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Robustness in spatially driven 
bistability in signaling systems
Debora tenenbaum1,3,5, Juan Ignacio Marrone3,4, Hernán E. Grecco  1,2,6* & 
Alejandra C. Ventura3,4,6*

Biological systems are spatially organized. This microscopic heterogeneity has been shown to produce 
emergent complex behaviors such as bistability. Even though the connection between spatiality and 
dynamic response is essential to understand biological output, its robustness and extent has not 
been sufficiently explored. This work focuses on a previously described system which is composed 
of two monostable modules acting on different cellular compartments and sharing species through 
linear shuttling reactions. One of the two main purposes of this paper is to quantify the frequency of 
occurrence of bistability throughout the parameter space and to identify which parameters and in 
which value ranges control the emergence and the properties of bistability. We found that a very small 
fraction of the sampled parameter space produced a bistable response. Most importantly, shuttling 
parameters were among the most influential ones to control this property. The other goal of this paper 
is to simplify the same system as much as possible without losing compartment-induced bistability. This 
procedure provided a simplified model that still connects two monostable systems by a reduced set of 
linear shuttling reactions that circulates all the species around the two compartments. Bistable systems 
are one of the main building blocks of more complex behaviors such as oscillations, memory, and 
digitalization. Therefore, we expect that the proposed minimal system provides insight into how these 
behaviors can arise from compartmentalization.

Eukaryotic cells are spatially organized systems in which different molecules present distinct degrees of hetero-
geneity (Fig. 1A). Most of the molecules involved in signal transduction systems must shuttle constantly between 
intracellular compartments to fulfill their specific functions. There are clear benefits to restricting signaling mol-
ecules to specific sub-cellular compartments1. Keeping them close to their correct targets and regulators, and 
far from the incorrect ones, may lead to increased specificity in signal transmission2. Also, spatially confining 
signaling molecules increases their local concentration, making encounters between them more frequent, and 
therefore increasing the velocity of signal transmission. From an information transfer point of view, spatially 
inhomogeneous systems allow increasing the computational capacity by allowing different biochemical reactions 
to evolve simultaneously in different parts of the cell3.

Aside from these evident benefits, regulated translocation of molecules presents yet another potentially 
important consequence: it can, in principle, modify the nature of the response of a system allowing enriched 
dynamical response. In this work we are mainly concerned with bistable responses, which have been shown to 
be an emergent outcome of a compartmentalized monostable activation/deactivation cycle4. Bistable responses, 
such as the one of p42 MAPK in oocyte maturation5, is one of the many input-output relations by which signal 
processing networks transform simple signals into complex responses, finely tuned for the physiological func-
tions they control. Unlike ultrasensitive or gradual responses (Fig. 1B) intermediate values are impossible as the 
stimulus-response curve shows an actual discontinuity. Bistable responses exhibit hysteresis: once the stimulus 
is high enough to turn the system on, it will remain in the on state even after the stimulus is lowered below the 
threshold6. Only after the stimulus is decreased below a deactivating threshold, will the system go back to the off 
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state. For stimulus strengths ranging between the activating and the deactivating thresholds, the response of the 
system will depend on how the stimulus was varied (Fig. 1B, bistable).

The existence of more than one steady state under particular biological conditions is strongly related to the 
existence of positive feedback loops, as was shown first for gene regulatory networks7 and then demonstrated as 
a necessary condition8. In a positive feedback loop, an increase in the concentration of certain species triggers an 
effect. This effect eventually feeds back generating a new increase in the concentration of the original species that, 
in turn, causes an even larger increase. These motifs are common in networks governing cellular behaviors such 
as proliferation, differentiation, and apoptosis that exhibit all-or-none responses, in which cells commit—usually 
irreversibly—to one specific fate over a discrete set of possibilities. A common mechanism to generate bistability 
is by coupling cycles of reversible post-translational modifications9. It has been shown that bistability can arise in 
a dual phosphorylation-dephosphorylation cycle with a non-processive, distributive mechanism for the enzymes. 
This implies that a MAPK cascade formed by coupling these structures can exhibit bistable behavior, even in the 
absence of evidently imposed positive feedback loops. The presence of a compartment generates a positive feed-
back loop resulting in such emergent behavior. From a mathematical point of view and describing the process in 
the simplest possible way, shuttling in and out of a compartment adds a linear term in the differential equations 
associated with the system and increases the dimensionality of both the system itself and its parameter space.

