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Abstract: Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to 
evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by 
herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations 
are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in 
herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not 
universal and their expression depends on the particular mutation, genetic background, 
dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide 
resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or 
coevolution with changes in other life history traits that ultimately may lead to fitness costs under 
particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide 
resistance mutations represents an opportunity for the design of resistance management practices 
that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed 
management practices aiming to control, minimize, or even reverse the frequency of resistance 
mutations in the agricultural landscape is to “create” those agroecological conditions that could 
expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of 
herbicide resistance mutations. Ideally, resistance management should implement a wide range of 
cultural practices leading to environmentally mediated fitness costs associated with herbicide 
resistance mutations. 
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1. Weeds in Agroecosystems 

Agroecosystems are particular environments characterized by frequent, extensive, and intense 
disturbances and stress imposed by humans. As such, agroecosystems constitute an environment 
that selects for traits that maximise reproductive capacity, also called r- adaptive strategy (r, per 
capita rate of increase), in which high dispersion and growth rates, high resource allocation to 
reproduction, and a short life cycle are key to maximize plant fitness [1,2]. Adapted plants (i.e., 
weeds) of this particular disturbed and stressful environment embody the optimal phenotype and 
represent a major constraint to the quality and yield of grain crops [3] and agriculture sustainability 
[4]. 

Synthetic herbicides were developed and introduced into agroecosystems 70 years ago and 
continue today as the main agricultural tool to reduce weed densities securing global food 
production [5–7]. Both the global extension of agriculture frontiers and the substantial increase in 
herbicide reliance over the last decades combine to exert the strongest selection pressure ever 
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experienced by weeds [8–10]. And this has inexorably led to herbicide resistance evolution in an 
ever-increasing list of weed species [11,12]. 

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve 
under stressful conditions [9,11,13]. Herbicide resistance genes originate from random DNA 
mutations that endow a remarkable advantage to survive and reproduce, and therefore, are rapidly 
selected for and enriched in weed populations under herbicide treatment [14]. In particular, 
glyphosate resistance evolution has showed an alarming rate of increase among weeds in recent 
years [12]. 

2. Theoretical Considerations on Fitness Costs 

Herbicide resistance is an adaptive evolutionary process in response to new environmental 
conditions (i.e., weed chemical control) in the agroecosystem. Herbicide resistance alleles are 
beneficial mutations that rapidly spread in weed populations under recurrent herbicide exposure 
[15,16]. These resistance mutations establish diverse defence mechanisms that protect plants from 
herbicide damage in different ways [11,17]. Some resistance mutations lead to amino acid 
substitutions in the herbicide target enzyme that change its configuration and geometry, altering 
distances to ligand H+ atoms and C- and N-terminal tails and water molecules [18–20]. These 
structural changes significantly reduce herbicide binding into the target enzyme, and thus confer 
resistance at the whole plant level (i.e., target site resistance mechanism). Alternatively, 
over-expression of the particular gene-encoding herbicide target enzyme increases its synthesis, 
which makes the herbicide insufficient to disrupt the normal plant metabolism [21]. Other mutations 
are responsible for regulating resistance mechanisms that minimize the amount of herbicide 
reaching the herbicide target site (i.e., non-target site resistance mechanism) [11,17]. For instance, 
enhanced herbicide metabolism (cytochrome P450 monooxygenases (CYP-450s), glutathione 
S-transferases (GSTs), or aldo-keto reductases (AKR)), reduced herbicide leaf uptake and 
translocation, and herbicide vacuolar sequestration are among the non-target site resistance 
mechanisms usually found in herbicide-resistant weeds [11,17,22]. However, whereas the 
biochemical basis associated with these non-target site resistance mechanisms has been elucidated, 
the molecular basis remains unknown. 

Herbicide resistance mutations may pre-exist or arise spontaneously (de novo) within weed 
populations, and the rate at which they occur is very low [16,23,24], but see [25]. Despite the 
extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems 
under herbicide selection, resistance mutations remain very rare traits in herbicide unselected weed 
populations [24–26]. 

A possible explanation for the low frequency of herbicide resistance alleles in unselected weed 
populations is their selective disadvantage imposed by associated fitness trade-offs. The prediction 
of a “lower adaptive value” or “deleterious effect” of resistance mutations in the original 
agroecosystem environment under no herbicide treatment would represent a cost of adaptation (i.e., 
fitness cost) which would limit the evolution of herbicide resistance by natural selection [27]. A 
fitness cost is the reduced success in contributing individuals to the next generation due to both or 
either impaired fecundity or survival [9,28]. After all, a fitness cost is the ultimate outcome of all 
genetic, biochemical, and physiological changes driven by a particular herbicide resistance mutation 
interacting within a particular genetic and ecological background [29]. 

