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ACYCLIC 2-DIMENSIONAL COMPLEXES AND

QUILLEN’S CONJECTURE

KEVIN IVÁN PITERMAN1, IVÁN SADOFSCHI COSTA2,
AND ANTONIO VIRUEL3

Abstract. Let G be a finite group and Ap(G) be the poset of
nontrivial elementary abelian p-subgroups of G. Quillen conjec-
tured that Op(G) is nontrivial if Ap(G) is contractible. We prove
that Op(G) 6= 1 for any group G admitting a G-invariant acyclic
p-subgroup complex of dimension 2. In particular, it follows that
Quillen’s conjecture holds for groups of p-rank 3. We also apply

this result to establish Quillen’s conjecture for some particular
groups not considered in the seminal work of Aschbacher–Smith.

1. Introduction

The study of the poset Sp(G) of nontrivial p-subgroups of a finite
group G started when K.S. Brown proved that the Euler characteristic
χ(K(Sp(G))) of its order complex is 1 modulo the greatest power of p
dividing the order of G [Bro75]. Recall that the order complex K(X)
of a poset X is the simplicial complex whose simplices are the finite
nonempty totally ordered subsets of X . Some years later, D. Quillen
studied the homotopy properties of K(Sp(G)) [Qui78]. In that article,
Quillen considered the subposet Ap(G) of nontrivial elementary abelian
p-subgroups and proved that its order complex is homotopy equivalent

2010 Mathematics Subject Classification. 57S17, 20D05, 57M20, 55M20, 55M35,
57M60 .

Key words and phrases. Quillen’s conjecture, poset, p-subgroups.
This work was partially done at the University of Málaga, during a research stay

of the first two authors, supported by project MTM2016-78647-P.
1 Supported by a CONICET doctoral fellowship and grants CONICET PIP
11220170100357CO and UBACyT 20020160100081BA.
2 Supported by a CONICET postdoctoral fellowship and grants ANPCyT PICT-
2017-2806, CONICET PIP 11220170100357CO and UBACyT 20020160100081BA.
3 Partially supported by Ministerio de Economı́a y Competitividad (Spain), grant
MTM2016-78647-P (AEI/FEDER, UE, support included).

1

http://arxiv.org/abs/1907.02141v2


2 K.I. PITERMAN, I. SADOFSCHI COSTA, AND A. VIRUEL

to K(Sp(G)) [Qui78, Proposition 2.1]. Quillen also proved that, if the
largest normal p-subgroup Op(G) of G is nontrivial, then K(Ap(G)) is
contractible [Qui78, Proposition 2.4] and conjectured that the converse
should hold.

In this paper we study the following version of Quillen’s conjecture.
Recall that the homology of a poset is the homology of its order complex.

Quillen’s conjecture. If Op(G) = 1 then H̃∗(Ap(G)) 6= 0.

Aschbacher and Smith’s formulation relates rational acyclicity ofK(Ap(G))
with nontriviality of Op(G) [AS93b]. Thus our integral homology ver-
sion is stronger than Quillen’s original statement but weaker than the
Aschbacher–Smith version.

Quillen proved the conjecture for solvable groups [Qui78, Theorem
12.1]. In [AS93b], M. Aschbacher and S.D. Smith made a huge progress
on the study of this conjecture. By using the classification of finite
simple groups, they proved that Quillen’s conjecture holds if p > 5 and
G does not contain certain unitary components. Previously, Aschbacher
and Kleidman [AK90] had proved Quillen’s conjecture for almost simple
groups (i.e. finite groups G such that L ≤ G ≤ Aut(L) for some non-
abelian simple group L).

The main result of our paper, which depends on the classification of
the finite simple groups, is the following.

Theorem 3.2. If X is an acyclic and 2-dimensional G-invariant sub-
complex of K(Sp(G)), then Op(G) 6= 1.

Recall that the action of G on Sp(G) is by conjugation. The previous
result provides then a convenient tool to prove that a group verifies
Quillen’s conjecture.

Corollary 3.3. Let G be a finite group. Suppose that K(Sp(G)) admits a
2-dimensional and G-invariant subcomplex homotopy equivalent to itself.
Then Quillen’s conjecture holds for G.

