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The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling
proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both
RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or
different partners’ proteins. These control mechanisms guarantee a precise equilibrium
between SR Ca2+ reuptake and release. The review then discusses how disruption of
this balance alters SR Ca2+ handling and may constitute a first step toward cardiac
damage and malignant arrhythmias. In the last part of the review, this concept is
exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy,
digitalis intoxication and ischemia-reperfusion injury.

Keywords: sarcoplasmic reticulum Ca2+-ATPase, ryanodine receptor 2, arrhythimas, phospholamban, apoptosis,
diabetic myocardiopathy, isquemia-reperfusión

INTRODUCTION

Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, being Ca2+

mishandling one of the most striking abnormalities in the setting of a wide spectrum of pathologies,
including cardiac hypertrophy, heart failure, DCM, and I/R damage. Indeed, alterations that
constitute the hallmark of these diseases, like contractile dysfunction, cardiac arrhythmias or cell
death are in great part a reflection of the impairment in Ca2+ handling and the altered function of
the SR, a pivotal responsible of Ca2+ cycling within cardiac myocytes.

The purpose of this review is: (1) To summarize the regulation of the main cardiac SR Ca2+

handling proteins involved in SR Ca2+ uptake and release, i.e., SERCA2a/PLN and RyR2. Both
proteins are highly regulated by additional partners’ proteins and/or PTMs that may increase or
decrease their activity. (2) To describe how the disruption of the interplay among these proteins

Abbreviations: β-ARS, β-adrenergic stimulation; AGEs, advanced glycation end products; AP, action potential; Ca2+,
calcium; CaM, calmodulin; CaMKII, Ca2+-calmodulin dependent Kinase II; CASQ2, calsequestrin; CPA, cyclopiazonic
acid; DAD, delay afterdepolarizations; DCM, diabetic cardiomyopathy; EAD, early afterdepolarizations; ECC, excitation
contraction coupling; ER, endoplasmic reticulum; HRC, histidine-rich Ca2+binding protein; I/R, ischemia/reperfusion;
MCU, mitochondrial Ca2+ uniporter; Na+, sodium; NCX, Na+/Ca2+ exchanger; NO, nitric oxide; ONOO−, peroxynitrite;
P0, open probability; PKA, protein kinase A; PLN, phospholamban; PP1, type 1 phosphatase; PTM, post-translational
modification; RNS, reactive nitrogen species; ROS, reactive oxygen species; RyR2, ryanodine receptor 2; SERCA2a,
sarcoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; SUMO1, small ubiquitin-like modifier type 1; T2DM,
type 2 diabetes mellitus.
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may constitute a key determinant of Ca2+ triggered arrhythmias
and cardiac damage. (3) To recapitulate experimental evidence
in which alterations of the balance between these key players
contribute to SR Ca2+ mishandling with the ensuing production
of Ca2+ triggered arrhythmias and cell death in different
cardiac diseases.

EXCITATION-CONTRACTION COUPLING

Cardiomyocyte excitation-contraction coupling (ECC) is the
process that links membrane depolarization, at the surface
cell level, with myofilament interaction that drives contraction,
inside the cell. Ca2+ ions are the link between the two
processes (Figure 1).

REGULATION OF CA2+ HANDLING
PROTEINS INVOLVED IN SR CA2+

UPTAKE AND RELEASE

The SR orchestrates the ECC, being Ca2+ ions the main players.
Ryanodine Receptors 2 (RyR2) and SERCA2a are highly and
precisely regulated by several proteins and kinases, which allow
a fine-tuned synchronization of Ca2+ cycling and therefore of
cardiac contraction and relaxation processes. We will mention
here several key modulators and PTMs of these two main
proteins. For a further review see for instance (Kranias and
Hajjar, 2012; Haghighi et al., 2014; Mattiazzi and Kranias, 2014;
Eisner et al., 2017; Meissner, 2017; Santulli et al., 2017a,b).

Regulation of SR Ca2+ Uptake
SERCa2a Post-translational Modifications
Redox regulations appear to play an important role in SERCA2a
function, both in health and disease. In cardiac myocytes it
has been shown that oxidative stress reduces contractility with
depletion of SR Ca2+ stores, due to SERCA2a inhibition (Morris
and Sulakhe, 1997; Xu et al., 1997; Kaplan et al., 2003; Kuster
et al., 2010). Indeed, several pathologies like metabolic syndrome
(Balderas-Villalobos et al., 2013) or atherosclerosis (Cohen and
Adachi, 2006), which are associated with an increase in oxidative
stress, reduced SERCA2a activity and contractility.

Nitric oxide activates SERCA2a activity by a cGMP-
independent pathway which involves the direct modification
of reactive thiol groups on the protein, not only of vascular
smooth muscle but also of cardiac and skeletal muscle. On
its own, NO is a weak SH-group oxidant. However, in the
presence of O2

− it results in an increased ONOO− production.
Under physiological conditions, the ONOO− produced may
react with the thiol groups of proteins producing S-nitrosylation
and S-gluthationylation of cysteine residues. S-gluthationylation
increases the activity of the pump. The SERCA2a residue
mainly involved in this reaction is the reactive thiol group
Cys674 (Adachi et al., 2004). However, an exacerbated increase
of ONOO− nitrosylates the hydroxyl groups of SERCA2a,
producing impairment of cardiac relaxation (Braun et al., 2019).

Sarcoplasmic reticulum Ca2+-ATPase is also regulated
by the SUMO1 (sumoylation), by AGEs (glycation) and by
acetylation/deacetylation processes. SERCA2a sumoylation
appears to prolong the lifetime of SERCA2a as well as to
increase its intrinsic activity by SUMO1 binding to Lys480
and Lys585 residues. Indeed, increasing SUMO1 expression
restores SERCA2a levels, improves hemodynamic performance,
and reduces mortality in heart failure (Kho et al., 2011). AGEs
complexes can compromise the pump activity by altering
the structural movements required for translocating Ca2+

from the cytosol to the lumen of the SR (Bidasee et al., 2004).
Finally, recent experiments indicated that the acetylation of
SERCA2a at K492 site was significantly increased in heart
failure (HF) in association with a reduction of SIRT1, a class
III histone deacetylase. Acetylation of K492 significantly
diminished SERCA2a activity, possibly by interfering with
the binding of ATP. Activation of SIRT1 restored SERCA2a
activity. This strategy may, therefore, be useful for HF treatment
(Gorski et al., 2019).

PLN Post-translational Modifications and the PLN
Interactome
Undoubtedly, the main regulator of SERCA2a activity is
PLN (Tada et al., 1975). PLN is a small protein (52
amino acid residues) that binds to and allosterically inhibits
SERCA2a (MacLennan and Kranias, 2003). Dephosphorylated
PLN reduces the affinity of SERCA2a for Ca2+ whereas
PLN phosphorylation increases SERCA2a pump activity. There
are two PLN phosphorylation sites that are physiologically
relevant: Ser16 residue, phosphorylated by PKA and Thr17

site, phosphorylated by the Ca2+-calmodulin-dependent protein
kinase II (CaMKII) (Figure 2A). Phosphorylation of these sites
increases the affinity of SERCA2a for Ca2+ and the rate of SR
Ca2+ uptake. This, in turn, leads to increases in SR Ca2+ load,
SR Ca2+ release and myocardial contractility (Lindemann et al.,
1983; Lindemann and Watanabe, 1985; Mundina de Weilenmann
et al., 1987; Mundina-Weilenmann et al., 1996).

The status of PLN phosphorylation, as is the case of
any other protein, depends on the dynamic balance between
the activity of kinases and phosphatases that phosphorylate
and dephosphorylate the protein, respectively. PP1, is the
major SR phosphatase that specifically dephosphorylates PLN
(Steenaart et al., 1992). Inhibition of PP1 results in increased
phosphorylation of PLN and SERCA2a activation (Haghighi
et al., 2015; Figure 2A). During β-ARS, PKA phosphorylates
PLN at Ser16 site and simultaneously inhibits PP1 through the
PKA dependent phosphorylation of two additional proteins,
inhibitor-1 (I-1) and the small heat shock protein 20 (Hsp20)
(Qian et al., 2011). Under β-ARS, PLN-Thr17 site is also
phosphorylated by CaMKII activation due to the increase in
intracellular Ca2+ and the inhibition of PP1, produced by the
activity of PKA. In contrast, phosphorylation of Thr17 of PLN
does not occur when only intracellular Ca2+ was increased
without PKA activation, which is necessary to inhibit PP1
(Mundina-Weilenmann et al., 1996).

