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ABSTRACT

Understanding the opinion formation dynamics in social systems is of vast relevance in diverse aspects of society. In particular, it is relevant
for political deliberation and other group decision-making processes. Although previous research has reported different approaches to model
social dynamics, most of them focused on interaction mechanisms where individuals modify their opinions in line with the opinions of
others, without invoking a latent mechanism of argumentation. In this paper, we present a model where changes of opinion are due to explicit
exchanges of arguments, and we analyze the emerging collective states in terms of simple dynamic rules. We find that, when interactions are
equiprobable and symmetrical, the model only shows consensus solutions. However, when either homophily, confirmation bias, or both are
included, we observe the emergence and dominance of bipolarization, which appears due to the fact that individuals are not able to accept the
contrary information from their opponents during exchanges of arguments. In all cases, the predominance of each stable state depends on the
relation between the number of agents and the number of available arguments in the discussion. Overall, this paper describes the dynamics
and shows the conditions wherein deliberative agents are expected to construct polarized societies.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004504

In democratic societies, trivial and important decisions emerge
from group discussions where people interchange opinions and
try to persuade others using their own ideas. With two alternative
choices, this situation eventually leads to consensus or coexis-
tence of opposite opinions. In this paper, we explore the role
of a social influence mechanism based on opinion change using
exchanges of arguments, on the emergence of collective states in
groups of agents, of different sizes. The results show the impor-
tance of accepting contrary evidence in order to reach consensus
and the role of confirmation bias and homophily to avoid it.
The framework developed in this paper can provide interesting
and helpful insights for future experiments on opinion formation

dynamics and explain the macroscopic collective states observed
in societies.

I. INTRODUCTION

People engage in different types of debates and
discussions on a daily basis. Very often, arguments are invoked and
exchanged in these interactions, which can eventually lead to mod-
ifying initial opinions and decisions to be made. Political debates
(e.g., the presidential debates), referendums (e.g., the “Brexit” ref-
erendum of 2016), discussion groups (e.g., medical panels, juries,
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etc.), or even work meetings are all examples of discussions, at
vastly different scales, where important decisions have to be made.
These situations guided the development of several experimen-
tal and theoretical studies focused on fully understanding opinion
dynamics. From a theoretical standpoint, statistical physics provides
very powerful quantitative tools, useful for studying complex sys-
tems comprising many interacting agents (as can be seen in various
comprehensive recent reviews).1–4 In this frame of reference, agent-
based modeling is a widely used technique employed to derive
macroscopic states from simple microscopic interactions between
agents. It has been efficiently applied to study various phenom-
ena and environments, such as pedestrian behavior and traffic,2

agriculture,5 economy,6 socio-ecological systems,7 demography,8

among many others.2,9,10

Past efforts in agent-based modeling of opinion dynamics
typically involved the use of discrete opinions, as, for instance,
Voter models,11–16 Sznajd models,17–23 or majority rules models,
which use different topologies of interactions and rules for opinion
dynamics.24–28

The use of continuous opinions gave place to a different stream
of models, starting from the original DeGroot model.29 Typically, the
coexistence of different macroscopic opinions in this type of mod-
els was introduced by the concept of bounded confidence,30 which
involved interacting agents ignoring each other’s opinions only
when they were extremely different. These models were extensively
studied in recent years.31–36

There were also some contributions that combine both
approaches (continuous and discrete opinions). A model for opin-
ions observed as discrete actions but represented internally as a
continuous opinion was presented in Ref. 20. A similar approach
was presented in Ref. 37 where discrete external opinions are emer-
gent from underlying internal postures. The dynamics of this model
mimic a process of information gathering: an agent’s posture may
change after interaction with another agent, and this in turn can
induce an opinion change, if his posture crosses a specific thresh-
old. Thus, the external opinion somehow determines a specific
binary decision, and the internal posture accounts for how con-
vinced an agent is or not about the manifested opinion. Even though
other models based on accumulation of information were previously
developed,38 they do not involve the combination between discrete
external opinions and continuous underlying postures mediated by
thresholds.