Predicted fitness costs associated with resistance mutations have been a central paradigm in 
evolutionary ecology of herbicide resistance [15,28,30–33]. The fundamental evolutionary principle 
behind fitness costs is based on the resource-based allocation theory that predicts that plants divert 
resources into different functions to maximize their ecological success under the selection imposed 
by the environment [34–37]. As environmental resources are limited, any diversion of resources to 
one plant function would imply a decrease in allocation into other functions [36]. This theory 
underlies the trade-off usually found in plants between reproduction and defence functions 
[1,38,39]. It has been within this evolutionary context that herbicide resistance mutations, encoding 



Plants 2019, 8, 469 3 of 12 

for sophisticated defence mechanisms against herbicides, have been sought to divert resources and 
thus attract fitness costs [40]. 

Certainly, potential for allocation-based fitness costs in herbicide-resistant weeds correspond to 
resistance mutations responsible for herbicide metabolism via increased activity of endogenous 
detoxifying enzymes (e.g., cytochrome P450 monooxygenases) [41], reduced herbicide translocation 
within plants via vacuolar sequestration, or increased over-expression/duplication of herbicide 
resistance genes [11,21]. Provided that these herbicide resistance defence mechanisms require a 
diversion of resources to operate, it would be predictable the expression of associated fitness costs in 
plants carrying these resistance mechanisms.  

On the other hand, it would be less predictable the expression of allocation-based fitness costs 
associated with target site resistance mutations leading to changes in the structure and geometry of 
the herbicide target site enzyme due to changes in the amino acid sequence [29,32]. However, 
changes in catalytic activity, natural substrate affinity, and/or feedback inhibition of the mutated 
herbicide target site enzyme may alter normal plant metabolism, resulting in a whole plant fitness 
cost [29]. 

3. Fitness Costs Associated with Herbicide Resistance Mutations Are Not Universal 

Numerous studies reviewing the existence of herbicide resistance fitness costs and their 
biochemical, molecular, physiological, and ecological mechanisms have been published elsewhere 
[28–32,42–44]. Despite a sound theoretical background, these studies have concluded that there is no 
universality in the expression of fitness costs associated with herbicide resistance mutations. Rather, 
these studies have determined that fitness cost expression in herbicide-resistant weeds depend on 
the particular herbicide resistance mutation [29,45–48], dominance of the fitness cost [49], genetic 
background [50], and environmental conditions [51,52]. 

An example of the complex biochemical, genetic, and environmental dependence of fitness 
costs is given by target site EPSPS mutations endowing resistance to glyphosate. A common DNA 
point mutation (EPSPS CCA to TCA) endowing moderate glyphosate resistance in several weed 
species leads the change of Pro to Ser (Pro-106-Ser) in the EPSPS enzyme [53]. This single amino acid 
substitution has been shown to not alter EPSPS kinetics and metabolism in Eleusine indica, rendering 
glyphosate resistant plants as fit as the glyphosate susceptible ones [54,55]. On the contrary, when 
another single EPSPS substitution (EPSPS ACT to ATT) replaces Thr for Ile (Thr-102-Ile) and 
combines in addition to the Pro-106-Ser EPSPS mutation (i.e., double EPSPS TIPS resistance 
mutation), two contrasting effects on E. indica resistant plants arise. Whereas the TIPS mutation 
shows a clear beneficial effect under glyphosate selection as the level of glyphosate resistance 
increases notoriously compared to the single Pro-106-Ser mutation, it shows a very high deleterious 
effect on plant fitness in environments under no glyphosate selection [54,55]. The fitness cost 
associated with the resistance TIPS mutation is only observed in homozygous resistant (RR) but not 
heterozygous resistant (RS) plants, and the magnitude of the cost increases significantly under 
interspecific plant resource competition [55]. The high fitness cost observed in plants with the 
homozygous TIPS mutations is likely due to the reduced EPSPS catalytic efficiency (Vmax), 
accumulation in excess of carbon-rich shikimate and quinate acids, and unbalanced polar 
metabolites from glycolysis and starch and sucrose metabolism [55]. 