Typically, it is difficult to identify the impact that each parameter has in the model’s output for a 
high-dimensional dynamical system. Different strategies have been proposed, from local approaches like sensi-
tivity analysis10 to global ones combining parameter space exploration and statistical tests11. More recently, inter-
mediate methods have been developed that employ random sampling to identify multiple parameter sets leading 
to the desired output and combine it with a global sensitivity estimator12.

In this work, we aim to explore the robustness of the emergent bistability due to compartmentalization. After 
an initial characterization of a compartmentalized phosphorylation cycle by a parameter space exploration, we 
performed a statistical analysis of the results to determine the sensitivity of the bistability to the different param-
eters. We also quantified the extent of bistability by computing the area of the hysteresis loop finding that is 
mainly controlled by shuttling parameters. We additionally unveiled the necessary positive feedback loops using 
a method that relies on an injectivity criterion. With this information we gradually simplified the model to obtain 
a reduced system that still displays compartments-induced bistability. In this way, we provide further insight into 
how spatial organization of cellular systems generates an enriched dynamical response.

Results
Phosphorylation-dephosphorylation cycle in two compartments. As a first building block we con-
sidered a single phosphorylation-dephosphorylation cycle modeled with Michaelis-Menten reactions, which has 
been shown to be monostable3:
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These two reactions model the reversible modification of a substrate S into its phosphorylated form S*. 
Phosphorylation and dephosphorylation are enzymatically catalyzed by E (kinase) and F (phosphatase), respec-
tively, involving the formation of intermediate complexes X, Y. kon, koff, and kcat are the reaction rate constants for 
binding, unbinding and catalysis.

Heterogeneous Compartmentalized Well Mixed

System Heterogeneity

Gradual Ultrasensi�ve Bistable
A B

Figure 1. Spatially heterogeneous cellular networks and their function. (A) Degrees of spatial heterogeneity. 
One common approach to dealing with spatial heterogeneities is using physical, chemical and/or biological 
gradients. A simpler strategy consists in considering heterogeneous systems as composed by different 
compartments, which can interchange certain molecular species. In the other extreme, heterogeneity is not 
considered, and a well-mixed system is modeled. (B) Examples of different input/output behaviors that a system 
can exhibit. Hyperbolic responses increase gradually with stimuli, eventually reaching a plateau as the pathway 
saturates. Sigmoidal responses switch between high and low levels (all-or-none) when the stimulus reaches a 
threshold level. Bistable responses are discontinuous and exhibit hysteresis.
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We use this building block in two compartments. Eukaryotic cells are characterized by distinct nuclear and 
cytoplasmic compartments that are separated by a double membrane. This membrane is penetrated by nuclear 
pore complexes that allow exchange of macromolecules between the two compartments, mediated by specific 
proteins13. In the current work we consider a reversible modification of a substrate, as described above, and 
allow nucleocytoplasmic shuttling of some species, resulting in a new compartmentalized system with increased 
dimensionality (Fig. 2). Shuttling is modeled in the simplest possible way, i.e. with linear reactions. This relies on 
the assumption that the transporters are not rate limiting.