Post-translational modification of phospholamban by reactive
oxygen and nitrogen species (ROS and RNS, respectively) may
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FIGURE 1 | Cardiac excitation-contraction coupling. When cardiomyocytes are reached by an AP, depolarization of the plasma membrane by Na+ entry (INa),
induces the opening of L-type Ca2+ channels. Ca2+ entering through these channels (Ca2+ current, ICa), induces Ca2+ release by the RyR2s (Ca2+-induced-
Ca2+-release), which subsequently activates myofilaments for muscle contraction. Relaxation occurs when SR -Ca2+ ATPase (SERCA2a) reuptakes Ca2+, lowering
cytosolic Ca2+ concentration in combination with Ca2+ extrusion via the Na+- Ca2+ exchanger (NCX) working in reverse mode and the sarcolemma Ca2+-ATPase.
Mitochondria also participate taking and extruding Ca2+ from the cytosol during Ca2+ cycle. Green arrows depict Ca2+ fluxes.

also influence SR Ca2+ uptake (Bigelow and Squier, 2005;
Froehlich et al., 2008; Lancel et al., 2009; Ha et al., 2011). Among
these PTM it is interesting to mention the one-electron reduction
product of NO, nitroxyl (HNO). This molecule has received
special attention not only as a possible signaling molecule in the
cardiovascular system but also as a potential therapeutic strategy
for HF treatment due to its positive inotropic and lusitropic
effects in normal and failing canine hearts (Paolocci et al., 2001,
2003; Sivakumaran et al., 2013). PLN played a central role in
these effects of HNO, by enhancing SERCA2a activity (Froehlich
et al., 2008). Moreover, it has been suggested that S-nitrosylation
of PLN at Cys36 and Cys41 modulates the PLN-dependent
regulation of SERCA2a during β-ARS, i.e., S-nitrosylation of
PLN is required for stabilization of the pentameric form of
PLN, and consequent SERCA2a activation (Irie et al., 2015).
Several additional regulatory proteins are associated with PLN
and SERCA2a and contribute to the control of SR Ca2+-
transport. These include the hematopoietic lineage cell-specific
protein-1 (HS-1) associated protein X-1 (HAX1), a ∼35 kDa
protein, which was identified forming a complex with HS-1 in
lymphocytes (Suzuki et al., 1997), the intra-luminal histidine-rich
Ca2+ binding protein (HRC), which has been shown to interact
with both SERCA2a and triadin on the SR luminal side (see
below and Figure 2C) and S100A1 on the cytosolic side (Kiewitz
et al., 2003). Ca2+-dependent S100A1 binding to SERCA2a
results in an increased enzymatic activity which is associated with
enhanced SR Ca2+ uptake and load (Most et al., 2001; Kiewitz
et al., 2003; Kettlewell et al., 2005). As will be discussed below,
HRC and S100A1 also interact and regulate RyR2 and SR Ca2+

release (Völkers et al., 2007; for review, see Haghighi et al., 2014;
Kranias and Hajjar, 2017; Arvanitis et al., 2018).

Regulation of SR Ca2+ Release
Ryanodine receptor 2 is the largest ion channel known in nature
and one of the most relevant Ca2+ handling proteins. RyR
forms a homotetrameric assembly comprising four monomers of
565 kDa each (Van Petegem, 2015). There are three mammalian
isoforms that share 65% sequence identity: RyR1, predominantly
expressed in skeletal muscle; RyR2, the cardiac isoform and
RyR3, expressed in several tissues including the brain (Capes
et al., 2011). While at the cytosolic portion, the channel
contains multiple regulatory domains, such as binding sites
for energy sensors (ATP, ADP, and AMP) (Figure 2B), and
inorganic phosphate, metabolites such as pyruvate, fatty acids
and polyamines, and ions (Mg2+, H+, and Cl−, not shown
in the Figure for the sake of clarity) (Zucchi and Ronca-
Testoni, 1997; Fill and Copello, 2002; Meissner, 2004); the Ca2+

binding site is located in the core domain of the channel just
above the transmembrane domain an involves de carboxyl-
terminal domain region (Murayama et al., 2018). This complex
is also regulated and modulated by a diverse array of RyR2-
interacting proteins which involve PKA, CaMKII, phosphatases
(i.e., phosphatase 1 and 2A), and phosphodiesterase (PDE4D)
which are tethered to the channel and held near their target sites
by means of anchoring proteins (Marks, 2002; Lehnart et al.,
2005). This allows for a tight and spatially confined homeostatic
regulation of the balance between RyR2 phosphorylation and
phosphatase dependent dephosphorylation.
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FIGURE 2 | (A) Regulation of SR-Ca2+ uptake. SR- Ca2+ uptake takes place through the SR- Ca2+ ATPase (SERCA2a), being PLN the main regulatory protein of
SERCA2a. PLN can be phosphorylated by PKA at Ser16 residue and by Ca2+-calmodulin-dependent protein kinase (CaMKII) at Thr17 site. Protein phosphatase 1
(PP1) dephosphorylates both sites. Either one or both phosphorylation sites relieve PLN inhibition on SERCA2a. Several other proteins regulate SERCA2 either
directly, like S100A or Sumo1, or indirectly, through the regulation of PLN (like the hematopoietic lineage cell-specific protein-1 (HS-1) associated protein X-1 (Hax-1),
the Heat-shot protein 20 (Hsp20), and the inhibitor 1 (I-1). As described in the text, PLN and SERCA2a are also regulated by redox processes and SERCA by
acetylation and glycation (Not shown in the Figure for the sake of clarity). (B) Regulation of SR-Ca2+ release: SR-Ca2+ release occurs mainly through the RyR2
which are also highly regulated. CaMKII phosphorylates RyR2 at Ser2814 and S2808 sites and PKA at Ser2808 and 2030 sites. Ser2808 is also target of
protein-kinase C (PKC) and protein-kinase G (PKG). PP1 and PP2 are the phosphatases that dephosphorylate RyR2. Other regulatory proteins are sorcin, S-100 at
the cytosolic side, FKB12.6 and calmodulin (Cm), bounded to RyR2, CASQ2, triadin, and juntin at the cytosolic site. Phosphodiesterase (PDE), ions, and nucleoside
phosphates (AMP, ADP, and ATP) are also bounded to RyR2. (C) Dual role of HRC: The intra-luminal protein histidine-rich calcium binding protein (HRC) interacts
with SERCA2a as well as with triadin in a Ca2+-dependent fashion, increasing RyR2 Ca2+ release and SERCA2a Ca2+-uptake when Ca2+ increases in SR.

Post-translational Modifications of RyR2
Phosphorylation is possibly the most studied and controversial
PTM modification of RyR2. Phosphorylation of the channel
modulates the effect of Ca2+ on the RyR2 without having the
inherent ability to open or close the channel per se (Camors
and Valdivia, 2014). Until now three phosphorylation sites in
the RyR2 have been identified: Ser2808, Ser2814, and Ser2030

(Figure 2B). Serine 2808 (Ser2808, mouse, and Ser2809 in human
and canine RyR2 nomenclature) was first described by Witcher
and collaborators as a CaMKII site (Witcher et al., 1991). Further
in-depth studies of this phospho-site indicated that Ser2808 is a
target for PKA, CaMKII and possibly PKG (Jiang et al., 2002;
Rodriguez et al., 2003; Stange et al., 2003; Currie et al., 2004; Ai

et al., 2005; Xiao et al., 2005; Carter et al., 2006; Kohlhaas et al.,
2006; Ferrero et al., 2007; Huke and Bers, 2008; MacDonnell
et al., 2008; Fischer et al., 2013). Experiments by Marx et al.
(2000) indicated that PKA-dependent phosphorylation of RyR2
at Ser2808 site under β-ARS, increases P0 and SR Ca2+ release.
However, this contention was not supported by different studies
and the functional meaning of this phosphorylation is not clear
yet (Xiao et al., 2006; Ferrero et al., 2007; Huke and Bers, 2008).
This is in part due to the fact that most studies found that Ser2808

is constitutively phosphorylated under basal conditions (Jiang
et al., 2002; Rodriguez et al., 2003; Carter et al., 2006; Ferrero
et al., 2007; Huke and Bers, 2008), generating doubts about the
relevance of “extra” phosphorylation on this site. Moreover, it
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was also showed that RyR2s were hyperphosphorylated in failing
hearts from humans and dogs at Ser2809, which was attributed
at least in part to a decrease in the amount of PP1 associated to
RyR2 (Marx et al., 2000; Wehrens et al., 2006). However, several
subsequent experiments by other groups failed to reproduce these
findings (Li et al., 2002), turning the attention to serine 2814
(Ser2814) site as the primary phosphorylation site responsible
for SR Ca2+ leak and arrhythmogenic events in HF (Li et al.,
2002; Respress et al., 2012). The role of Ser2808 phosphorylation
was further complicated by the finding that both, minimum
and maximum RyR2 phosphorylation at Ser2808, increase RyR2
activity, suggesting a U-shaped of RyR2 activity according to the
PKA phosphorylation level (Carter et al., 2006). A clear revision
of these controversial results is given by Bers (Bers, 2012) and
Camors and Valdivia (Camors and Valdivia, 2014).

Ser2814 site was described by Wehrens et al. (2004) as a
CaMKII site and further evidence confirmed that this site seems
to be exclusively phosphorylated by CaMKII. In single-channel
experiments, the P0 of the RyR2s was generally found to be
increased upon phosphorylation by CaMKII (Lokuta et al., 1995;
Wehrens et al., 2004; Yang et al., 2007). In line with these results,
either activation or overexpression of CaMKII was associated
with the positive inotropic effect of β-ARS (Ferrero et al., 2007),
an increase of Ca2+ spark frequency (Guo et al., 2006) and the
susceptibility to arrhythmias (Maier et al., 2003; Dybkova et al.,
2011; Respress et al., 2012; Mazzocchi et al., 2016; Valverde et al.,
2019). In contrast, animals in which Ser2814 was replaced by
Alanine (S2814A mice) were protected from arrhythmias and
cardiac dysfunction induced by several diseases (van Oort et al.,
2010; Di Carlo et al., 2014; Mazzocchi et al., 2016).

Serine 2030 (Ser2030) was characterized as a PKA
phosphorylation site using classical phospho-epitope mapping
(Xiao et al., 2005). Whereas in quiescent cardiac myocytes
the RyR2 appears to be completely unphosphorylated (Huke
and Bers, 2008), this site has been suggested as the major
phosphorylation site in RyR2 responding to PKA activation
upon β-ARS in normal and failing hearts (Xiao et al., 2006). In
this context, it has recently been described that phosphorylation
of RyR2 at Ser2030 is required for a complete effect of β-ARS
(Potenza et al., 2019) in mouse lines with genetic ablation of this
site (RyR2-S2030A).