4. Fitness Costs May Arise as Direct Effects of the Herbicide Resistance Mutations vs. Pleiotropic 
Effects on Other Plant Traits 

The anticipated detrimental effects of herbicide resistance mutations on plant fitness may arise 
as a direct impact on fitness-related traits (e.g., reduced pollen viability) and/or co-evolution of loci 
interactions (e.g., resistance and non-resistance alleles) contributing to changes in other plant traits 
(e.g., seed dormancy) that ultimately may, in particular ecological environments, lead to fitness costs 
[15,44]. 

An example of a direct effect on fitness is the point mutation in the chloroplastic psbA gene, 
resulting in the amino acid substitution of serine to glycine (Ser-264-Gly) in the catalytic site of D1 
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protein. This mutation endows resistance to triazine herbicides, but also reduces the substrate 
affinity reducing the electron transfer rate in the photosystem II (PSII) (reviewed in [33,56,57]). This 
physiological change has been shown to decrease photosynthesis rate with direct negative effects on 
vegetative and reproductive growth rates in triazine resistant plants [33]. 

In other cases, herbicide resistance mutations have been shown to alter morphological, 
developmental, or phenological traits in weeds without necessarily a direct impact on plant fitness 
per se [58–66]. The changes in these traits are best thought of as changes in life history characters due 
to either subtle pleiotropic effects of resistance mutations or their coevolution with non-resistance 
life history traits in response to the wide range of selective factors operating in agroecosystems 
[9,67]. 

For instance, in some weedy grasses, particular ACCase resistance mutations have been shown 
to coevolve with higher levels of seed dormancy, absence of germination in dark conditions, and/or 
delayed seed germination (Table 1) [64–66]. Similarly, herbicide resistance mutations and 
mechanisms endowing resistance to different herbicide classes have been shown to covary with 
changes in plant size, root anatomy, leaf appearance rate, plant height, number of tillers, outcrossing 
vs. selfing mating rates, susceptibility to herbivory and diseases, and flowering time (Table 1) [58,60–
62,68,69]. The coevolution of herbicide resistance and changes in life history traits is an adaptive 
response to the agroecosystem to maximize fitness of herbicide-resistant weed populations (i.e., 
population size, genetic diversity), and thus, the spread of herbicide resistance mutations [44]. 

Can we anticipate direct vs. indirect effects of herbicide resistance mutations on fitness? A 
number of traits, further from fitness (i.e., survival and fecundity) [28], related to development, 
phenology, metabolism, physiology, and morphology have been associated with a number of 
dissimilar herbicide resistance traits [59,60,66,70–75]. Inferences from these and other studies on the 
causal relationship between these life history and resistance traits are difficult to make. Are these 
modified life history traits a direct consequence of pleiotropic effects of herbicide resistance 
mutations, or the result of confounded effects driven by the presence of multiple resistance traits 
within populations, or local adaptation to particular environments which leads non-resistance loci to 
co-segregate with the resistance trait? 

On the contrary, when herbicide resistance mutations drive changes in the architecture and 
structure of herbicide target enzymes, altering central kinetic parameters, direct detrimental effects 
on plant fitness are more likely to express and be predicted (reviewed in [29,32,45]). Changes in 
activity, substrate affinity, reaction speed, and/or feedback inhibition in herbicide target enzymes 
are strong predictors of the expression of fitness costs in herbicide-resistant plants. Similarly, energy 
constraints driven by herbicide resistance traits (e.g., gene amplification, enhanced metabolism) that 
are theoretically associated with higher cell energy budgets would also lead to the expression of 
direct fitness costs. However, current evidence suggests that estimation of cell energy budgets 
associated with these resistance mutations is necessary before any generalization. 

5. Effects of Fitness Costs on the Equilibrium Frequency of Herbicide Resistance Mutations 

In the agricultural landscape, there are dynamic, fluctuating, and diverse agroecological 
conditions imposed by the matrix of herbicide-treated and untreated areas. It is within these 
contrasting environments where the fitness of plants carrying herbicide mutations is defined and 
shaped by a suite of selection forces. 

The beneficial effect of herbicide resistance mutations is realized in herbicide-treated areas due 
to the extraordinary survival advantage they confer, relative to the susceptible wild-type. Inevitably, 
herbicide resistance mutations will spread over time in continuously herbicide-treated 
environments. Fitness costs associated with a particular resistance mutation under particular 
ecological conditions, however, will disclose a deleterious effect as an adaptive disadvantage, 
relative to the susceptible wild-type, in the herbicide untreated area [15,42]. Thus, a resistance 
mutation expressing a fitness cost in a particular herbicide untreated ecological environment will 
exhibit limits to evolve by natural selection. Overall, the contrasting beneficial and deleterious 
effects of herbicide resistance mutations are the mechanisms that maintain resistance 



Plants 2019, 8, 469 5 of 12 

polymorphisms at the agricultural landscape scale with high and low frequencies of resistance 
mutations in herbicide-treated and untreated areas, respectively. As a result, fitness benefit and cost 
play a fundamental role in predicting the spread of herbicide resistance mutations and determining 
their equilibrium frequencies at the agricultural landscape level. 