The dynamics of this new system are described by the following ODE system:
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= − −∗Ẏ k S F k Y k Y[ ] [ ][ ] [ ] [ ],on,F off,F cat,F
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Figure 2. Compartmentalization in eukaryotic cell signaling. (left) Schematic. Receptor proteins located on 
the cell membrane recognize external signals and transmit them to the interior of the cell. This leads to the 
activation of different signaling pathways in the cytoplasm, which are in turn responsible for transmitting the 
signal to the nucleus, where adequate responses are then orchestrated. (right) Compartmentalized reactions. A 
single phosphorylation/dephosphorylation cycle in two compartments (e.g. cytoplasm and nucleus). In each 
compartment, the substrate S is phosphorylated by a kinase E via the formation of the intermediate species 
X and dephosphorylated by a phosphatase F through the accumulation of the intermediate species Y. When 
intercompartmental shuttle is allowed, the system has been shown to exhibit bistable behavior4. Figure adapted 
from4.
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where the species shuttling between compartments are S, S*, E, and X. The superindex “c” indicates that the 
species are in one of the compartments, the cytosol, and the absence of it indicates that they are in the nucleus. 
kin, and kout are the rate constants for shuttling in and out of a compartment (the one without the “c” label). The 
ODE system above has been shown to respond in a bistable fashion for a particular choice of parameter values4.

Considering the concentration of the total protein kinase Etot = [E]+[X]+[Ec]+[Xc] as the stimulus, and the 
concentration of phosphorylated substrate in the nucleus S* as the response, the system involves twenty three 
control parameters: twelve biochemical reaction rate constants, eight shuttling rates, and three total concentra-
tions of species (the concentrations Stot = [S]+[S*]+[X]+[Y]+[Sc]+[Sc*]+[Xc]+[Yc],  Ftot = [F]+[Y],  and 
Ftot

c  = [Fc]+[Yc] of total substrate, total nuclear phosphatase, and total cytoplasmic phosphatase, respectively). The 
ODE system was converted to a nondimensional form, as detailed in the Supplementary Information. The result-
ing dimensionless system has twenty-one free parameters and we consider c1 and s* to be the stimulus and 
response, respectively. The dimensionless parameters and its definitions are listed in Fig. 3A.

Characterization of the bistable region. To characterize the bistable region we combined a battery of 
methods, each one described in detail in the Methods section. Briefly, the Jacobian injectivity criterion allows, if 
possible, to derive conditions to guarantee monostationarity. CRNToolbox decides whether there exists any com-
bination of rates leading to bistability. MatCont performs continuation analysis. The “going-up and coming-down” 
analysis is the numerical method to detect bistable input-output curves. LHS is a technique to ensure homogene-
ous sampling of the parameter space. We combine them as described in the following paragraphs.

First, we characterized the extent of the previously reported bistable behavior4 using CRNToolbox and 
MatCont. CRNToolbox allows to identify parameter sets producing bistability, MatCont allows to obtain the 
bifurcation diagram starting from that parameter set. We scanned each of the parameters individually, leaving the 
others unchanged, and generated the respective bifurcation diagrams. We found that bistability is preserved after 
variations of one or more orders of magnitude for most of the parameters studied individually (see Methods and 
Supplementary Fig. 1).

While this approach allowed us to assess bistability around a given parameter set, we wanted to evaluate 
globally the existence of other sets with the same behavior. Due to the high dimensionality of the system, it is 

Figure 3. Bistability’s dependence on parameter values. (A) Non-dimensional parameters. (B) Boxplot 
obtained from nine sets of parameter values (see Supplementary Table 1) for which the system exhibits 
bistable responses, obtained by using the CRNToolbox. The boxes delimit the 25th and 75th percentiles, while 
the red lines represent the medians. The red crosses correspond to outliers, and the dotted lines extend to the 
more extreme values not considered outliers. This analysis allowed us to restrict the sampling ranges for each 
parameter. (C) Bar plot representing the results of the Mann-Whitney U Test over the bistable fraction. The 
non-dimensional parameters are sorted by the absolute value of their z-value.
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computationally difficult to find such sets by randomly varying a combination of parameters in a predetermined 
range. Therefore, we first employed CRNToolbox to find different bistable points of the system which allowed us 
to restrict the sampling intervals for each value (see Methods and Supplementary Table 1), as indicated in Fig. 3B. 
Using those intervals, we studied the behavior of the system using the “going-up and coming-down” analysis with 
stimulus ranging from 10−3 to 103 over roughly 100,000 different randomly selected parameters sets sampled by 
LHS (details of the “going-up and coming-down” analysis and the LHS sampling method in the Methods section).