Opinion dynamics yields a variety of naturally occurring
macroscopic states in our society.36 Given their political, economic,
and social relevance, these states have been widely studied.1,39–45

Consensus (all members of the group adhere to the same opinion)
and Bipolarization (two distinct, polarized groups are formed) are
relevant examples, commonly found in topics with binary state-
ments (a pro-against issue, for example). Although bipolarization
can be induced by introducing a mechanism of negative influ-
ence (purposeful distancing from dissimilar agents), insufficient
and controversial evidence supporting their existence46 has led to
the proposal of other mechanisms able to reproduce this collective
state.47 Here, authors proposed a model to find bipolarization in the
absence of negative influence by introducing an explicit exchange
of arguments, along with homophily (increased probability of inter-
action with similar rather than dissimilar agents). They based their

assumptions on the Persuasive Arguments Theory (PAT), which
states that changes in opinion are derived from exchanges of argu-
ments and depend on the number and strength (or persuasiveness)
of these arguments.48–53

In this work, we present an agent-based threshold model where
agent’s states are represented by an external discrete opinion with
continuous underlying internal postures,37 but the interactions are
given by an explicit exchange of arguments,47 based on PAT.48,49,51,53

We develop a set of rules for this exchange and explore the new
parameter space, introducing also modifications aimed at modeling
certain cognitive biases previously reported in the literature, which
have been linked to the macroscopic states observed in society.54

This paper is organized as follows: in Sec. II, we describe the
implementation of our model and the theoretical background it is
grounded on. In Sec. III, we present our main results regarding
the collective states produced by the model in the unbiased ver-
sion (Subsection III A) and in the biased version with confirmation
bias (Subsection III B) and homophily (Subsection III C). Finally, in
Sec. IV, we outline the main conclusions and discuss possible future
modifications for our model.

II. THE MODEL

We consider a population of N individuals whose opinion O
emerges from an internal posture P, which is supported by a set of
arguments. Individuals engage in pairwise interactions in which they
exchange arguments, which eventually can lead to a change in their
opinions. The state of the agents and the dynamics of interactions
are detailed below.

A. States of the agents

The state of each agent is represented by two non-independent
variables37 and a set of arguments that define these variables, and it
is sketched in panel (a) of Fig. 1. The discrete variable O accounts
for the public opinion and takes three possible values: O = 0, ±1.
The continuous variable P stands for the agent’s posture and takes
any value in the range [−Pmax, Pmax], while the threshold Pt deter-
mines an agent’s opinion as a function of P. If an agent’s posture
is in the range [−Pmax, −Pt), the opinion is O = −1; if an agent’s
posture lies between [−Pt, Pt], the opinion is O = 0; and within the
range [Pt, Pmax), the opinion is O = 1. We set Pmax = 3 and Pt = 1,
which ensures that the intervals of posture generating each opinion
are equal in size. We say an agent is oriented if its opinion is O = ±1
and moderate if O = 0.

In agreement with the persuasive argument theory, agent’s pos-
tures P are derived from the arguments they possess in their finite
memory. Let M be the number of arguments each agent can recall
and NA be the number of existing arguments available to agents. We
assume that half of the NA arguments will be positive (i.e., in favor
of the issue), the other half will be negative (i.e., against the issue).
Also, each argument A will have a specific weight w, with possible
integer values 1, . . . , NA/2 and sign V = ±1. In this way, for every
argument Aj of a given strength wj and sign Vj, there exists an oppo-
site argument of strength wj and sign −Vj. The posture of an agent
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FIG. 1. State of the agents and interaction dynamics. (a) State of the agents. Each agent possesses a set of M arguments, which determine his posture P according to
Eq. (1). If −Pmax ≤ P < −Pt or Pt < P ≤ Pmax, the individual will hold an extreme opinion (O = −1 and O = +1, respectively). If −Pt ≤ P ≤ Pt , agents will hold a
moderate opinion (O) about the discussed topic. (b) Unbiased interactions. In each bidirectional interaction, oriented agents will always share their most important argument
(i.e., the strongest one), meanwhile, moderate agents will share a random one. (c) Biased interactions. In each interaction, oriented agents will incorporate the strongest
argument from their opponent, aligned with their own orientation (i.e., a positive one if he has O = +1).

with M arguments in memory is defined as

P =
1

NA/2

M∑

j=1

Aj =
1

NA/2

M∑

j=1

Vj.wj, (1)

where the argument Aj has sign (Vj) and weight (wj).