The recent identification of a glyphosate resistance double mutation in E. indica can illustrate 
the impact of contrasting resistance benefits and costs associated with herbicide resistance mutations 
on their final equilibrium frequencies. Within a single E. indica population, it has been observed that 
individuals with the glyphosate resistance EPSPS Pro-106-Ser mutation coexist with plants which 
exhibit, in addition to the Pro-106-Ser mutation, a second EPSPS mutation, Thr-102-Ile—this double 
mutation is known as TIPS [54]. Under glyphosate selection, the single EPSPS Pro-106-Ser and TIPS 
mutations have been shown to endow, respectively, a moderate and high level of glyphosate 
resistance at both EPSPS and plant levels [54,76]. Remarkably, the high level of glyphosate resistance 
conferred by the EPSPS TIPS mutation is shared in both homozygous and heterozygous TIPS plants 
[76]. However, under no glyphosate selection, E. indica plants homozygous for the TIPS mutation 
pay an extremely high fitness cost which, interestingly, is not observed in plants heterozygous for 
the TIPS mutations, nor in individuals with the single EPSPS Pro-106-Ser mutation [55]. Thus, it may 
be predicted that from a very low allele frequency of 1 × 10−10 and after 50 generations under 
recurrent selection with recommended field glyphosate doses (1080 g ha–1), the frequency of the 
EPSPS TIPS allele will enrich and be nearly fixed (final freq. = 0.9) in the treated population at the 
expense of the wild-type (WT) (final freq. = 2.4 × 10−9) and Pro-106-Ser (final freq. = 0.09) alleles, 
which will become nearly extinct (Figure 1A).  

If the equilibrium allelic frequencies attained after 25 years of glyphosate use (Figure 1A) are 
considered as the starting point (WT = 9.26 × 10−4, Pro-106-Ser = 0.46, TIPS = 0.53) for an environment 
where glyphosate is discontinued for 50 generations, a basic simulation exercise predicts that, 
whereas the frequency of the WT allele will show a negligible increase (final freq. = 0.002), the 
frequency of the single Pro-106-Ser mutation will be nearly fixed (final freq. = 0.97) at the expense of 
the TIPS mutation (final freq. = 0.028) (Figure 1B).  
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Table 1. Examples of herbicide-resistant weeds where resistance mutations have been associated with decreased fitness and/or altered life history traits. 

Resistance Mutation/Trait Weed Species Fitness/Life History Trait Environment Biochemical/Physiological Change Reference 
ACCase/ALS CYP-450 metabolism Lolium rigidum Reduced RGR *, fecundity Crop competition  [58,77] 
ACCase/ALS target site resistance 

and CYP-450 metabolism 
L. rigidum Higher seed dormancy Controlled conditions  [66] 

EPSPS over-expression L. perenne 
Reduced height, leaf area, 

fecundity 
Intra-specific competition in 

rain fed conditions 
 [78] 

EPSPS TIPS mutation Eleusine indica Reduced RGR, fecundity Crop competition 

 
Reduced EPSPS Vmax 

Altered C-rich metabolite levels  
 

[55] 

ACCase Ile-1781-Leu L. rigidum Light requirement for 
seed germination 

Controlled conditions Changes in sensitivity of phytochrome B 
[64] 

(Vila-Aiub et al. 
unpublished) 

ACCase 2078 
Alopecurus 
myosuroides Lower germination rate Wheat competition Reduced ACCase activity [48] 

psbA Ser-264-Gly 
 

Many broadleaf 
species 

Reduced RGR, fecundity 
Controlled and field 

conditions 

 
Reduced QB affinity, inefficient PSII electron 

transport, lower photosynthesis 
Reviewed in [33] 

psbA Ser-264-Gly 
Amaranthus 

powelii 
Higher susceptibility to 

herbivory 
Field conditions Higher leaf N concentration [68,79] 

ALS Trp-574-Leu A. powelli 
Smaller roots, reduced 

leaf area and RGR 
Intra-specific competition Likely impaired ALS function [62] 