In particular, it follows that Quillen’s conjecture holds for groups of
p-rank 3. Recall that the p-rank of G, usually denoted by mp(G), is the
maximum possible rank of an elementary abelian p-subgroup of G. The
p-rank 2 case was considered by Quillen [Qui78, Proposition 2.10] and is
a consequence of Serre’s result: an action of a finite group on a tree has
a fixed point.
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In Section 4 we make an extensive use of Corollary 3.3 to establish
Quillen’s conjecture for some particular groups (of p-ranks 3 and 4) for
which the hypotheses of the results of Aschbacher–Smith [AS93b] do not
hold.

A related conjecture, due to C. Casacuberta and W. Dicks, is that a
finite group acting on a contractible 2-complex has a fixed point [CD92].
This conjecture was studied by Aschbacher and Segev in [AS93a]. Pos-
teriorly Oliver and Segev classified the groups which admit a fixed point
free action on an acyclic (finite) 2-complex [OS02]. Our proof of Theorem
3.2 is built upon the results of [OS02], which depend on the classification
of finite simple groups. Theorem 3.2 can also be seen as a special case
of the Casacuberta–Dicks conjecture.

Acknowledgements. We are grateful to the anonymous referee for
their suggestions which greatly improved the exposition of the paper
and in particular for simplifying the proofs in Examples 4.10 and 4.11
by indicating Proposition 4.9.

2. The results of Oliver and Segev

In this section we review the results of [OS02] needed in the proof of
Theorem 3.2. By a G-complex we mean a G-CW complex. Note that
the order complex of a G-poset is always a G-complex.

Definition 2.1 ([OS02]). A G-complex X is essential if there is no
normal subgroup 1 6= N ⊳ G such that for each H ⊆ G, the inclusion
XHN → XH induces an isomorphism on integral homology.

The main results of [OS02] are the following two theorems.

Theorem 2.2 ([OS02, Theorem A]). For any finite group G, there is
an essential fixed point free 2-dimensional (finite) acyclic G-complex if
and only if G is isomorphic to one of the simple groups PSL2(2

k) for
k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or Sz(2k) for odd
k ≥ 3. Furthermore, the isotropy subgroups of any such G-complex are
all solvable.

Theorem 2.3 ([OS02, Theorem B]). Let G be any finite group, and
let X be any 2-dimensional acyclic G-complex. Let N be the subgroup
generated by all normal subgroups N ′ ⊳G such that XN ′

6= ∅. Then XN

is acyclic; X is essential if and only if N = 1; and the action of G/N
on XN is essential.

The set of subgroups of G will be denoted by S(G).
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Definition 2.4 ([OS02]). By a family of subgroups of G we mean any
subset F ⊆ S(G) which is closed under conjugation. A nonempty family
is said to be separating if it has the following three properties: (a) G /∈ F ;
(b) if H ′ ⊆ H and H ∈ F then H ′ ∈ F ; (c) for any H ⊳ K ⊆ G with
K/H solvable, K ∈ F if H ∈ F .

For any family F of subgroups of G, a (G,F)-complex will mean a
G-complex all of whose isotropy subgroups lie in F . A (G,F)-complex
is H-universal if the fixed point set of each H ∈ F is acyclic.

Lemma 2.5 ([OS02, Lemma 1.2]). Let X be any 2-dimensional acyclic
G-complex without fixed points. Let F be the set of subgroups H ⊆ G
such that XH 6= ∅. Then F is a separating family of subgroups of G,
and X is an H-universal (G,F)-complex.

If G is not solvable, the separating family of solvable subgroups of G
is denoted by SLV .

Proposition 2.6 ([OS02, Proposition 6.4]). Assume that L is one of
the simple groups PSL2(q) or Sz(q), where q = pk and p is prime (p = 2
in the second case). Let G ⊆ Aut(L) be any subgroup containing L, and
let F be a separating family for G. Then there is a 2-dimensional acyclic
(G,F)-complex if and only if G = L, F = SLV , and q is a power of 2
or q ≡ ±3 (mod 8).

Definition 2.7 ([OS02, Definition 2.1]). For any family F of subgroups
of G define

iF(H) =
1

[NG(H) : H ]
(1− χ(K(F>H))).

Lemma 2.8 ([OS02, Lemma 2.3]). Fix a separating family F , a finite
H-universal (G,F)-complex X, and a subgroup H ⊆ G. For each n, let
cn(H) denote the number of orbits of n-cells of type G/H in X. Then
iF(H) =

∑
n≥0(−1)ncn(H).