B. Dynamics

In this work, we consider only pairwise bidirectional inter-
actions between agents. These interactions are mediated by the
exchange of arguments, which lead to changes in agent’s posture
[according to Eq. (1)] and eventually may cause change in opinions
(if posture’s changes cross the thresholds Pt). In each interaction,
each agent will share an argument with his opponent and receive
another one from him. In this exchange, both will discard the
weakest one.

In what follows, we consider two models of interactions: unbi-
ased and mediated by confirmation bias, as detailed below and
sketched in panels (b) and (c) of Fig. 1.

1. Unbiased interactions

The basic idea here is that agents with extreme opinions
(O = ±1) will share the strongest argument aligned with their own

opinion, meanwhile, a moderate agent (O = 0) will share a random
one. The detailed rules read as follows:

1. An oriented agent j will always share an argument of the same
sign V as its opinion O and will try to exchange the strongest
argument (e.g., if Oj = +1, the given argument will be the
strongest one with sign +1). If the other agent already has that
argument, then j will exchange the second strongest and so
forth. This rule is independent of the other agent’s opinion.

2. A moderate agent will always share a randomly selected argu-
ment, regardless of its sign. As before, if the other agent already
has the mentioned argument, another one will be chosen ran-
domly regardless of the other agent’s opinion.

Here, oriented agents with opposite opinions behave in the same
way as if they were interacting with agents holding their same
opinion. However, and contrary to this rule, a vast amount of
empirical evidence suggests that people do behave in a biased way
when exposed to denying arguments. More specifically, humans
are prone to confirmation biases,55–57 wherein individuals overtly
seek information that favors preexisting beliefs, expectations, and
hypotheses.58
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This phenomenon involves discounting, or even ignoring,
opposing evidence as well as focusing disproportionately on favor-
able information. Confirmation biases have been reported in a
variety of relevant situations (e.g., crime investigations,59,60 medical
deliberations,55,61 scientific inquiry and hypothesis testing,56,62,63 dif-
fusion of fake news, rumors, or conspiracy theories,64 and even in the
prevalence of social stereotypes and consequential discrimination57),
and there have been recent efforts in modeling its impact on collec-
tive states.64–66

2. Confirmation bias interaction

In order to simulate the confirmation bias, we slightly mod-
ified the interaction rule between agents with opposing opinions:
each time agents interact, each will get a favorable argument from
the other one, ignoring the undesirable arguments. In other words,
agent i with Oi = +1 will only accept the strongest argument of
sign +1 from agent j with Oj = −1. In turn, agent j will receive the
strongest argument of sign −1 from agent i. All other rules remain
unchanged.

3. Homophily interaction

Based on an extensive literature suggesting that similarity
breeds interpersonal attraction,67 we also explored the role of
homophily in the pairwise interactions between agents. We define
the similarity47 between agents i and j as Si,j = 1 − |Pi − Pj|/(2Pmax),
∀j. This definition ensures that agents with the same posture
will have Si,j = 1, and agents with maximally opposing postures
(Pi = −Pj, and |Pi| = Pmax) will have Si,j = 0. Homophily suggests
that the more similar agents are, the greater the chance of interaction

they have. This interaction probability is ruled by

Qi,j =
(Si,j)

h

∑
p=1,p 6=i (Si,p)

h
, (2)

where h is a free parameter depicting the strength of the homophily.
Summarizing, when two agents interact in this condition, first,

agent i is selected with uniform probability, and then agent j with
probability Qi,j according to Eq. (2).