Interestingly, recent work reports crystal structures of the
RyR2 phosphorylation domain with the PKA catalytic subunit
(PKAc), showing Ser2808 captured within the active site of
PKA. The results further demonstrated that the addition of
a phosphomimetic at the CaMKII site (S2814D), results in
structural changes in the RyR2 phosphorylation domain that
enhance the interaction with PKAc. These findings strongly
suggest that phosphorylation of Ser2814 site may affect the activity
of PKA and impact on Ser2808, i.e., nearby phosphorylation
sites might influence one each other (Haji-Ghassemi et al.,
2019). This possible interaction among the different residues
sharing the phosphorylation “hotspot” region of RyR2, might
clarify previous controversial findings on the role of Ser2808 site
on different physiological and disease situations. Since RyR2
phosphorylation by PKA and CaMKII may not be independent,
the authors suggest that the phosphorylation status of Ser2808 may

be altered in studies that have used S2814D mice. Of note, in
contrast with this prediction, previous experiments indicate that
isoproterenol-induced phosphorylation of RyR2-Ser2808 site did
not vary when isoproterenol was administrated in the absence
and presence of a CaMKII inhibitor (KN-93), to avoid the
simultaneous phosphorylation of Ser2814 residue (Ferrero et al.,
2007), i.e., phosphorylation of Ser2814 did not influence the extent
of phosphorylation of Ser2808 site. However, the isoproterenol
concentration used in these experiments was rather high and
may not allow any further PKA-dependent phosphorylation
of this site. Therefore, it would be important to perform
similar experiments in the presence of lower isoproterenol
concentrations to investigate the possible influence of Ser2814

phosphorylation on the isoproterenol-induced phosphorylation
of Ser2808 site predicted by the crystal structure studies.

The role of phosphatases activity on RyR2 phosphorylation
was recently emphasized. It was shown that PP1 activation
counteracts the increased kinase activity in human heart
failure reducing SR Ca2+ leak as well as cellular arrhythmias
without significant changes in SR Ca2+ load and contractility
(Fischer et al., 2018).

Oxidative conditions generally increase the RyR2 P0, while
reducing agents do the opposite (Marengo et al., 1998; Xu et al.,
1998; Salama et al., 2000; Sun et al., 2008). The functional
consequence of a moderate cellular oxidative/nitrosative stress
could result in an immediate enhancement of Ca2+ release from
the SR in response to a given physiological trigger. However,
severe oxidative stress can cause irreversible and persistent
activation of RyR2s (Xu et al., 1998), increasing SR Ca2+ leak.
It has been reported that NADPH oxidase 2 (NOX2) is the
predominant isoform expressed in T-tubules and SR membranes
of adult cardiomyocytes. Therefore, it is strategically positioned
to modulate the activity of the RyR2s. ROS produced by
NOX2 stimulates SR Ca2+ release via at least two pathways:
direct oxidation or S-glutathionylation of RyR2s or indirectly
through CaMKII activation (Palomeque et al., 2009), followed
by phosphorylation of the RyR2s. In healthy cardiac muscle
neuronal nitric oxide synthase (nNOS) is mainly located in
the SR membrane, linked to the RyR2s, which would favor
direct RyR2 nitrosation. The role of this PTM of RyR2 on
cardiac ECC has been previously reviewed (Lim et al., 2008;
Gonzalez et al., 2009).

The RyR2 Complex
Ryanodine receptor 2 modulation has been shown to involve
also several key proteins (Figure 2B), most importantly CASQ2.
CASQ2 not only acts as a Ca2+ buffer, but it also mediates the
responsiveness of the RyR2 channel to luminal Ca2+ by serving as
a Ca2+ sensor (Gyorke et al., 2004; Gyorke and Terentyev, 2008).
This function is effective through protein-protein interactions,
with junctin and triadin (Zhang et al., 1997; Shin et al., 2000).
However, a direct interaction between CASQ2 and RyR2 has
recently been described (Handhle et al., 2016). Junctin is a 26 kDa
transmembrane protein forming a complex with triadin, CASQ2,
and RyR2. It has been proposed that junctin is in direct contact
with RyR2 and works as an anchor for CASQ2 (Zhang et al., 1997;
Gyorke et al., 2004).
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Calstabin 2 or FKBP12.6, is a peptidyl-prolyl cis/trans-
isomerase of 12.6 kDa, associated with RyR2 with a stoichiometry
of 4:1 (Figure 2B). The role of FKBP12.6 has been a matter
of controversy for over the past two decades (Kaftan et al.,
1996; Timerman et al., 1996; Barg et al., 1997; Marks, 2000;
Doi et al., 2002; Jiang et al., 2002; Stange et al., 2003; Wehrens
et al., 2003; Xiao et al., 2007; Guo et al., 2010). FKBP12.6 has
been considered as RyR2 “stabilizer,” since some results indicate
that FKBP12.6 dissociation from RyR2 produces RyR2 sub-
conductance states and increase the Po of the channel. However,
other piece of evidence indicates that FKBP12.6 failed to show
any effect of FKBP12.6 on RyR2 gating. The recent identification
of FKB12 binding site on RyR2 may help to understand the
controversial matters encompassing the FKBP-RyR2 interactions.
FKBP12 binds to RyR2 with lower affinity than FKBP12.6, but has
a higher cardiac expression level (Jeyakumar et al., 2001). Recent
results revealed that only 20% of RyR2 proteins are associated
with FKBP12.6 in myocytes (Guo et al., 2010) which could
explain why RyR2 is unaffected in FKBP12.6-KO mice (Xiao
et al., 2007). Acute overexpression of FKBP12 in adult rabbit
ventricular myocytes showed a reduction in the gain of ECC
and a decrease in Ca2+ spark frequency, suggesting that FKBP12
reduces RyR2 sensitivity to cytosolic Ca2+(Seidler et al., 2007).
In contrast, more recent results show that FKBP12 activates the
RyR2 and competes with FKBP12.6. The last study, would suggest
that rather than a direct stabilization of the channel, an increase
in FKBP12.6-RyR2 binding competes with FKBP12 at the same
binding site and blunts the activation of RyR2 promoted by
FKBP12 (Galfre et al., 2012).

Apo-Calmodulin or Ca2+-free CaM has an inhibitory effect
on RyR2 channel. The Ca2+-bound CaM is named Ca2+-CaM.
Although Ca2+-CaM is the usual form that binds to target
proteins, CaM can also bind to RyR2. CaM shifts the Ca2+-
dependence of RyR2 activation to higher Ca2+ concentrations
(Fruen et al., 2000; Balshaw et al., 2001; Yamaguchi et al., 2005).
The role of CaM on RyR2 regulation was highlighted by results
that indicate that mutations in CaM are associated with RyR2-
mediated cardiac arrhythmias (Nomikos et al., 2014; Sondergaard
et al., 2017). High resolution cryo-electron microscopy recently
provided new insights into the modulation of RyR2 channel
gating by CaM (Gong et al., 2019). These data indicate that Ca2+-
CaM changes RyR2 conformation differently under different
situations. Whereas Ca2+-CaM can reverse RyR2 opening by
Ca2+ and PCB95, a potent channel opener (Samso et al., 2009),
it cannot counteract the activation of the channel by a mixture of
Ca2+, ATP and caffeine. These results emphasize that the P0 of
RyR2 is critically determined by a strict balance between different
activators and inhibitors of the channel (Van Petegem, 2019).

Several proteins that interact with SERCA2a regulating SR
Ca2+ uptake, also modify the RyR2 function. As already
mentioned, the HRC protein is not only associated with
SERCA2a but also with triadin. The interaction of HRC with
triadin increases with increasing Ca2+ concentration (Sacchetto
et al., 1999; Arvanitis et al., 2007). This interaction is believed
to modulate RyR2 function and SR Ca2+ release by conferring
refractoriness to SR Ca2+ release. In turn, HRC-SERCA2a
interaction is also Ca2+-dependent. In this case, the maximal

HRC-SERCA2a association occurs at low Ca2+ concentration
and diminishes with increasing Ca2+ concentrations (Arvanitis
et al., 2007). The different Ca2+ dependence of the interaction
HRC-SERCA2a and HRC-triadin determines the HRC effects
on SR Ca2+ handling (Figure 2C): At low SR Ca2+, HRC
interacts with SERCA2a inhibiting SR Ca2+ uptake. When SR
Ca2+ concentration increases, HRC dissociates from SERCA2a
and enhances its binding to triadin, regulating SR Ca2+ release
(for review, see Arvanitis et al., 2018).

Sorcin is a 22 kDa penta-EF hand Ca2+-binding protein
expressed in many tissues, including the heart. Single-channel
studies indicated that when applied to the cytoplasmic region of
RyR2s, sorcin inhibits RyR2 activity in a dose-dependent manner
by prolonging the mean close time without modifying single-
channel conductance, an effect that is abrogated when sorcin
is phosphorylated by PKA. More recent experiments (Farrell
et al., 2003) demonstrated that sorcin significantly inhibits both
the spontaneous activity of RyR2s in quiescent cells and the
Ca2+ current (ICa)-triggered activity of RyR2s. Moreover, it
decreased the amplitude of the Ca2+ transient without affecting
the amplitude or kinetics of ICa, reducing the “gain” of ECC
mechanism. Sorcin seems to be a key RyR2-associated protein
under stress conditions since its ablation displayed a significantly
higher incidence of cardiac arrhythmias and sudden death in
sorcin-KO mice when subjected to acute or chronic stress
challenge (Chen et al., 2018). It has also been shown that sorcin
increases SR Ca2+ uptake (Matsumoto et al., 2005) and interacts
with NCX (Zamparelli et al., 2010) and L-type Ca2+ channels
(LTCC) (Fowler et al., 2008). All these interactions point to an
important role of this protein in ECC regulation.