Proposition 2.9 ([OS02, Tables 2,3,4]). Let G be one of the simple
groups PSL2(2

k) for k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or
Sz(2k) for odd k ≥ 3. Then iSLV(1) = 1.

3. The two-dimensional case

Using the results of Oliver and Segev stated in the previous section
we prove the following.

Theorem 3.1. Every acyclic 2-dimensional G-complex has an orbit with
normal stabilizer.
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Proof. IfXG 6= ∅ we are done. Otherwise, G acts fixed point freely onX .
Consider the subgroup N generated by the subgroups N ′ ⊳ G such that
XN ′

6= ∅. Clearly N is normal in G. By Theorem 2.3 Y = XN is acyclic
(in particular it is nonempty) and the action of G/N on Y is essential
and fixed point free. By Lemma 2.5 F = {H ≤ G/N : Y H 6= ∅} is
a separating family and Y is an H-universal (G/N,F)-complex. Thus,
Theorem 2.2 asserts that G/N must be one of the groups PSL2(2

k) for
k ≥ 2, PSL2(q) for q ≡ ±3 (mod 8) and q ≥ 5, or Sz(2k) for odd k ≥ 3.
In any case, by Proposition 2.6 we must have F = SLV . By Proposition
2.9, iSLV(1) = 1. Finally by Lemma 2.8, Y must have at least one free
G/N -orbit. ThereforeX has aG-orbit of type G/N and we are done. �

Theorem 3.2. If X is an acyclic and 2-dimensional G-invariant sub-
complex of K(Sp(G)), then Op(G) 6= 1.

Proof. By Theorem 3.1 there is a simplex σ = (A0 < . . . < Aj) of X
with stabilizer N ⊳G. Since A0 ⊳N , we deduce that Op(N) is nontrivial.
On the other hand, N ⊳ G and Op(N) charN implies that Op(N) ⊳ G.
Therefore Op(N) ≤ Op(G) and Op(G) is thus nontrivial. �

From Theorem 3.2 we deduce:

Corollary 3.3. Let G be a finite group. Suppose that K(Sp(G)) admits a
2-dimensional and G-invariant subcomplex homotopy equivalent to itself.
Then Quillen’s conjecture holds for G.

Since the p-rank of G is equal to dimK(Ap(G)) + 1 we obtain:

Corollary 3.4. Let G be a finite group of p-rank 3. If H̃∗(Ap(G)) = 0
then Op(G) 6= 1.

We now apply Corollary 3.3 to obtain results for some related p-
subgroup complexes. Recall that a p-subgroup Q ≤ G is radical if Q =
Op(NG(Q)). The Bouc poset Bp(G) is the poset of nontrivial radical p-
subgroups of G. It is well-known that K(Bp(G)) is homotopy equivalent
to K(Sp(G)) [Bou84]. Then by Corollary 3.3 we have

Corollary 3.5. Let G be a finite group such that Bp(G) has height 2. If

H̃∗(Bp(G)) = 0 then Op(G) 6= 1.

We say that a poset X is a reduced lattice if it is obtained from a
finite lattice by removing its minimum and maximum. If X is a reduced
lattice, i(X) denotes the subposet of X given by the elements which can
be written as the infimum of a set of maximal elements of X . It is a
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general fact that the order complex of i(X) is homotopy equivalent to
the order complex of X for any reduced lattice X [Bar11, Section 9.1].
Hence by Corollary 3.3, we have

Corollary 3.6. Let G be a finite group. If either i(Sp(G)) or i(Ap(G))
has height 2, then G satisfies Quillen’s conjecture.

For a detailed account of the relations between the different p-subgroup
complexes, see [Smi11].

4. Some examples

In this section we apply the corollaries of Theorem 3.2 to establish
Quillen’s conjecture for some groups constructed so that the hypotheses
of the results of [AS93b] are not satisfied. The main result of [AS93b] is
the following.

Theorem 4.1 (Aschbacher–Smith [AS93b, Main Theorem]). Let G be
a finite group and p > 5 a prime number. Assume that whenever G
has a unitary component Un(q) with q ≡ −1 mod p and q odd, then the
Quillen dimension property at p holds for all p-extensions of Um(qp

e

)
with m ≤ n and e ∈ Z. Then G satisfies Quillen’s conjecture.