Glyphosate resistance Ipomoea purpurea Higher selfing rate 
Controlled and field 

conditions 
Lower anther–stigma distance [61] 

EPSPS amplification Kochia scoparia Delayed flowering Controlled conditions  [71] 

AUX/IAA KsIAA16  
Gly-73-Asn 

K. scoparia 
 

Reduced RGR, leaf area, 
height, fecundity 

Controlled conditions  [80,81] 

* RGR: Relative growth rate. 
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Figure 1. Predicted changes in the frequency of Eleusine indica EPSPS alleles (wild-type (WT), 
Pro-106-Ser, TIPS) over time (50 generations) in environments with (A) and without (B) glyphosate 
selection (1080 g ha–1). Simulation parameters are based on published [55] and unpublished studies. 
Input parameters in (A): Initial allele frequency (WT = 9.99999 × 10−1, Pro-106-Ser = 1.00 × 10−6, TIPS = 
1.00 × 10−10); genotype fitness (WT/WT = 0.02, WT/Pro-106-Ser = 0.5, WT/TIPS = 0.6, 
Pro-106-Ser/Pro-106-Ser = 0.6, Pro-106-Ser/TIPS = 0.99, TIPS/TIPS = 0.99). Input parameters in (B): 
Initial allele frequency (WT = 9.26 × 10−4, Pro-106-Ser = 0.463, TIPS = 0.536); genotype fitness (WT/WT 
= 0.99, WT/Pro-106-Ser = 0.99, WT/TIPS = 0.99, Pro-106-Ser/Pro-106-Ser = 0.99, Pro-106-Ser/TIPS = 
0.99, TIPS/TIPS = 0.30). Simulations were run for 50 generations using Populus software [82], 
assuming no further mutational events, genetic drift, and allele migration events. 

6. Implications of Fitness Costs to Resistance Management 

The idea of a “lower adaptive value” of herbicide resistance mutations is often seen as an 
opportunity for the design of resistance management practices that could minimize the evolution of 
herbicide resistance [28,83,84]. However, a number of realizations need to be made to understand 
whether weed management practices can realistically exploit the predicted cost of adaptation of 
herbicide resistance mutations. 

Firstly, excluding a very few exceptions (see [29,48,55,56,62]), fitness costs, regardless of 
whether they arise as a direct effect of the resistance mutation vs. their coevolution with changes in 
life history traits, are environmentally dependent, meaning that they will solely express under 
certain ecological conditions. They may not always express, as either compensatory molecular 
evolution of costs is possible [85] or the “right” ecological conditions to bring the resistance mutation 
at disadvantage may not be present. 
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Secondly, the detrimental effect of fitness costs on plants carrying the resistance mutation, 
relative to the susceptible wild-type, is immediately masked under conditions of continuous 
herbicide treatment. It is straightforward then that for a management practice to exploit a fitness cost 
of a resistance mutation, no herbicide treatments need to be considered during successive growing 
seasons (i.e., herbicide “off” years), single entire season (i.e., herbicide “off” and “on” years) or, at 
least, a limited time window within a growing season (e.g., non-chemical fallow). The final impact of 
removing the herbicide selective benefit on the frequency of the resistance mutations at the 
landscape level will be a function of the magnitude of the fitness cost (negligible, moderate, high), 
period of time (single vs. several generations/growing seasons) under no herbicide use, and area 
covered by the resistant population (single field vs. farm vs. regional area). 

It is evident that the challenge for weed management practices aiming to control, minimize, or 
even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those 
agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness 
traits affecting the evolution of herbicide resistance mutations [9,67]. Ideally, resistance management 
should implement a wide range of practices leading to environmentally mediated fitness costs 
associated with herbicide resistance mutations. 

Generation of dynamic spatial and temporal diverse agroecological conditions are possible 
through the implementation of management practices, such as the use of grazed and ungrazed 
pasture phases [86], cover crops [87], choice of competitive cultivars [88], changes in cultural 
practices such as seeding and harvest time, crop row spacing, density and orientation [89], 
implementation of soil tillage [83], and management of fence lines and field margins [90], just to 
mention a few. These diverse agroecological conditions imply environmental changes in fluctuating 
temperatures and light intensity and quality (red/far red ratio) at soil levels and under crop canopies 
and demand of plant resources together, which in turn may bring changes in soil chemical and 
physical properties. More diversified agricultural landscapes will likely select against herbicide 
resistance mutations through exploitation of fitness costs compared to agroecosystems with 
simplified weed management practices. 
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