Also, as in the case of SERCA2a, S100A1 modulates
RyR2 function under both diastolic and systolic conditions
(Kiewitz et al., 2003; Most et al., 2004; Völkers et al., 2007,
Volkers et al., 2010). Most et al. (2004), first demonstrated
that addition of S100A1 to isolated SR vesicles resulted in
diminished 3H-ryanodine ([3H]Ry) binding to RyR2 at free
Ca2+ concentrations of about 150 nM, while a significantly
increased [3H]Ry binding occurred at Ca2+ concentrations
greater than 300 nM. Hypothesizing a reduced RyR2 P0 at
diastolic cytoplasmic Ca2+ levels, S100A1 would reduce SR Ca2+

leak in quiescent cardiomyocytes (Völkers et al., 2007). Moreover,
S100A1 increases fractional SR Ca2+ release in voltage-clamped
rabbit cardiomyocytes, suggesting that S100A1 enhances the ECC
gain under systolic conditions (Kettlewell et al., 2005).

Cytosolic and Luminal Ca2+ Regulation of RyR2
Both cytosolic and luminal Ca2+ regulate RyR2. It has long
been known that the release of SR Ca2+ in cardiac muscle
during ECC is graded by the amount of activating Ca2+ outside
the SR by the Ca2+-induced Ca2+ release (CICR) process
(Fabiato and Fabiato, 1977). Experimental evidence suggested
the presence of high and low affinity Ca2+ binding sites in
the cytosolic region of RyR2 and luminal Ca2+-binding sites,
whose luminal occupancy depends on SR Ca2+ load (Fabiato
and Fabiato, 1979; Shannon et al., 2000). RyR2s are normally
closed at low cytosolic Ca2+ (100–200 nM); channel activity is
maximal at 10–100 µM cytosolic Ca2+, while elevating cytosolic
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Ca2+ beyond this point leads to a reduction in P0 (Xu and
Meissner, 1998). This biphasic behavior implies there are at least
two classes of Ca2+ binding sites: high-affinity activation and
low-affinity inactivation sites. The P0 steep dependence of RyR2
on cytoplasmic Ca2+, which typically exhibits Hill coefficients
of 2–4 (Sitsapesan and Williams, 1994) indicates that RyR2
activation resulted from cooperative involvement of one high-
affinity (∼1 µM) Ca2+ binding site on each subunit of the
homotetrameric channel (Zahradnik et al., 2005). RyR2s also
possess two inhibitory sites in their cytoplasmic domains with
Ca2+ affinities of the order of 1 µM and 1 mM. Mg2+ competes
with Ca2+ at these sites to inhibit RyR2s (for instance, see
Laver, 2018).

In 1994, Sitsapesan and Williams were the first to show
that luminal Ca2+ could directly activate RyR2 (Sitsapesan and
Williams, 1994). Since then, different type of evidence supports
the notion that luminal Ca2+ controls RyR2 function (i.e.,
Bassani et al., 1995; Gyorke and Gyorke, 1998; Shannon et al.,
2000; Kong et al., 2007; Gyorke and Terentyev, 2008). Two
different mechanisms have been proposed to explain luminal
Ca2+ regulation of RyR2: The “feed-through” hypothesis suggests
that luminal Ca2+ acts on its own cytosolic Ca2+ binding site
during or after Ca2+ passage through an open RyR2 (Herrmann-
Frank and Lehmann-Horn, 1996; Xu and Meissner, 1998).
A second mechanism proposes that luminal Ca2+ regulation of
RyR2 is mediated by a Ca2+ sensing mechanism inside the SR
(Gyorke and Gyorke, 1998; Ching et al., 2000; Jiang et al., 2007;
Gyorke and Terentyev, 2008). Although CASQ2, may serve as a
key SR luminal Ca2+ sensor (Gyorke et al., 2004), experiments in
CASQ2-null mice (Knollmann et al., 2006) and in purified native
and recombinant RyR2s that lack CASQ2 (Xu and Meissner,
1998; Kong et al., 2007), indicate that RyR2s are also regulated
by a luminal Ca2+ sensing mechanism that does not require
CASQ2. Indeed, a point mutation in RyR2 (RyR2-E4872A) which
eliminates Ca2+ regulation by luminal but not by cytosolic Ca2+

was recently identified (Chen et al., 2014). Structural analysis, at
near-atomic resolution, suggests that in addition to E4872, the
E4878 residue may also be involved in luminal Ca2+ activation
of RyR2 (Peng et al., 2016), although the precise mechanism
by which each of these different sites promotes luminal Ca2+

activation of RyR2 is not clear yet.

HOW CAN THE DISRUPTION OF THE
NORMAL INTERPLAY AMONG SR CA2+

HANDLING PROTEINS EVOKE CA2+

TRIGGERED ARRHYTHMIAS AND
APOPTOSIS?

The normal interplay among the different proteins responsible
for the release and reuptake of Ca2+ by the SR is regulated by
different mechanisms as reviewed above. This regulation may be
altered and evolve toward different types of cardiac disorders,
which include arrhythmias and cell death through apoptotic
and necrotic processes. Therefore, regulation and/or alteration
of SR Ca2+ handling proteins (for instance by phosphorylation,

redox changes or mutations), have received great attention from
physiologists and clinicians. We will describe below two main
consequences of the unbalance of SR Ca2+ uptake and release,
i.e., Ca2+ triggered arrhythmias and cellular apoptosis and
necroptosis, with a main focus on those produced by PTM of
Ca2+ handling proteins.

Ca2+ Triggered Arrhythmias
Mechanisms
As stated above, RyR2s are highly regulated molecules. Genetic
or PTM of RyR2 are a main cause of Ca2+ triggered
arrhythmias, i.e., arrhythmias that are originated due to abnormal
Ca2+ handling.

Triggered activity describes impulse initiation that is
dependent on the so-called afterdepolarizations, which are
oscillations in membrane potential that follow the primary
depolarization phase (0) of an AP. Afterdepolarizations are
divided into early and delayed afterdepolarizations, EAD, and
DAD, respectively. EADs are defined as a slowing or reversal
of normal repolarization that occurs before completion of AP,
usually in phases 2 and 3 of human AP, whereas DADs occur
after AP completion (Figure 3). These mechanisms may produce
sustained arrhythmias by reentry circuits (Anderson, 2007).
EADs occurs usually in the setting of prolonged repolarization
and are classically attributed to reactivation of ICa (January and
Riddle, 1989; Nuss et al., 1999). However, a second major current
that facilitates EADs formation is NCX. Indeed, experimental
evidence indicates that these two currents act synergistically to
generate EADs, with their relative contributions varying under
specific conditions (Weiss et al., 2010). The late component of
the Na+ current (INa), has been recognized as an important
player to set up the conditions for EADs, by producing SR
Ca2+ overload, via the reduction of repolarization reserve and
the increase in intracellular Na+ concentration. In addition,
experimental evidence and modeling studies indicate that EADs
may directly arise from Na+ channel reactivation (Horvath et al.,
2013; Sato et al., 2017; Figure 3A).

Delay afterdepolarizations are caused by spontaneous Ca2+

releases from the SR (Bers, 2006). Under conditions of SR Ca2+

overload and/or in circumstances which sensitize the RyR2s, the
Ca2+ released by a group of RyR2 activates neighboring RyR2, in
such a way that Ca2+ propagates in a regenerative way traveling
along the myocytes in a saltatory fashion from sarcomere to
sarcomere (Cheng et al., 1996). Ca2+ waves have substantial
arrhythmogenic potential, since they may trigger Ca2+ activated
currents, such as the NCX current (INCX). This promotes a
transient Na+ current (Iti), that depolarizes cell membrane and
may eventually trigger a spontaneous AP (Bers, 2006), which is
referred to as triggered AP, leading to spontaneous contraction
(Spencer and Sham, 2003; Fujiwara et al., 2008; Mazzocchi et al.,
2016; Figure 3B).

When referring to a multicellular tissue, e.g., whole heart,
spontaneous Ca2+ releases synchronized in a small group of
cells is not enough for triggering an AP. 3D modeling (Xie
et al., 2010) estimated that about 800,000 cells are required to
trigger a premature ventricular complex, being able to bring
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FIGURE 3 | Afterdepolarizations. (A) Reactivation of L-type Ca2+ current (ICa) during prolongation of the AP, mainly during phase 2 or 3, increases the propensity for
EADs. The Na+-Ca2+ current (NCX) also meets the criterion needed for the positive feedback required for an EAD to occur. Both currents can act synergistically
facilitating EAD formation, and thus increasing the probability of an EAD-triggered AP. Red cross indicates inhibition of K+ channels. (B) Various conditions which
increase SR-Ca2+ and/or sensitize RyR2 can induce spontaneous Ca2+ release from the SR. When this release achieves certain critical mass, Ca2+ can induce a
saltatory propagation along cell sarcomeres, known as Ca2+ waves, which in turn activates the NCX that extrude 2 Ca2+ and enter 3 Na+, depolarizing the cell
membrane and producing a delay after depolarization (DAD). If this depolarization attains the excitability threshold, a spontaneous AP occurs.

the sink (adjacent tissue in basal conditions) to its activation
threshold. A sort of synchronization mechanism must exist
for EADs and DADs to overcome the source-sink mismatch.
Normally, in an intact tissue, the source-sink mismatch is the
main mechanism protecting the heart against spontaneous Ca2+

release-induced arrhythmias.