Recall that a group H satisfies the Quillen dimension property at p
if H̃mp(H)−1(Ap(H)) 6= 0. The presence of simple components of G

isomorphic to L2(2
3) or U3(2

3) (in the p = 3 case) and Sz(25) (in the
p = 5 case) is an obstruction to extending Theorem 4.1 to p = 3 and p =
5. The case p = 2 is not considered in [AS93b] and would require a much
more detailed analysis. One of the first steps in the proof of Theorem
4.1 is the reduction to the case Op′(G) = 1 (see [AS93b, Proposition
1.6]). To do this, [AS93b, Theorems 2.3 and 2.4] are needed and these
theorems make a strong use of the hypothesis p > 5. Concretely, it is not
possible to apply [AS93b, Theorem 2.3] if a component of CG(Op′ (G))
is isomorphic to L2(2

3), U3(2
3) (if p = 3) or Sz(25) (if p = 5).

Before presenting the examples for p = 3 and p = 5, we give some mo-
tivation. Most of the groups G in these examples satisfy the following
conditions. First, Op′(G) 6= 1 and CG(Op′(G)) contains a component
isomorphic to U3(2

3) if p = 3 and to Sz(25) if p = 5. Thus, we can-
not find nontrivial homology for Ap(G) in the same way it is done in
the proof of [AS93b, Proposition 1.6] since we are not able to invoke
[AS93b, Theorems 2.3 and 2.4]. Secondly, since there is an inclusion

H̃∗(Ap(G/Op′(G));Q) →֒ H̃∗(Ap(G);Q) (see [AS93b, Lemma 0.12]), we
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require Op(G/Op′ (G)) 6= 1 so that H̃∗(Ap(G/Op′(G))) = 0. Finally, we
require Op(G) = 1.

The groups presented in Examples 4.5 and 4.7 have p-rank 3. The
groups presented in Examples 4.6 and 4.8 have p-rank 4 and are con-
structed in the following way. We take a direct product of a group
N , consisting of one or more copies of a particular simple p′-group, by
a group K consisting of one or more copies of L = U3(2

3) if p = 3
or L = Sz(25) if p = 5. Then we take two cyclic p-groups A and
B and we let them act on the direct product N × K as follows. We
take a faithful action of A × B on N , and we choose a representation
A× B → Aut(K) such that Op(K ⋊ (A × B)) ∼= Op(CA(K)) 6= 1. The
group G = (N × K) ⋊ (A × B) satisfies the conditions Op(G) = 1,
Op′(G) = N 6= 1, CG(N) = K and Op(G/N) = Op(K ⋊ (A × B)) 6= 1.
Moreover, since the p-rank of L is at most 2, we can construct G to have
p-rank 4 by adjusting the number of copies of L in K.

For these groups we show that K(Sp(G)) has a 2-dimensional G-
invariant subcomplex homotopy equivalent to itself, and thus Corollary
3.3 applies.

In Examples 4.10 and 4.11 we describe two groups of 2-rank 4 such
that K(S2(G)) admits a 2-dimensional G-invariant homotopy equivalent
subcomplex.

For the claims on the structure of the automorphism group of the
finite groups of Lie type we refer to [GLS98] and [GLS99].

Lemma 4.2. Let 1 → N → G → K → 1 be an extension of finite
groups. Then

mp(G) = max
A∈S

mp(CN (A))+mp(A),

where S is the set of elementary abelian p-subgroups 1 ≤ A ≤ G such
that A ∩N = 1. In particular we have mp(G) ≤ mp(N) +mp(K).

Proof. If A ∈ S we have CN (A)×A ∼= CN (A)A and hence mp(CN (A))+
mp(A) ≤ mp(CN (A)A) ≤ mp(G). Taking maximum over A ∈ S gives
the lower bound for mp(G). We now prove the other inequality. Let E
be an elementary abelian p-subgroup of G and write E = (E ∩N)A for
some complement A of E∩N in E. Then mp(E∩N) ≤ mp(CN (A)) and
A ∈ S. Nowmp(E) = mp(E∩N)+mp(A) ≤ mp(CN (A))+mp(A), giving
the upper bound for mp(G). For the last claim note that CN (A) ≤ N
and mp(A) ≤ mp(K) by the isomorphism theorems. �
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The following lemma will be used to obtain proper subcomplexes of
K(Ap(G)) without changing the homotopy type. We write X ≃ Y if the
order complexes K(X) and K(Y ) are homotopy equivalent.