III. RESULTS

We consider a population of N agents without any underlying
connectivity topology. At t = 0, each agent is provided with differ-
ent M arguments picked at random from the full list of NA available
arguments. At each time step 1t = 1/N, two agents are chosen at
random and put to interact following the rules described above (one
time step corresponds to N random interactions between agents).
The system evolves until a stationary state is reached.

A. Unbiased model

We explored the final collective states reached by the system
as a function of three free parameters of the model, namely, the
number of agents (N), the number of existing arguments (NA), and
the memory size (M). We start with a set of M = 6 fixed argu-
ments. Figure 2(a) shows the phase diagram with space regions
where each type of solution predominates (i.e., is most probable). In
order to define the regions, we estimated the probability of observ-
ing a given state s as Ns/Ntot, where Ns is the number of realizations
that converged to that state and Ntot = 1000 is the total number of
simulations ran in that point of the parameter space.

FIG. 2. Dominant solution as a function of N and NA for the unbiased model. (a) Phase diagram of the space parameter where a given state is more likely than the other. The
region where moderate consensus predominates (lower right) is depicted in light blue and the region where oriented consensus predominates (upper left) is shown in red.
(b) Final distribution of arguments in oriented consensus for N = 10 and NA = 60. (c) Final distribution of arguments in moderate consensus for N = 100 and NA = 60.
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We found two well separated regions: one with moderate
consensus (light blue, O = 0) and a smaller region with oriented
consensus (red, O = ±1).

On one hand, the oriented consensus is a dominant solution
(although not the only one) when there are roughly more argu-
ments than agents [the upper-left region in panel (a) of Fig. 2]. In
this region, the probability that all arguments were represented in

the initial state of the system reduces, and therefore, particular cases
appear in which arguments of a given sign outweigh arguments of
the opposite sign, generating final states of oriented consensus.

On the other hand, in the region where there are less arguments
than agents, we observe that moderate consensus is comprised of
agents holding strong arguments of both signs, as shown in panel
(c) of Fig. 2. This is because the probability that all arguments are

FIG. 3. Dynamics of the unbiased model. Left column: histograms exhibiting the evolution of arguments for different final states of the system. We saturated the scale
for a better appreciation of the initial arguments. Right column: evolution of the fraction of agents of each opinion state. Each of the six panels was constructed based on
100 random realizations of initial conditions (Ntot = 100), with parameters NA = 60 arguments and M = 6 memory size. The shaded regions denote the respective 95%
confidence intervals. The first two rows correspond to the oriented consensus region (the red region in Fig. 2, N = 10 agents), and the third row corresponds to the moderate
consensus region (the light blue region in Fig. 2, N = 100). One time step corresponds to N interactions.
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present at the beginning of the simulations is very high, which leads
to M/2 strongest arguments of each sign surviving and inevitably
reaching a moderate consensus state. Both behaviors can be seen
in the time evolution of the arguments and opinions, as plotted
in Fig. 3. Specifically, the evolution of arguments in the moderate
region (N = 100, third row) clearly shows how all arguments are
initially present, and only the strongest ones of each sign remain
in the final state. Furthermore, in the oriented region (N = 10, first
two rows), not all arguments are initially present (as evidenced by
the heterogeneity of initial states), and while some strong argu-
ments can remain for the opposite opinion, the dominant one has
stronger arguments in average. In the same figure, the evolution of
the dynamics of opinions can be observed for the same regions.

Given the behavior observed in Fig. 2(a), where the dominance
of each solution depends roughly on the ratio NA/N, in Fig. 4, we
plot the dominant collective state as a function of M and NA/N. We
observe here the same solutions as in the previous plot: oriented con-
sensus (red) and moderate consensus (light blue). We can see that
the oriented consensus states dominate the collective behavior for
large values of NA/N (which means there are many more arguments
than agents), especially if the memory size is not too big. This can be
explained in a similar way: the memory size is related to the number
of arguments available in the initial conditions. When the number of
agents is small with respect to the number of arguments, for reduced
memory size, many arguments will be missing at the beginning of
the simulation, which will bring the system to the oriented consen-
sus. However, when the memory size increases, and/or the number
of arguments decreases with respect to the number of agents (low
values of NA/N), it becomes more likely that all existing arguments
are present, therefore leading to moderate consensus. Only for large
values of NA/N, and small values of memory, it becomes possible to
find oriented consensus.