The Threshold Concept
In the context of Ca2+ triggered arrhythmias, an intriguing
issue to consider is the SR Ca2+ threshold. As mentioned
above, spontaneous SR Ca2+ leak can occur in the absence
of membrane depolarization. It has long been known that
several conditions that increase SR Ca2+ load increase SR Ca2+

waves and spontaneous contractions (Orchard et al., 1983; Stern
et al., 1983; Wier et al., 1987). Diaz et al. (1997) showed
that increasing extracellular Ca2+ in quiescent cells produced
spontaneous Ca2+ release associated with increased SR Ca2+

content (Diaz et al., 1997). Once spontaneous Ca2+ release arose,
further increase in extracellular Ca2+ did not affect SR Ca2+

content because of the proportional increase in SR Ca2+ leak.
The authors conclude “It appears there is a maximum level of
SR Ca2+ content, perhaps because spontaneous release results
when the content reaches a threshold”(Diaz et al., 1997). Due
to its dependence on the SR Ca2+ store, this depolarization–
independent SR Ca2+ release has been called “Store Overload-
Induced Ca2+ Release (SOICR)”(Jiang et al., 2004). It has been
further shown that the threshold level also depends on the activity
of RyR2. One important premise of this mechanism is that
“. . .once a threshold level of SR Ca2+ content is reached, SOICR

occurs”(Jiang et al., 2004). More recent experiments by Belevych
et al. (2012) challenged the idea of immediacy that encompasses
the last concept. These authors demonstrated that SR Ca2+ leak
occurs with a substantial time delay after the attainment of
diastolic SR Ca2+ level, i.e., the attainment of a certain SR Ca2+

level is not sufficient for spontaneous Ca2+ release and waves
generation. The time factor is necessary. Interestingly, the post-
refilling refractory period was shorter in myocytes from infarcted
hearts than in control myocytes, even though the rate of SR Ca2+

content recovery after the stimulus-induced SR Ca2+ release was
similar. Based on these and other results (Sobie et al., 2005), it was
concluded that the probability of spontaneous Ca2+ triggering
also depends on the recovery of RyR2 from refractoriness
(time and Ca2+ store–dependent properties of RyR2). In post-
infarction myocytes the post-refilling refractory period was
reduced, an effect attributed to CaMKII phosphorylation and
redox modifications of RyR2. Figure 4 schematizes a possible
interpretation of the experimental results.

Ca2+-Induced Apoptosis and
Necroptosis
It is generally accepted that mitochondria are at the central
stage of cell death (Finkel, 2001; Dorn and Maack, 2013; Pan
et al., 2013). Indeed, numerous recent investigations revealed the
mitochondria are effectors of programed apoptosis or necrosis
and sources of damaging ROS.

Mitochondria are organelle in close association with the
SR. This proximity allows a cross-talk between mitochondria
and SR which is extremely valuable under normal conditions:
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FIGURE 4 | Threshold concept. (A) Cartoon that represents different conditions of RyR2 sensitivity and SR-Ca2+ load during Ca2+ release from SR. When the cell
triggers a Ca2+ transient (1), SR Ca2+ load diminishes and RyR2s enter in a refractory period (2). SR Ca2+ uptake produces SR Ca2+ recovery (3). During this
period there are no spontaneous releases, i.e., RyR2 remained refractory in spite of the fact that SR level has recovered completely (SR threshold). This period is
followed by what has been named an “idle” period, by Belevych et al., 2012, (4) in which, after SR-Ca2+ load and RyR2s recovering, a stochastic activation of RyR2
may trigger a spontaneous release. (B) Schematic representation of time dependent changes of SR Ca2+ t (1 and 2), and refractoriness (2 and 3) after a
stimulus-induced Ca2+ transient. (4) “Idle” period during which a spontaneous SR-Ca2+ release occurs. We called post-refilling refractory period to the period of
time needed for refractoriness to recover after SR Ca2+ threshold was reached.

Mitochondrial ATP production is crucial for modulation
of oxidative phosphorylation and therefore essential to
maintain myocyte activity, including SR Ca2+ cycling,
contraction, and relaxation (Denton, 2009). The physical
contact between SR membranes and mitochondria are
known as sarco/endoplasmic reticulum (SR/ER)/mitochondria
microdomains or mitochondria-associated SR/ER membranes
(MAMs). A sufficient local Ca2+ concentration may be achieved
in specialized microdomains created by the close association
of mitochondria and the SR/ER (Szabadkai et al., 2003). In
these microdomains, cytosolic Ca2+ is predicted to transiently
rise to micromolar concentrations, consequently allowing
significant Ca2+ uptake via the MCU. Physical proximity and
functional interplay between mitochondria and SR is maintained
in part through tethering of these two organelles by different
linkers that may contribute to either decrease or maintain the
physical gap between the SR and the mitochondria. For an
extensive review see Csordas et al. (2018). On the other hand,
perturbation of Ca2+ handling may alter mitochondrial-SR
Ca2+ crosstalk and excessive Ca2+ can go to the mitochondria
which may contribute to apoptosis and necroptosis in different
diseases. Stress conditions that lead to Ca2+ or ROS overload
trigger mPTP opening, i.e., the mitochondrial membrane
becomes permeable to any molecule less than 1.5 kDa in
size. Consequent dissipation of the membrane potential
(19m) leads to mitochondrial membrane depolarization,
failure to produce ATP and release of mitochondrial proteins
such as cytochrome c, which initiate cell death pathways

(Bernardi and Di Lisa, 2015). Importantly, it has been shown
that mitochondria-initiated cell death is one main mechanism in
HF (Nakayama et al., 2007).

The Interplay Between SR Ca2+ Uptake
and Leak
As discussed above, the properties of RyR2 are a main factor
in determining the magnitude of SR Ca2+ leak. However,
can an increase in RyR2 P0, increase SR Ca2+ leak by itself?
Experiments by Venetucci et al., clearly demonstrated that
the potentiation of RyR2 produces only a transient increase
in SR Ca2+ leak, because once SR Ca2+ leak initiates, SR
Ca2+ load decreases below the threshold for SR Ca2+ leak
(Venetucci et al., 2007). Only a simultaneous enhancement
of SR Ca2+ uptake would be able to maintain the necessary
level of SR Ca2+ content to attain the threshold for SR
Ca2+ leak. This conclusion is in agreement with clinical
facts showing that patients with catecholaminergic polymorphic
ventricular tachycardia (CPVT) due to RyR2 mutation only suffer
arrhythmias after β-ARS. Experiments performed in S2814D
myocytes, in which Ser2814 was mutated to aspartic acid and
behaves as pseudo constitutively phosphorylated (van Oort et al.,
2010), also showed that an increase in the P0 of RyR2 produced by
CaMKII phosphorylation was not able to evoke an SR Ca2+ leak
higher than the one observed in wild type (WT) myocytes unless
they are challenged by increasing extracellular Ca2+ or β-ARS
(Mazzocchi et al., 2016).
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FIGURE 5 | Confocal assessment of spontaneous Ca2+ release. (A) Representative confocal images showing that Ca2+ spark frequency is higher in isolated
cardiomyocytes from SDKO mice in comparison to S2814D myocytes (unpublished confocal microscopy records representative of overall data shown in Mazzocchi
et al., 2016). (B) Similar results were obtained in fluo-4 loaded intact isolated hearts from S2814D and SDKO mice under a confocal microscope, during reperfusion
of the hearts submitted to a period of ischemia (unpublished confocal microscopy records representative of overall data shown in Valverde et al., 2019). In both
examples, ablation of PLN increases Ca2+ spark frequency respect to hearts from S2814D mice.

Sarcoplasmic reticulum Ca2+ leak is also critically dependent
on SR Ca2+ load. As stated above, SR Ca2+ overload triggers
spontaneous Ca2+ release via the activation of the RyR2 luminal
Ca2+ sensor (Gyorke and Terentyev, 2008). Therefore, the
potential effect of increasing SR Ca2+ load on Ca2+ triggered
arrhythmias, seems obvious. However, PLN knock-out mice
(PLNKO), which have a fully loaded SR, have not proven to
be prone to arrhythmias under basal conditions (Santana et al.,
1997). Although at first sight these results might suggest that the
increase in SR Ca2+ load per se does not increase arrhythmia
propensity, several studies have provided evidence that the
increase in SR Ca2+ load produced by PLN ablation does produce
a dramatic increase SR Ca2+ leak (Santana et al., 1997; Huser
et al., 1998; Mazzocchi et al., 2016). Unexpectedly, it hardly
evokes SR Ca2+ waves (Huser et al., 1998; Mazzocchi et al., 2016).
Figure 5A shows the results of experiments performed in S2814D
mice. As discussed above, this mutation confers the hearts a high
propensity to SR Ca2+ waves and arrhythmias when submitted to
stress (van Oort et al., 2010), and in double mutant mice resulting
from cross-breeding S2814D mice with PLNKO mice, to increase
SR Ca2+ reuptake (SDKO mice) (Mazzocchi et al., 2016; Valverde
et al., 2019). In the presence of high extracellular Ca2+, the
frequency of Ca2+ sparks and SR Ca2+ leak were higher in SDKO
than in S2814D myocytes, consistent with the overall higher

