 
only in this study and in that by Grattapaglia et al. (2015), 
EST-SSR were aligned to the E. grandis genome sequen-
ce, thus providing information on their distribution and 
physical position (Table S1 [suppl.]).

Interestingly, the 39 polymorphic SSR markers are 
located in protein-coding CG, e.g. serine-threonine ki-
nase (which is involved in the completion of embryo-
nic development in dormant seeds), F-box type (signal 
transduction and cell cycle) (Jia et al., 2020) and various 
transcription factors that regulate processes of cellular de-
velopment, seed maturation, floral development, among 
others (bZIP, GATA, BES1) (Bechtold and Field, 2018) 
(Table S1 [suppl.]).

Additionally, we performed a search for genes of in-
terest that could be linked to the identified SSR within a 
flanking window of 50 kpb (25kpb up- and downstream 
regions). This window size was selected based on Linkage 
Disequilibrium (LD) in E. grandis reported by Silva-Ju-
nior et al., 2015). This analysis yielded 773 E. grandis 
predicted genes (named Eucgr. in Myburg et al., 2014) 
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neighbouring these SSR. Among them, 394 were within a 
Gene Ontology (GO) category (Table S2 [suppl.]).

Based on Myburg et al. (2014), who classified predic-
ted genes according to different classes related to wood 
quality, 30 of the 773 genes belong to the following cate-
gories: 3 into “MYB Transcription Factors”, 1 into “Ge-
nes Encoding Laccases and Peroxidases”, 8 into “Lignin 
Biosynthesis”, 7 into “predicted cellulose and xylan ge-
nes” and 11 into “Interpro Domain of 968 Unique Eu-
calyptus Genes”. This categorization gives these markers 
an added value, since we detected genes related not only 
to plant growth and development, but also to wood quality 
(Table S2 [suppl.]). Examples of genes related to wood 
quality are cinnamoyl CoA reductase (CCR), phenylalani-
ne ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL) 
and Caffeic Acid O-Methyl Transferase (COMT) genes, 
which code for the key enzymes in lignin biosynthesis 
(Boerjan et al., 2003). Other of these identified genes are 
PARVUS, cellulose synthase (CESA) and sucrose syn-
thase (SUSY), which are involved in cellulose and xylan 
biosynthesis (Myburg et al., 2014).

In this work, the evaluated candidate genes sequen-
ces were up to 25 kbp distance from the validated SSR 
markers. Therefore, linkage between them seems to be 
high enough to make this panel of SSR markers useful 
in future association mapping studies for Eucalyptus  
breeding purposes.

Conclusions
In the present study, a new set of SSR especially lo-

cated in candidate genes for growth and plant deve-
lopment is proposed as a tool for Eucalyptus genetic 
analysis. Additionally, some of the SSR are particularly 
interesting, because they are close to candidate genes for  
wood quality.

These new CG-SSR markers, in addition to those al-
ready publicly available, could be included in studies for 
the identification of different Eucalyptus genetic mate-
rials, in population genetics, taxonomy, verification of 
synteny and collinearity between different Eucalyptus 
maps. Furthermore, they could be implemented in QTL 
and association mapping studies and genomic selec-
tion through relatedness correction in breeding value  
predictions.
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