B. Biased model

Here, we study the role played by confirmation bias. We
repeated our parameter exploration, focusing once again on the rela-
tionship between N and NA, for fixed M = 6 [Fig. 5(a)]. We found
that solutions with oriented consensus have now vanished from the
parameter space and have been replaced by states of “bipolariza-
tion,”where two oriented opinions coexist in the population. This
solution has now become prevalent in the parameter space, being
the most likely state in all regions previously dominated by oriented
states and also reducing the size of the region of moderate consensus.
As in the unbiased model, moderate consensus was mostly found
for N > NA, which is also explained by the presence of all existing
arguments in the initial state of the system.

The reason underlying the emergence of bipolarization is
related to the new interaction rule proposed in the model, to account
for the confirmation bias. Now, when two agents with opposite
opinions interact, they exchange arguments that reinforce their own
positions. This effectively acts as a repulsion force, which drives
oriented agents toward extreme postures. One should note that
bipolarization is not necessarily balanced: there can be more agents
of one opinion than the other. This can be observed in Fig. 5(b).
For smaller N, it is possible to find more agents of one opinion than

FIG. 4. Dominant solution as a function of M and NA/N for the unbiased model.
Light blue: Region where moderate consensus is more probable (upper left). Red:
Region where oriented consensus predominates (lower right). The white region
corresponds to the cases where M ≥ NA, where no arguments are forgotten
(which is not physically relevant). We use 1000 random realizations of initial con-
ditions for each pair of parameters (Ntot = 1000). We swept N and NA from 10
to 100, the former in steps of 1 and the latter in steps of 2. One value of NA/N

comes from the average of all possible combinations of N and NA that give that
specific value.

the other (lighter green to yellow color). For larger N, bipolarization
tends to become balanced (darker green color).

The exploration of parameter M yields similar results, only this
time bipolarization takes the role previously occupied by oriented
consensus, which in turn completely vanishes for medium ranged
values of M. It is omitted to avoid redundancy.

The results obtained for both biased and unbiased models led
us to explore the transition between these two cases. To this pur-
pose, we define a new parameter: the probability of confirmation
bias, PCB. Every time two oriented agents of opposing opinions inter-
act, PCB determines the probability of doing it with confirmation
bias. It is important to note that the unbiased model is equivalent
to PCB = 0, and the biased model is equivalent to PCB = 1. This
leads to expect the final states of the system to be more similar to
the unbiased model for values close to 0 and more similar to the
biased model for values close to 1. However, the result was unex-
pected: there were no bipolarization states for any value PCB < 1 [see
Fig. 6(a)]. Furthermore, moderate and oriented consensus remained
mostly unaltered.

To further study this phenomenon, we defined a new magni-
tude: the contrary information flux, ϕ, which measures the accu-
mulated weights of opposite opinion arguments acquired by an
oriented agent. This may occur either through interactions with a
moderate agent (from whom he takes a randomly chosen argument)
or through interactions with another oriented agent, but with an
opposing opinion.

For each interaction between oriented agents with opposing
opinions, we add the weights of the arguments that have been
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FIG. 5. Dominant solution as a function of N and NA for the confirmation bias model. (a) Regions of the space parameter where a given state is more probable than the
others. (Light blue) Region where moderate consensus is more probable (lower right). (Green) Region where bipolarization dominates (upper left). (b) Mean number of agents
with a dominant oriented opinion, normalized by N. In both panels, each point is an average over 1000 realizations of the random initial conditions.

exchanged. This way, we obtain the contrary information flux for
each interaction, ϕint. Summing over all interactions gives the total
contrary information flux, ϕ [Eq. (3)]. The results of this informa-
tion flux are plotted in Fig. 6(b),

ϕ =
∑

int

ϕint =
∑

int

(wi,int + wj,int). (3)

Figure 6 shows that bipolarization can only be found for
PCB = 1, and this in turn is related to ϕ = 0. This demonstrates that

bipolarization is reached due to the lack of contrary information
acquired through the interaction between agents. For every other
value of PCB, ϕ 6= 0, which means that eventually, oriented agents
get contrary arguments, thus becoming moderated.