SR Ca2+ load in SDKO cells (Mazzocchi et al., 2016). Similar
results were obtained when SR Ca2+ load was increased in both
strains subjected to an I/R protocol (Mazzocchi et al., 2016;
Valverde et al., 2019; Figure 5B). Unexpectedly, whereas S2814D
myocytes displayed full propagating Ca2+ waves when exposed
to high extracellular Ca2+ (Figure 6A) or I/R (Figure 6B),
SDKO myocytes mostly show non-propagating Ca2+ events,
known as mini-waves. Thus, in spite of the higher SR Ca2+

leak observed in SDKO myocytes vs. S2814D, the proportion of
fully propagating events in SDKO myocytes was significantly less
(Mazzocchi et al., 2016). This seeming paradox can be clarified
by the acknowledgment that two main factors intervene in the
production of arrhythmogenic Ca2+ waves: 1. Increased SR Ca2+

leak and 2. Cytosolic Ca2+ wave propagation.
An increase in SR Ca2+ leak associated with a decrease in

propagating SR Ca2+ waves indicates a limitation in cytosolic
Ca2+ diffusion (Figure 7). PLN ablation interrupts cell-wide
propagating Ca2+ waves, converting them into non-propagated
events, like mini-waves or groups of Ca2+ sparks (Huser et al.,
1998; Mazzocchi et al., 2016; Valverde et al., 2019), supporting
the contention that by decreasing cytosolic Ca2+, PLN ablation
would increase cytosolic Ca2+ buffer capacity, hampering
Ca2+ wave propagation and preventing the arrhythmogenic
susceptibility produced by an enhanced SR Ca2+ load. Further
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FIGURE 6 | Confocal assessment of spontaneous SR Ca2+ waves.
(A) Representative confocal images showing Ca2+ waves in isolated
cardiomyocytes from S2814D myocytes (left panel) when exposed to 6 mM
extracellular Ca2+. When SDKO isolated myocytes are exposed to the same
condition, they exhibit miniwaves instead of full propagating Ca2+ waves
(Reproduced with permission from Mazzocchi et al., 2016). (B) Representative
confocal images of epicardial Ca2+ waves in S2814D and SDKO intact
isolated hearts during reperfusion after an ischemic period. SDKO hearts
display fragmented Ca2+ waves or mini-waves. Red arrows indicate a series
of mini-events conserving a Ca2+ wave pattern (reproduced with permission
from Valverde et al., 2019).

support to this idea is given by the experiments in which
decreasing SR Ca2+ uptake by the SERCA2a inhibitor CPA,
converts non-propagating mini-waves into full propagating Ca2+

waves (Valverde et al., 2019). These results indicate therefore that
an increase in SR Ca2+ content does increase the propensity
to arrhythmias. However, the mechanism by which the increase
in SR Ca2+ occurred may conspire against the arrhythmogenic
effect of the high SR Ca2+ load, i.e., an enhancement of SR Ca2+

sequestration, if high enough, would increase SR Ca2+ load and
leak but also preclude Ca2+ wave propagation (Huser et al., 1998;
Mazzocchi et al., 2016; Valverde et al., 2019).

In contrast, the increase in SR Ca2+ leak evoked by
increasing SR Ca2+ uptake was unable to prevent but rather

enhanced heart attack. It was speculated that increasing SR
Ca2+ uptake was not efficient to hamper the excessive flow
of SR Ca2+ to the mitochondria, aggravating cardiac damage
(Valverde et al., 2019).

Experimental Evidence
In the following sections, we will give experimental evidence
that highlight the importance of Ca2+ handling misbalance
in the production of Ca2+ triggered arrhythmias and cell
death. Although the mechanisms of cardiac arrhythmias
and apoptosis/necroptosis are usually multifactorial, we will
concentrate on experimental examples that emphasize the role of
PTM of SR Ca2+ handling proteins. When possible, the interplay
between Ca2+ uptake and release in determining arrhythmias
and cardiac damage will be also discussed.

Abnormal RyR2 Regulation in the Development of
Diabetic Cardiomyopathy
The current typical definition of DCM comprises structural and
functional abnormalities of the myocardium in diabetic patients
independently of other risk factors, as coronary artery disease or
hypertension (Aneja et al., 2008). DCM is the last stage of cardiac
damage in Type 1 and 2 Diabetes Mellitus (T1DM and T2DM,
respectively) and of metabolic syndrome associated with insulin
resistance. The subcellular mechanisms involved in this last stage
of DCM have been discussed in several previous reviews (Bugger
and Abel, 2014; Cox and Marsh, 2014; Fuentes-Antras, Picatoste
et al. 2015, Fuentes-Antras, Picatoste et al. 2015). Most of them
concluded that mayor alterations of Ca2+ handling, protein
expressions, and activities in overt DCM mimic those of HF from
different etiologies, including a decrease in SERCA2a activity,
SR Ca2+ load, systolic Ca2+, rate of Ca2+ decay, and increase
in SR Ca2+ leak (Lebeche et al., 2008). Protein glycosylation
(Clark et al., 2003) and oxidized CaMKII are significantly up-
regulated in the DCM (Jay et al., 2006), therefore CaMKII
activation and RyR2 phosphorylation has been proposed as a
potential mechanism of heart failure, ventricular arrhythmias
and apoptosis in this disease (Daniels et al., 2015). In rats with
T2DM, the opening of mPTP in ventricular myocytes was shown
to be mainly influenced by the increased ROS and decreased ATP
content. It was suggested that Ca2+ mishandling due to the slow
rate of SR Ca2+ uptake could play a role in increasing mPTP
opening that might further exacerbate mitochondrial dysfunction
and induce cell death (Riojas-Hernandez et al., 2015). Moreover,
ROS derived from hyperglycemia trigger myocardial apoptosis by

FIGURE 7 | Main factors developing arrhythmogenic Ca2+ waves. An increase in SR-Ca2+ content and/or a decrease in RyR2 refractoriness favor SR-Ca2+ leak
and Ca2+ wave generation, meanwhile a decrease in propagation of Ca2+ by diffusion (e.g., like that produce by PLN ablation), will prevent Ca2+ wave propagation
by conversion of Ca2+ waves into non-propagable Ca2+ miniwaves.
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FIGURE 8 | RyR2 dysregulation in DCM development. (A) Representative ECG recordings showing that fructose-rich diet (FRD) induces cardiac arrhythmias in WT
but not in SR-AIP mice (CD, control diet). WT mice exhibit bradycardia (ii), bidirectional tachycardia (iii), ventricular ectopic beats (iv, arrow), and AV block (v, arrow)
when treated with FRD. (B) FRD deteriorates mitochondria membrane potential, as shown by an increase in JC-1 green/red fluorescence ratio. (C) This alteration in
FRD mitochondria is in accordance with a higher apoptotic ratio (Bax/Bcl-2 proteins), which can be prevented in mice expressing the CaMKII inhibitory peptide at the
SR level (SR-AIP). (D) Histological samples (upper right) show a closer distance between mitochondria and SR in FRD vs. CD treated mice, which might be due to
an alteration in structural proteins involved in SR-mitochondria communication. The cartoon in the left side of (D) represents this SR-mito interaction (reproduced
with permission from Federico et al., 2017). *p < 0.05.

mitochondrial cytochrome c release and consequent activation of
the caspase-3 pathway (Cai et al., 2002). Although the underlying
mechanism of cell death in DCM is not clear yet, these results
suggest that a possible pathway underlying apoptosis in DMC
is linked to Ca2+ mishandling and mitochondrial-SR Ca2+

crosstalk, as described above (For further review about the
role of mitochondria on cardiac arrhythmogenesis in DCM see
(El Hadi et al., 2019).

Much less is known about Ca2+ handling and mishandling
and the potential occurrence of arrhythmias and apoptosis in the
first stages of this disease, in which subclinical events develop for
years before the clear emergence of HF symptoms. A possible
cause for this lack of information may lie in the poor diagnosis
of this stage of the disease and in the different models used
to study prediabetic molecular events (King, 2012; Graham and
Schuurman, 2015; King and Bowe, 2016). Indeed, the results that
reveal the underlying mechanisms of the pathogenesis of DCM,
are different according to the model, the degree of evolution
of the disease before reaching DCM and the gender explored.
Examples of conflicting results at the level of Ca2+ handling and
particularly of RyR2 are observed in the metabolic syndrome