To quantify the influence of each parameter, we first binned logarithmically their variation ranges and then 
calculated the fraction of bistable cases (f b) for each bin (Supplementary Fig. S2). As expected, the bistable per-
centage per class turned out to be extremely low (smaller than 8%). Some parameters were found to be critical in 
controlling the fraction of bistable cases. Using a Mann-Whitney U Test we sorted the parameters according to 
their influence on the bistability of the system (Fig. 3C, test explained in Methods). Interestingly, shuttling param-
eters s2 and s8 were among the most influential. This was complemented with an enrichment test indicating in 
which sub-range of each parameter the bistable behavior is enriched (Supplementary Fig. S3, see Methods). While 
it is certainly possible that some cases labeled as monostable are actually bistable with a stimulus range outside the 
scanned one, we consider this unlikely as posterior analysis of the resulting bistable cases showed that all switches 
occur at values of the control parameter well within the scanned range.

For the parameter sets leading to bistability we also scored the bistable behavior with four different criteria: 
we computed the input range of bistability (we call it width), the distance between the two bistable branches cal-
culated in two different ways as explained in the Methods section and illustrated in Fig. 4A (we call it height or 
distance), and the area of the hysteresis loop. A high value of width indicates that there is a non-negligible range 
of inputs that lead to bistable behavior, a high value of height indicates that the two stable outputs are distinguish-
able from each other, and a high value of area integrates the information in the other two (width and height). 
The results of these calculations are in Fig. 4B and Supplementary Fig. S4 and the details of the calculations are 
explained in the Methods section. Figure 4B contains the influence of each parameter on the mentioned proper-
ties (width, height, and area) as sorted by using a Mann-Whitney U Test. Strikingly, the top two parameters con-
trolling the four properties are shuttling parameters. To complement these results, we include the distributions of 
widths, heights and areas in Supplementary Fig. S4A, and a scatter plot indicating how the top two parameters in 
Fig. 4B control the corresponding property (Supplementary Fig. S4B).

Positive feedback loops involved in bistability. Using the injectivity criterion (see Methods) we iden-
tified six positive feedback loops necessary for bistability, which are indicated in Fig. 5A with six different colors 
over the scheme representing the system (the scheme is duplicated to show only three loops at a time for clarity 
purposes). Four of them involve shuttling of species between both compartments, confirming that compartmen-
talization and translocation are responsible for the appearance of bistability in an otherwise monostable system. 
For example, as the amount of dephosphorylated substrate in the nucleus (S) increases, the formation of inter-
mediate complex X also increases, causing the amount of free enzyme in the nucleus to decrease. Such decline 
entails a decrease in the amount of free enzyme in the cytoplasm (EC), causing the substrate to accumulate there 
by limiting the formation of the intermediate complex XC. Finally, as the substrate is allowed to shuttle between 
both compartments, the enlarged concentration of substrate in the cytoplasm causes the concentration of nuclear 
substrate to increase, closing the positive feedback loop.
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Figure 4. Dependence on the parameters of the different properties of the bistable region. (A) Example of 
bistable curve (blue line), with the properties marked over it: width (i), area of the hysteresis loop (ii, diagonal 
red lines), the distance between branches at Stimon (iii) and the difference between the output at Stimoff and at 
Stimon (iv). (B) Bar plots representing the results of the Mann-Whitney U Test for: the width (i); the area of the 
hysteresis loop (ii); the distance between branches at Stimon (iii); the difference between the output at Stimoff and 
Stimon (iv). The parameters are sorted by the absolute value of their z-value.
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To further understand the source of bistability we set out to simplify this model by finding a more compact 
one that conserves spatially driven bistability. We did so by removing reactions and components instead of reduc-
ing the initial model by means of relations between the involved parameter values. The reason for doing so is that 
the methods we combined only work with reactions instead of differential equations. First, we removed the phos-
phatase in the cytoplasm. The injectivity criterion identifies in this simplified system five different feedback loops 
that were also present in the original system (a, b, c, d, and e), three of them (a, b, and e) involving translocation 
(Fig. 5B and Supplementary Table 2). The remaining loop, f, is broken.