Lemma 4.3. Let G be a finite group and let H ≤ G. In addition,
suppose that Op(CH(E)) 6= 1 for each E ∈ Ap(G) with E∩H = 1. Then
Ap(G) ≃ Ap(H).

Proof. Consider the subposet N = {E ∈ Ap(G) : E ∩ H 6= 1}. We
have order preserving maps r : N → Ap(H) and i : Ap(H) →֒ N given
by r(E) = E ∩ H and i(E) = E such that ir(E) ≤ E and ri(E) = E.
Therefore N ≃ Ap(H).

Let S = {E ∈ Ap(G) : E ∩ H = 1} be the complement of N in
Ap(G). For any E ∈ S consider Ap(G)>E ∩ N = {A ∈ N : A >
E}. It is easy to see that r : Ap(G)>E ∩ N → Ap(CH(E)) defined by
r(B) = B∩H is a homotopy equivalence with inverse i(B) = BE. Then
Ap(G)>E ∩ N ≃ Ap(CH(E)) is contractible since Op(CH(E)) 6= 1.

Now take a linear extension E1, . . . , Er of S (i.e. ennumerate the ele-
ments of S so that Ei ≤ Ej implies i ≤ j) and let X i = N∪{E1, . . . , Ei}.
Note that X i = X i−1 ∪ {Ei} and by the linear extension X i

>Ei
=

Ap(G)>Ei
∩ N , which is contractible. Now X i

≥Ei
is a cone over X i

>Ei

with vertex Ei. Therefore X i−1 →֒ X i is a homotopy equivalence for
each 1 ≤ i ≤ r. In consequence,

Ap(G) = Xr ≃ X0 = N ≃ Ap(H). �

Remark 4.4. In the above result it can be shown that if H ⊳G then the
homotopy equivalence is G-equivariant.

Example 4.5. Let p = 3 and let L = L2(2
3) × L2(2

3) × L2(2
3). Let

A be a cyclic group of order 3 acting on L by permuting the copies of
L2(2

3). Take G = L⋊A. Since m3(L2(2
3)) = 1 and CL(A) ∼= L2(2

3), we
see that m3(G) = 3. By Corollary 3.4, G satisfies Quillen’s conjecture.

Example 4.6. Let p = 3, N = Sz(23)×Sz(23)×Sz(23) and U = U3(2
3).

Let A = 〈a〉 and B = 〈b〉 be cyclic groups of order 3. We construct a
semidirect product G = (N×U)⋊ (A×B). To do this we need to define
a map A×B → Aut(N × U) = Aut(N)×Aut(U).

Choose a field automorphism φ ∈ Aut(U3(2
3)) of order 3. By the

properties of the p-group actions, there exists an inner automorphism x ∈
Inn(U3(2

3)) of order 3 commuting with φ. Then A ×B → Aut(U3(2
3))

is given by a 7→ x and b 7→ φ. Choose a field automorphism ψ ∈
Aut(Sz(23)) of order 3. Let A act on each coordinate of N as ψ and
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let B act on N by permuting its coordinates. This gives rise to a well
defined map A×B → Aut(N).

The 3-rank of G is m3(G) = m3(U3(2
3)AB). We can take an el-

ementary abelian subgroup E ≤ CU (φ) of order 9 containing x since
CU (φ) ∼= PGU3(2) ∼= ((C3×C3)⋊Q8)⋊C3 by [GLS99, Chapter 4, Lemma
3.10] and A3(PGU3(2)) is connected of height 1. Then EAB is an el-
ementary abelian subgroup of order 34. Hence, m3(UAB) ≥ 4. Since
m3(U3(2

3)) = 2 and m3(AB) = 2, by Lemma 4.2 we have m3(G) = 4.
By Corollary 3.3, to show that Quillen’s conjecture holds for G and

p = 3 it is enough to find a 2-dimensional G-invariant subcomplex
X of K(S3(G)) homotopy equivalent to K(S3(G)) (or, equivalently, to
K(A3(G))).