model, (db/db mice), which lacks leptin receptors (Chen et al.,
1996). In male db/db mouse hearts, the levels of RyR2 were found
to be depressed and the RyR2 phosphorylation at the CaMKII site
was not altered. However, RyR2 phosphorylation at the PKA site
was found to be increased (Pereira et al., 2006, 2014). Intriguingly,
db/db female mouse hearts showed no changes in RyR2
expression associated with a decrease in PKA and CaMKII RyR2
phosphorylation sites (Pereira et al., 2014). In a model of fructose-
rich diet (FRD) applied to male rats and mice, our laboratory has
described that this hypercaloric diet, which also induces insulin
resistance, increases CaMKII activation and RyR2 dysfunction
due to Ser2814 phosphorylation (Sommese et al., 2016; Federico
et al., 2017). On the other hand, experiments in vitro revealed
that during acute hyperglycemia, RyR2 activity can also be
altered. Hyperglycemia leads to O-Glc-NAcylation of proteins
such as CaMKII. Erickson et al. elegantly showed that the acute
increase of glucose or O-linked N-acetylglucosamine is directly
responsible for CaMKII-dependent diastolic RyR2 Ca2+ leak
and SR Ca2+ load depletion in hyperglycemia (Erickson et al.,
2013). Additionally, we recently demonstrated that in an early
diabetic stage, prevention of CaMKII activation by ROS avoided
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SR Ca2+ leak evoked by CaMKII-dependent phosphorylation
of RyR2 (Sommese et al., 2016). Thus, the available results
indicate that a main disturbance of Ca2+ handling in prediabetic
hearts occurs at the level of RyR2 phosphorylation with the
consequent increase in SR Ca2+ leak and the possibility of
triggered arrhythmias and cell death. Indeed, during prediabetic
states, the risk of cardiovascular events is already increased and
myocardial abnormalities might appear before the diagnosis of
T2DM. These alterations are thought to root irregularities at
the cardiac myocyte level, ultimately contributing to structural
and functional anomalies observed in DCM (Hajat et al., 2004).
Actually, in the mouse model of impaired glucose tolerance
(IGT) mentioned above (FRD-induced insulin resistance), we
found serious cardiac disorders (Sommese et al., 2016; Federico
et al., 2017). The fact that this model lacks the more frequent
co-morbidities of DCM, supports the metabolic origin of the
alterations at the cell level. These animals develop remarkable
cardiac remodeling (Sommese et al., 2016). Also, ventricular
myocytes exhibit cardiac arrhythmogenic events leading to
ventricular arrhythmias which can be prevented in transgenic
mice expressing the CaMKII inhibitor AIP targeted to the SR
membranes, avoiding phosphorylation of SR proteins (PLN and
RyR2) by CaMKII (SR-AIP mice) (Figure 8). Moreover, a ROS
scavenger as tempol could avoid RyR2 phosphorylation and
SR Ca2+ leak, preventing the arrhythmogenic pattern of the
prediabetic cells (Sommese et al., 2016). Of note, the increase
in RyR2 phosphorylation observed in FRD myocytes decreases
SR Ca2+ content. This decrease occurs in spite of the increase
in SERCA2a activity which contributes to preserving SR Ca2+

load. This increase, which may be due to the CaMKII-dependent
increase in Thr17 phosphorylation of PLN, would contribute to
avoiding a further decrease in SR Ca2+ load but would also favor
SR Ca2+ leak and arrhythmogenic Ca2+ waves.

Apoptosis is also an early sign of myocardial dysfunction in
the evolution of the diabetic disease, preceding the increase in
collagen which may lead to structural and irreversible alterations
(Federico et al., 2017). We described a cascade of events initiated
by a CaMKII-induced increase in SR Ca2+ leak which is
linked to mitochondrial membrane depolarization and cardiac
damage. A particularly striking finding was the CaMKII-induced
remodeling of SR-mitochondria microdomains. The latter would
strongly support SR–mitochondria dialogue, facilitating Ca2+

drain to the mitochondria and cell death, in the scenario
of an increased SR Ca2+ leak (Federico et al., 2017). The
elucidation of the intracellular signaling pathway of this altered
SR-mitochondria relationship would further contribute to the
knowledge of DCM molecular alterations. Further investigations
are needed to examine the proteins involved in the SR-
mitochondria communication (like mitofusin-2, Mfn2, and the
chaperone glucose-related protein 75, GRP-75), a completely
unexplored field in this disease.

Ca2+ Triggered Arrhythmias Induced by Digitalis
Intoxication
Cardiac glycosides have been used for the treatment of HF over
the last 200 years due to their inotropic properties (Altamirano
et al., 2006; Gonano et al., 2011). Although many doubts about

their safety in HF treatment have emerged mainly at the end
of the last millennium, it is still considered a valuable cardiac
tool in some particular scenarios (see for review Whayne, 2018).
Unfortunately, these compounds have a very narrow therapeutic
range due to their toxic effects that include an enhanced
propensity to arrhythmias. The arrhythmic effects of cardiac
glycosides have been traditionally attributed to an increase in SR
Ca2+ load which, by leading to an increase in Ca2+ leak, would
evoke cytosolic Ca2+ waves and triggered arrhythmias (Wier
and Hess, 1984; Fujiwara et al., 2008; Eisner et al., 2009; Weiss
et al., 2011). More recent experiments indicated that a change
in RyR2 may be also involved in cardiac glycosides–induced
arrhythmias. Experiments by Gyorke’s group (Ho et al., 2011)
indicate that the arrhythmogenic effect of cardiotonic glycosides
is linked to NOX2-dependent ROS release from mitochondria.
The increase in ROS was initially thought to produce RyR2
thiol oxidation that would increase the sensitivity of the
channel to luminal Ca2+, thus lowering the critical SR Ca2+

content at which spontaneous Ca2+ waves occur (Terentyev
et al., 2008). However, simultaneous experiments by Gonano
et al., indicated that ouabain-induced arrhythmias requires
CaMKII activation: Chronic administration or high–toxic doses
of ouabain administered acutely, increased CaMKII activity in
mouse hearts (Gonano et al., 2011). Moreover, inhibition of
CaMKII was able to prevent spontaneous contractions in isolated
myocytes and arrhythmias in intact mouse hearts, without
affecting ouabain inotropic action. These experiments also
showed that CaMKII phosphorylates both, RyR2 and PLN, which
would increase SR Ca2+ leak and SERCA2a activity. Although
this later effect would add to the increase in SR Ca2+ load
resulting from Na+-K+-ATPase inhibition, these experiments
concluded that CaMKII-dependent PLN phosphorylation might
not contribute to ouabain–induced increase in SR Ca2+ content
and inotropic effect since they were of similar magnitude in
the absence and presence of CaMKII inhibition. However, since
CaMKII dependent phosphorylation of RyR2 was also inhibited,
it might be that the resultant similar SR Ca2+ load observed after
CaMKII inhibition was due to the prevention of SR Ca2+ leak.
Moreover, the fact that CaMKII inhibition prevents arrhythmias
without affecting the ouabain-induced increase in SR Ca2+ load
would suggest that the increase in SR Ca2+ content produced by
the drug is not enough to reach the necessary threshold to trigger,
by itself, ouabain-induced arrhythmias (Gonano et al., 2011). An
increase in RyR2 sensitivity is needed.

The role of CaMKII-dependent induced increase in SR
Ca2+ leak and ventricular arrhythmias was later confirmed by
experiments by Gyorke’s group, which revealed that replacement
of Ser2814 site of RyR2 by Ala -a non-phosphorylatable amino
acid-prevents ouabain-induced Ca2+ leak and arrhythmias.
These results definitively confirmed that phosphorylation, rather
than RyR2 oxidation, was required for the increase in channel
spontaneous activity and arrhythmogenesis in the context of
digitalis toxicity. Instead, the increase in ROS would contribute
to CaMKII activation that in turn produces the observed RyR2
phosphorylation (Palomeque et al., 2009; Ho et al., 2014).

Importantly, other studies have shown that mitochondria
are also involved in the toxic and arrhythmogenic effects
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of cardiotonic glycosides. The results of these investigations
indicate that ouabain-induced increase in cytoplasmic Na+
compromises mitochondrial energetics and redox balance
by blunting mitochondrial Ca2+ accumulation. Improving
mitochondrial Ca2+ retention by inhibition of mitochondrial
NCX, can mitigate these effects, suppress Ca2+-triggered
arrhythmias and improve the positive inotropic effects of cardiac
glycosides (Liu et al., 2010).

Abnormal Ca2+ Handling in Ischemia/Reperfusion
Ischemic heart disease is a leading cause of mortality worldwide.
Cardiac ischemia reduces cardiac output and promotes
arrhythmias and cell death. Reperfusion therapies are the
standard treatment for patients suffering myocardial infarction,
however, re-establishing blood flow is associated with additional
cell damage (I/R injury), and exacerbating the effect of the
preceding ischemia. Indeed, it was shown that reperfusion
may trigger life-threatening arrhythmias, accounting for up to
half of the total I/R-induced infarcts (Braunwald and Kloner,
1985; Yellon and Hausenloy, 2007; Said et al., 2011; Garcia-
Dorado et al., 2012). Although the factors contributing to I/R
injury are complex (see for review (Murphy and Steenbergen,
2008). I/R injury constitutes another example in which
experimental evidence reveals that disturbed Ca2+ handling
and mitochondria ROS production are main responsible for
reperfusion arrhythmias and cardiac damage (Valverde et al.,
2006, 2010; Mattiazzi et al., 2015; Bagheri et al., 2016). The
increase in cytosolic Ca2+ during ischemia was associated
with an enhancement of SR Ca2+ load (Valverde et al., 2010),
which is released at the onset of reperfusion and produces an
abrupt rise in cytosolic Ca2+ (Ca2+ bump) and the consequent
decrease in SR Ca2+ content and Ca2+ transient. Moreover, a
major mechanism for the ischemia-induced increase in diastolic
Ca2+ is an increase in the frequency of Ca2+ sparks which
may switch to arrhythmogenic Ca2+ waves during reperfusion
(Mattiazzi et al., 2015).