We then further simplified the model by considering the dephosphorylation in the nucleus as a single step 
reaction:

+  → +⁎F S F S (3)
kdephos

The system remained bistable and most of the positive feedback loops were maintained without changes (a, b, 
c, and d); except for feedback (e) mediated by the phosphatase-substrate Y complex which includes translocation 
(Fig. 5C and Supplementary Table 2).

As a next step, we removed the intermediate state in the nuclear phosphorylation:

+ → + ⁎E S E S (4)
kphos

Such simplification kept the bistability but changed the necessary feedback loops (Fig. 5D and Supplementary 
Table 2). By eliminating the intermediate complex, three cycles (a and e, which involve translocation, and d that 
does not) were broken. In particular, cycle a is broken because the nuclear enzyme is no longer being sequestered 
by the substrate to form the intermediate complex X. Cycle b remains closed but is modified, as now the positive 
feedback loop is completed through the simplified reaction rphos. Finally, even though cycle c is still existent, it is 
no longer relevant for bistability.

Finally, to reduce even more the number of parameters of the system, we replaced the translocation reactions 
of the phosphorylated and unphosphorylated substrates by the irreversible reactions

←S S
(5)

c
kout,S

Figure 5. Simplification to a compact model that conserves spatially driven bistability. The original system 
(A) was reduced in four consecutive steps. Left: the feedback a is in blue, the feedback c in green, the feedback 
e in red. On the right: the feedback b in purple, the feedback d in dark green, the feedback f in dark red. (B) 
Cytoplasmic phosphatase was removed. (C) The two-step enzymatic dephosphorylation in the nucleus was 
replaced by a single step reaction. (D) Phosphorylation in the nucleus was replaced by a single step reaction. 
Finally, the reversible translocation reactions of the phosphorylated and unphosphorylated substrates were 
replaced by irreversible mechanisms (also in panel D). In each case, the relevant feedback loops are indicated 
with different colors and labeled as a, b, c, d, e, f.
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We verified that bistability is conserved, and the relevant positive feedback loop is the one from the previous 
case. This minimal model contains 5 independent variables and 8 nondimensional parameters, while the initial 
model contains 8 independent variables and 21 nondimensional parameters.

The complete set of reactions for the final system is depicted in Fig. 5D and Supplementary Table 2 and is 
described by the nondimensional ODE system presented in the Supplementary Information. For this reduced 
system we used the “going-up and coming-down” analysis with stimulus values ranging from 10−6 to 101 over 
roughly 30,000 different parameter sets sampled by LHS, with all the parameters randomly varied over the range 
[10−3,103]. Following the same approach as before, we calculated the fraction of bistable cases per logarithmically 
spaced bin for each parameter. The obtained plots are presented in Supplementary Fig. S5. The fraction of bistable 
cases is still low, with its maxima occurring for high values of b2 (8.5%), high values of b3 (4.9%), and low values 
of s1 (5.1%). Bistability can be overturned by controlling any of the four biochemical rates: on the one hand, our 
analysis did not find any bistable cases for b2 < 10 or b3 < 10−1. This is in line with the fact that setting any of 
these parameters to zero would break the relevant feedback loop (Supplementary Fig. S5). On the other hand, 
bistability disappears for b1 > 102 or b4 > 102. In the parameter ranges sampled, s1 is the only shuttling parameter 
with the power to overturn bistability. However, by applying the Jacobian injectivity criterion14(see Methods) to 
this reduced system, we obtain that for extremely low values of s3, the system is necessarily monostationary. The 
criterion also confirms that multistationarity cannot happen for extremely low values of b2, b3, or s1. Conducting 
an enrichment test (Supplementary Fig. S5B) further confirmed the results obtained for the fraction of bistable 
cases per class. Finally, a Mann-Whitney U test selected b2, b3, s1, and b1 as the leading parameters in the control 
of bistability in the ranges considered for the analysis (Supplementary Fig. S5C).