Let H = (N × U)⋊A. Note that H ⊳ G and m3(H) = 3. Therefore,
K(A3(H)) is a 2-dimensionalG-invariant subcomplex of K(A3(G)). Now
the plan is to use Lemma 4.3 to show that A3(H) ≃ A3(G). Let E ∈
A3(G) be such that E ∩H = 1. Then E ∼= EH/H ≤ B ∼= C3 and hence,
E is cyclic generated by some element e ∈ E. Write e = nuaibj with
n ∈ N , u ∈ U and i, j ∈ {0, 1, 2}. Note that j 6= 0 since E ∩H = 1. If
v ∈ U , then

ve = vnua
ibj = (vua

i

)b
j

.

Since j 6= 0 and e induces an automorphism of U of order 3 in Inn(U)φj ,
by [GLS98, Proposition 4.9.1] and the definition of field automorphisms
[GLS98, Definition 2.5.13], e is Inndiag(U)-conjugate to φj and acts as
a field automorphism on U . In particular, CU (E) = CU (e) ∼= CU (φ

j) =
CU (φ). Note that O3(CU (E)) ∼= O3(CU (φ)) ∼= C3 × C3 6= 1. Since
CU (E) ⊳ CH(E) and O3(CU (E)) 6= 1, we conclude that O3(CH(E)) 6=
1. By Lemma 4.3, A3(G) ≃ A3(H), which is 2-dimensional and G-
invariant. In conclusion, the subcomplex K(A3(H)) satisfies the hy-
pothesis of Corollary 3.3 and therefore, Quillen’s conjecture holds for
G.

Note that O3(G) = 1, O3′(G) = N , CG(O3′ (G)) = U3(2
3) and

O3(G/O3′(G)) = O3(U3(2
3)AB) = 〈ax−1〉 ∼= C3.

Example 4.7. Let p = 5. Let r be a prime number such that r ≡ 2 or
3 mod 5 and let q = r5

n

with n ≥ 2. Let N be one of the simple groups
L2(q), G2(q),

3D4(q
3) or 2G2(3

5n) and let A = 〈a〉 be a cyclic group of
order 5n. Note that 5 ∤ |N |. Let a act on N as a field automorphism
of order 5n. Choose a field automorphism φ ∈ Aut(Sz(25)) of order 5
and let A act on Sz(25)× Sz(25) as φ × φ. Now consider the semidirect
product G = (N × Sz(25)× Sz(25)) ⋊A defined by this action.
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Since the Sylow 5-subgroups of Sz(25) are cyclic of order 25, by Lemma
4.2 we have thatm5(G) = 3. By Corollary 3.4, Quillen’s conjecture holds
for G.

Moreover, O5(G) = 1, O5′(G) = N , CG(O5′ (G)) = Sz(25)2 and
O5(G/O5′(G)) = CA(Sz(2

5)2) = 〈a5〉 6= 1.

Example 4.8. Let p = 5 and let N = L5, where L is one of the simple
5′-groups of the previous example. Let A = 〈a〉 ∼= C5n and B = 〈b〉 ∼= C5.
Let G = (N × Sz(25)2) ⋊ (A× B), where a acts on each copy of L as a
field automorphism of order 5n and trivially on Sz(25)2, and b permutes
the copies of L and acts as a field automorphism of order 5 on each copy
of Sz(25).

To compute the 5-rank of G we use Lemma 4.2:

m5(G) = m5(Sz(2
5)2 ⋊ (A×B))

= m5(A× (Sz(25)2 ⋊B))

= m5(A) +m5(Sz(2
5)2 ⋊B)

= 1 + 3

= 4.

Now the aim is to apply Corollary 3.3 on G by finding a 2-dimensional
G-invariant homotopy equivalent subcomplex X of K(S5(G)).

Let H = (N × Sz(25)2) ⋊ A = NA × Sz(25)2. Note that H ⊳ G and
m5(H) = 3. Hence K(A5(H)) is 2-dimensional and G-invariant. We will
show that A5(H) ≃ A5(G) by applying Lemma 4.3.