C. Homophily

Previous research has shown that the combination of
homophily and the exchange of arguments may produce states

FIG. 6. Transition between unbiased and biased models. (a) Probability of each final state vs PCB. (b) ϕ vs PCB. Numerical values used: Ntot = 1000, N = 10, NA = 60,
and M = 6.
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FIG. 7. Effects of homophily in biased and unbiased models. Regions of the space parameter where a given state is more probable than the other, for the unbiased model
(a) and the biased model (b). In both cases, h = 4, and 1000 random realizations of initial conditions were used. (Light blue) Region where moderate consensus is more
probable than the others (lower region). (Red) Region where oriented consensus predominates (left region). (Green) Region where bipolarization dominates. (Light green)
Region where metastable states of bipolarization are the most probable states.

of bipolarization.47 To explore the role played by homophily in
polarization, we enriched our model by including its dynamics.
Figure 7 presents the results for both the unbiased model with
homophily (a) and the biased model with homophily (b), according
to Eq. (2), for h = 4. As before, dominance of moderate consensus
is depicted in light blue, oriented consensus in red, and bipolariza-
tion in green, and we added a light green region that corresponds
to preponderance of metastable states of bipolarization. The latter
could actually lead to final states of moderate consensus, oriented
consensus, or bipolarization. These metastable states are barely
present for low values of homophily; however, for higher values
(h > 3), they become predominant in a region of space. They can
only be found when confirmation bias is not present. The number
of time steps required for them to lose stability and reach a final sta-
ble state is much larger than the mean number required by the other
states (more than two standard deviations larger).

One important conclusion drawn from Fig. 7 is that bipolar-
ization can only arise without confirmation bias in the presence of
homophily. For different values of h, it is observed that the bipo-
larization region gets larger with h (the plots for other values of
h are omitted to avoid redundancy). Oriented consensus is nearly
replaced by bipolarization. Furthermore, when both confirmation
bias and homophily are present [Fig. 7(b)], bipolarization domi-
nates nearly the entire phase diagram, safe for a small region of
moderate consensus. This suggests that homophily and confirma-
tion bias reinforce each other, producing even more bipolarization
than before.

The reason behind the bipolarization states produced by
homophily is that agents who have extreme opposite values of pos-
ture (i.e., some with P = −3 and others with P = 3) cannot interact

[see Eq. (2)]. If the probability of interaction between agents with
similar posture is much greater than that between dissimilar ones,
then interactions tend to produce groups of oriented agents on
the opposite sides of the spectrum. After a few successive in-group
interactions, all agents end up with all the strongest arguments of
their own side and thus with the most extreme values of posture.
The joint combination of homophily and confirmation bias makes
these effects stronger.

With all this in mind, it can be concluded that both homophily
and confirmation bias produce bipolarization states in our model.
We can see that a strong homophily plays the same role as confir-
mation bias: to obstruct the flux of contrary information between
groups with opposite opinions. When confirmation bias is present,
there is no flux due to the lack of interactions between agents with
opposite opinions; meanwhile, when homophily dominates, it is due
to a reinforcement process in the interactions, as was shown above.