Reactive oxygen species/reactive nitrogen species are
generated during reperfusion by several different cellular
sources, being the mitochondria the more important one.
Mitochondrial Ca2+ overload and subsequently ROS production
trigger mitochondrial permeability transition pore and ROS
production via ROS-induced ROS release mechanisms (Zorov
et al., 2000). Both, Ca2+ mishandling and ROS production set
an ideal intracellular milieu for activation of CaMKII, which
play a main role in I/R arrhythmias, apoptosis, and necroptosis.
Ex vivo and in vivo experiments described an increase in
phosphorylated-CaMKII (p-CaMKII) and oxidized-CaMKII
(ox-CaMKII) at the onset of reperfusion (Said et al., 2011;
Becerra et al., 2016), which was associated to a significant
increase in the phosphorylation of Thr17 site and RyR2 Ser2814

(Vittone et al., 2002; Salas et al., 2010; Ling et al., 2013), as well
as redox changes of RyR2 (Becerra et al., 2016). Reperfusion
arrhythmias are largely dependent on SR Ca2+ leak evoked
by these PTM of RyR2 (Said et al., 2008; Becerra et al., 2016).
In this scenario the role played by a substantial increase in SR
Ca2+ uptake was similar to that observed in stress-induced
Ca2+-triggered arrhythmias, i.e., increasing SR Ca2+ uptake

by PLN ablation protects against reperfusion arrhythmias. This
protection was achieved by alteration of Ca2+ wave propagation,
which were transformed in non-arrhythmogenic mini-waves
and reconverted in full Ca2+ waves in the presence of SERCA2a
inhibition (Figure 6C; Valverde et al., 2019). Of note, PLN
ablation is equivalent to a situation of permanent maximal
PLN phosphorylation as stated above. In ischemic reperfused
WT hearts, PLN phosphorylation is highly but transiently
increased at the onset of reperfusion (Vittone et al., 2002;
Said et al., 2008). Under these conditions, we did not observe
Ca2+ mini-waves (Valverde et al., 2010). This would mean that
Thr17 phosphorylation at the onset of reperfusion is unable to
prevent SR Ca2+ waves progression. In contrast, it might help
to increase SR Ca2+ load and maintain SR Ca2+ leak. This
contention is supported by experiments in which hearts were
subjected to a short I/R protocol to produce stunning. In the
stunned heart, the transient phosphorylation of Thr17 of PLN is
essential for contractile recovery upon reperfusion, even though
phosphorylation of RyR2 also occurs and induces reperfusion
arrhythmias (Said et al., 2003, 2011).

After a prolonged ischemic period, reperfusion evokes
irreversible cardiac injury. Under these conditions, myocytes
die by apoptosis, autophagy, and necrosis. The rise in Ca2+

during I/R leads to mitochondrial Ca2+ accumulation, which is
greatly favored by the close association between mitochondria
and SR and constitutes a main event in the initiation of cell death
(Rizzuto and Pozzan, 2006). Experimental evidence consistently
indicates that CaMKII inhibition is protective in the irreversible
I/R injury (Zhang et al., 2005; Vila-Petroff et al., 2007; Salas
et al., 2010). Although the mechanisms for myocardial protection
by CaMKII inhibition are still unclear, one of the CaMKII
deleterious pathway in I/R certainly involves the SR and the
mitochondria (Vila-Petroff et al., 2007; Salas et al., 2010; Valverde
et al., 2010; Joiner et al., 2012). In previous experiments, we
showed that I/R damage was diminished in hearts from S2814A
mice. Conversely, in the hearts of S2814D mice (constitutively
pseudo-phosphorylated), cardiac damage increased (Di Carlo
et al., 2014). A decrease in the expression of RyR2 described in
I/R (Salas et al., 2010), compatible with a degradation/damage
of these channels (Pedrozo et al., 2010) and changes in RyR2
activity induced by redox alterations, may contribute to increase
SR Ca2+ leak (Hidalgo et al., 2004; Said et al., 2011; Di
Carlo et al., 2014). These alterations in RyR2 would add to
the deleterious action of RyR2 phosphorylation favoring the
increase in mitochondria Ca2+ content and greatly contributing
to necroptosis and apoptosis in reperfusion cardiac damage
(Salas et al., 2010; Di Carlo et al., 2014). This cascade would
be further stimulated by the increase in CaMKII-dependent
phosphorylation of MCU described by Joiner, Koval et al.(Joiner
et al., 2012). However, recent experiments do not support
a relevant role of CaMKII for mitochondrial Ca2+ uptake
in cardiac myocytes at least under physiological conditions
(Nickel et al., 2019).

As stated above, the transient increase in CaMKII-dependent
PLN phosphorylation plays a beneficial role in the stunned
heart. The role of PLN phosphorylation in I/R injury is less
clear. After prolonged ischemia, we showed that preventing PLN
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phosphorylation exacerbates the functional and structural heart
damage after myocardial infarction, suggesting that CaMKII-
dependent phosphorylation of PLN observed during reperfusion
favors post-ischemic recovery and protects from I/R cardiac
damage (Di Carlo et al., 2014). However, the fact that I/R does
produce cardiac damage indicates that even being beneficial,
CaMKII-dependent PLN phosphorylation results insufficient to
counteract the effect of simultaneous detrimental mechanisms
that take place during I/R. On the other hand, several groups
have tested the effects of increasing SR Ca2+ uptake on
cardiac damage during I/R injury, by different maneuvers. The
outcome of these experiments is controversial. For instance,
Yang et al. (2006) demonstrated that the protective effect of
chronic CaMKII inhibition in AC3I mice was lost when they
were interbred with PLNKO mice and submitted to myocardial
infarction, supporting a detrimental effect of enhancing of SR
Ca2+ uptake. Similar results were obtained in our laboratory.
The ablation of PLN in SDKO mice increases Ca2+ leak
upon reperfusion (Figure 6A). This increase was associated
with an increase in infarct size and mitochondrial dysfunction.
Therefore, these experiments demonstrated that an important
increase in SR Ca2+ uptake as that produced by PLN ablation,
was able to prevent reperfusion arrhythmias, but failed to
prevent, and even enhance, cardiac damage (Valverde et al.,
2019). The important increase in SR Ca2+ uptake would favor
the unbalance between SR Ca2+ uptake and leak, promoting
mitochondrial Ca2+ overload and cell death. Other studies
demonstrated that accelerating SR Ca2+ uptake by different
means (i.e., overexpressing SERCA1a, with higher kinetics than
SERCA2a, or expressing a repressor of PLN activity, PP1 H-
1), alleviated post-ischemic cardiac injury (Talukder et al., 2007,
2008; Nicolaou et al., 2009a), supporting a beneficial effect of
accelerating SR Ca2+ uptake. These controversial results seem
not to arise from species differences since most of the experiments
mentioned above referred to rodents. It is possible that the
final beneficial or detrimental outcome of increasing SR Ca2+

uptake might tightly depend on the extent of Ca2+ uptake
and SR Ca2+ load achieved during ischemia and at the onset
of reperfusion. For instance, moderate increases in SR Ca2+

content have been associated with beneficial effects (Nicolaou
et al., 2009b), whereas more important increases, like those
expected in PLNKO mice, were associated with detrimental
actions (Valverde et al., 2019).

Is RyR2 Activation Always Detrimental?
We have previously associated the increase in RyR2 activation, for
instance by CaMKII-dependent phosphorylation, with cardiac
damage and arrhythmias due to exacerbated diastolic SR Ca2+

leak, as discussed above. However, it is important to bear in
mind that potentiation of RyR2 activity persists during systole
and enhances systolic fractional Ca2+ release, bringing the
heart to a new state of higher efficiency. This would allow
the heart to maintain a given contractility despite a decrease
in SR Ca2+ content or to enhance contractility if SR Ca2+

content is simultaneously preserved (for further discussion, see
Lascano et al., 2017).

CONCLUDING REMARKS

The normal interplay among the proteins involved in SR Ca2+

uptake and release is a main determinant of the regular beat
to beat contractile function of cardiac myocytes. Regulation
and deregulation of these proteins are crucial to understanding
the balance between SR Ca2+ uptake and leak, responsible
for SR Ca2+ content and myocardial contractility, as well
as its unbalance, which determines an excess of SR Ca2+

leak, able to produce arrhythmias and cardiac damage. Post-
translational enhancements of SR Ca2+ uptake have a beneficial
effect resulting in a detectable increase in contractility when
the unbalance between SR Ca2+ uptake and leak favors the
uptake. This is the case of PLNKO mice and stunned hearts.
When SR Ca2+ leak is increased by the enhancement of RyR2
activity, the increase in SR Ca2+ uptake may not be enough
to counteract SR Ca2+ leak, resulting in two opposite effects:
(a) beneficial, by opposing to SR Ca2+ leak and rescuing at
least in part SR Ca2+ load and contractility; (b) detrimental,
because the increase in SR Ca2+ load would favor SR Ca2+

leak, arrhythmias, and cardiac damage. Interestingly, a greatly
exacerbated increase in SR Ca2+ uptake, as that produced
by PLN ablation, does contribute to increasing SR Ca2+ leak
and cardiac damage by incrementing SR Ca2+ load and leak.
Paradoxically, and in spite of the exacerbated SR Ca2+ leak, this
increase may prevent Ca2+ triggered arrhythmias, by a different
mechanism, i.e., diminishing cytosolic Ca2+ and avoiding Ca2+

wave propagation. Post-translational activation of RyR2 activity
would produce a deleterious effect by increasing SR Ca2+ leak
and predisposing to cardiac damage and arrhythmias. When this
modification occurs only at the level of SR Ca2+ release/leak, the
short-lived enhancement of SR Ca2+ leak may produce a decrease
in contractility due to the decrease in SR Ca2+ load, without
any further detrimental effect. Moreover, the increased activity
of RyR2 during systole tends to preserve contractility, even at
lower SR Ca2+ loads. The detrimental effect of RyR2 activation
(i.e., arrhythmias and cardiac damage) can only take place when
it occurs associated to an increase in SR Ca2+ uptake, able to
maintain SR Ca2+ leak. This is the typical case of Ser2814D
myocytes, with constitutive pseudo-phosphorylation of RyR2 at
the CaMKII site.
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