Let E ∈ A5(G) be such that E ∩H = 1. Then E is cyclic generated
by an element e of order 5 and e = lsaibj with l ∈ N , s ∈ Sz(25)2,
0 ≤ i ≤ 5n − 1 and j ∈ {1, 2, 3, 4}. Thus E acts by field automorphisms
on each copy of the Suzuki group and e is Inndiag(Sz(25))-conjugate to
the field automorphism induced by bj on Sz(25) (see [GLS98, Proposition
4.9.1] and Example 4.6). Hence, CH(E) = CNA(E)×CSz(25)2(E). Note

that CSz(25)2(E)⊳CH(E) and CSz(25)2(E) ∼= CSz(25)(E)2 ∼= (C5⋊C4)
2 has

a nontrivial normal 5-subgroup. Therefore A5(G) ≃ A5(H) by Lemma
4.3 and Quillen’s conjecture holds for G by Corollary 3.3 applied to the
subcomplex K(A5(H)).

Note that O5′(G) = N and CG(O5′(G)) = Sz(25)2. On the other
hand, O5(G) = 1 and O5(G/O5′ (G)) = A 6= 1.

We conclude with two examples of groups satisfying Quillen’s conjec-
ture for p = 2. We say that a finite group G has the trivial intersection
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property at p if any two different Sylow p-subgroups of G have trivial
intersection.

Proposition 4.9. Let L1 and L2 be two finite groups with the trivial
intersection property at p. Let L = L1 × L2 and take an extension G
of L such that |G : L| = p. Then i(Sp(G)) and Bp(G) are at most 2-
dimensional. If in addition the Sylow p-subgroups of L1 and L2 have
abelian Ω1, then i(Ap(G)) is at most 2-dimensional.

Proof. The elements of i(Sp(L)) are of the form P1×P2, 1×P2 or P1×1,
where Pi ≤ Li are Sylow p-subgroups. Hence, i(Sp(L)) is 1-dimensional.

Now suppose that Q0 < Q1 < . . . < Qn is a chain in i(Sp(G)). Then

Q0 ∩ L ≤ Q1 ∩ L ≤ . . . ≤ Qn ∩ L

is a chain in i(Sp(L)). We claim that there is at most one index i such
that Qi ∩ L = Qi+1 ∩ L. To see this note that

|Qj : Qj ∩ L| =

{
1 if Qj ⊆ L

p if Qj 6⊆ L
.

We have |Qi+1 : Qi| · |Qi : Qi∩L| = |Qi+1 : Qi+1∩L| · |Qi+1∩L : Qi∩L|.
Then if Qi ∩ L = Qi+1 ∩ L, since |Qi+1 : Qi| ≥ p we must have |Qi :
Qi ∩ L| = 1 and |Qi+1 : Qi+1 ∩ L| = p. Then i = max{j : Qj ⊆ L}.

From this we conclude that dim i(Sp(G)) ≤ 1 + dim i(Sp(L)) = 2. It
is well-known that Bp(G) is a subposet of i(Sp(G)) (i.e. every radical
p-subgroup is an intersection of Sylow p-subgroups). Then Bp(G) is at
most 2-dimensional also. The same proof can be easily adapted to prove
that, if the Sylow p-subgroups of L1 and L2 have abelian Ω1, i(Ap(G))
is at most 2-dimensional. �

In the following examples we use the fact that the groups A5 and
U3(2

2) have the trivial intersection property at 2 and that Ω1(P ) is
abelian for P a Sylow 2-subgroup of either A5 or U3(2

2).

Example 4.10. Let G be the group extension (A5 × A5) ⋊ C2 where
the generator of C2 acts on each coordinate as conjugation by the trans-
position (1 2). Since m2(A5) = 2 = m2(Aut(A5)), by Lemma 4.2, G
has 2-rank 4. By Proposition 4.9, i(A2(G)), i(S2(G)) and B2(G) are 2-
dimensional and then Quillen’s conjecture holds for G since Corollaries
3.5 and 3.6 apply.

Example 4.11. Let G = (U3(2
2) × A5) ⋊ C2 be the semidirect prod-

uct constructed in the following way. Let H = U3(2
2) × A5. Then
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Out(H) ∼= Aut(U3(2
2))/Inn(U3(2

2))×Aut(A5)/Inn(A5) ∼= C4×C2. Take
t ∈ Out(H) to be the involution which acts nontrivially on both factors.
ThereforeG = H⋊〈t〉. Sincem2(U3(2

2)) = 2 = m2(A5) = m2(Aut(A5))
andm2(Aut(U3(2

2))) = 3, by Lemma 4.2 G has 2-rank 4. Just as before,
Quillen’s conjecture holds for G.
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