IV. CONCLUSIONS

In this paper, we present a model where the change of opin-
ion is mediated by the exchange of arguments, and we analyze the
collective states in terms of simple dynamic rules. A possible inter-
pretation of our rules of interaction is that two agents engage in a
discussion and listen to the arguments the other has to offer. In an
unbiased discussion, an agent of a given oriented opinion will tend
to convince any other one of its stance, which leads the other agent
to incorporate an argument of that opinion (the strongest one, in
this case). However, if the discussion is biased, when two agents of
opposing opinions interact, they will only listen to what favors the
opinions they already have and ignore opposing arguments. Any
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“concession” will be exacerbated by the other agent, and thus, agents
might end up even more convinced of their previous stance after
discussing with someone of opposite stance. This phenomenon,
known as the “boomerang effect,” where a person attempts to per-
suade others and unintentionally reinforces their prior beliefs, has
been previously observed in empirical research.68 In contrast, ori-
ented agents can become more moderate when interacting with
moderate agents, but they could also become more oriented (and
this remains unchanged in both variants of the model). Again, this
effect, where opinions become more extreme after interacting with
other individuals, has been extensively observed in psychological
research.69

Our unbiased model was successful in reproducing consensus
states, either oriented consensus (O = 1 or O = −1 for all agents)
or moderate consensus (O = 0). The region in the parameter space
where the latter predominates is larger and mostly confined to the
region where the number of arguments is smaller than the number
of agents (NA < N), which means that there is a high probability
that all arguments are present at the beginning of the simulations.
While changes in memory size (M) are comparably less important,
the increase in the number of arguments leads to an increase in ori-
ented consensus states. The parameter Pt, which is the threshold
between opinions, does not play a relevant role as long as the three
opinions are mapped to posture intervals of the same length.37 How-
ever, a deeper analysis involving a distribution of thresholds instead
of a fixed value could play a relevant role, but we leave this open for
future research.

The moderate consensus state deserves a careful analysis. This
is because in this model, a priori, agents could have a moderate opin-
ion for two reasons: (1) because they possess weak arguments or (2)
because they possess strong arguments from opposite sides so that
both types of arguments cancel out [according to Eq. (1)] and their
posture becomes close to zero. Given the dynamics of our model,
it can only produce argument polarization, and therefore, we can
only observe the second scenario where moderate agents are the
result of agents holding strong arguments from both sides of the
discussion.

One might argue that, assuming arguments can be objectively
measured in strength, discussion without biases will invariably end
in consensus (either moderate or oriented): if arguments are freely
shared and accepted, eventually, the strongest arguments will be
preserved, while the rest will be forgotten, and everyone will have
those same arguments. However, the presence of a confirmation bias
restricts the free flow of information: someone of a certain opin-
ion will incorporate favorable arguments but will underestimate or
ignore contrary information. This could in turn produce bipolar-
ization, which led us to consider a variation of our model, with the
inclusion of a confirmation bias.

When introducing the confirmation bias, bipolarization states
appear. In contrast to the previous case, bipolarization replaces ori-
ented consensus, and its region of preponderance becomes larger
than that of the moderate consensus state. Nevertheless, after intro-
ducing a probability of confirmation bias (PCB), we were unable to
find a way to generate a smooth transition between our biased and
unbiased models. Instead, we found that bipolarization was only
present when PCB = 1, which could be explained by the contrary
information flux (ϕ). When ϕ = 0, no contrary information can be

transmitted, and bipolarization becomes stable. In any other case,
bipolarization ends up leading to consensus.

The introduction of homophily induced the appearance of
bipolarization in the absence of confirmation bias. For high values
of the homophily parameter (h), bipolarization nearly dominated all
the regions where oriented consensus used to be the most probable
state and some parts of the region where moderate consensus was
preponderant. It is also possible to find a region where metastable
states of bipolarization are dominant. Furthermore, when confir-
mation bias was also present, bipolarization nearly dominated all of
the parameter space (with a reduced region of moderate consensus
found for small values of NA). Thus, superposition of both mecha-
nisms produces even more bipolarization states than before.

Given the ubiquity of confirmation bias and homophily in
social interactions, the argument exchange model developed in this
paper could be very helpful to inform future experiments related
to opinion formation dynamics and could potentially explain the
macroscopic collective states observed in societies. The versatility of
the interaction rules allows for simple modifications, for example,
the introduction of networks of interaction with different topologies.
These could lead to new insights on how people interact, modify
their opinions, and make important decisions on different scales,
from reduced work meetings to presidential elections.
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