Discussion
In this work we have explored the extent and origin of compartmentalization-induced bistability. Starting from 
a previously described system which is composed of two monostable modules acting on different cellular com-
partments and sharing species through shuttling reactions, we explored its vast parameter space in order to assess 
the robustness of the emergent bistability. For doing so we developed a method that is a combination of known 
techniques. The method strongly relies on finding several parameters sets leading to bistable behavior and, with 
those sets, constructing a restricted parameter space for the analysis. To find several sets leading to bistability we 
applied the tool CRNT several times with the reactions in different order. As simple as it sounds, this approach 
resulted to be novel and useful, and allows a parameter space exploration that serves two purposes. First, it gives 
the opportunity to evaluate robustness of the behavior of interest (bistability in this case), robustness understood 
as frequency of occurrence in the parameter space. Second, it informs on which parameters, and in which ranges, 
control the emergence and the characteristics of that behavior.

We found that a very small fraction of the sampled (restricted) parameter space produced a bistable response 
indicating that the system needs to be properly tuned for this behavior to arise. With properly tuned we mean that 
the parameters have to take values in very specific and restricted ranges in order to produce bistability, and even 
so, in that restricted parameter space the bistable cases are lower than 8%. Most importantly, shuttling parameters 
were among the most influential ones to control this property. Summarizing, we found several sets leading to 
bistability, and each of them was robust according to a local analysis. The (restricted) parameter space constructed 
with all of them resulted in low bistability outcomes. What we conclude from this is that the analyzed system 
possesses “bistability islands”. If it is in one of them, the bistable behavior is robust under parameter fluctuations.

We scored the extent of bistability by quantifying the range of stimulus that produces a bistable response, the 
distance between the two responses in the bistable regime, and the area of the hysteresis loop. We found that the 
shuttling parameters control all these properties. This result highlights not only the importance of shuttling to 
find bistable behavior, but also the fact that, once within the restricted ranges, tuning certain shuttling parameters 
greatly influences the properties of the bistable region. This output allows the optimization of the bistable prop-
erties (for example, if a wide range of stimulus or a sufficiently great distance between branches is required) and 
provides details into potential hierarchies between parameters in systems with compartmentalization-induced 
bistability.

To further describe the origin of bistability we proceeded as follows. From the original system with two enzy-
matic reactions in each compartment and shuttling of certain species between them, totalizing 8 dimension-
less variables, 21 dimensionless parameters and 6 relevant feedback loops, we performed gradual simplifications 
monitoring not to lose bistability and identifying the relevant positive feedback loops responsible for bistability15. 
First, we removed the phosphatase reactions when possible. Secondly, we simplified the enzymatic reactions 
omitting the intermediate complex formation, which was only possible in the nuclear compartment. Finally, we 
made unidirectional those shuttling reactions that do not cut the feedback loop. Altogether, the simplified system 
again connects two monostable systems with minimal nonlinearities by a reduced set of linear shuttling reactions 
that circulates all the species around the two compartments.

The procedure used to obtain a reduced system, while not comprehensive, combines biological knowledge 
about the involved reactions with the outcome of the feedbacks analysis. In this way, we were able to bypass 
the current limitations of the Chemical Reaction Network Toolbox (CRNT), meaning that this method only 
works with reactions instead of ODEs, and the complexity of the model which obstructs even a quasi-steady state 
approximation. This regular approximation in an enzymatic reaction is complicated in the equations we studied 
without further (non-rigorous) assumptions, because the shuttling reactions couple all the enzymatic reactions 
in the model.
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The procedure we followed, instead, was to remove reactions or components, for example a phosphatase (this 
could represent a real system in which the phosphatase is found exclusively in one particular compartment, 
like is the case of Hog1’s phosphatase Ptp2, which is known to be nuclear16), one at a time, monitoring not to 
lose bistability. We tried several combinations, and the ones we report are those that ensure bistability. It is not 
demonstrated that the model is minimal, but we could not remove any extra variable or reaction without losing 
bistability completely, so, in a sense it is minimal. The detailed model has six relevant feedback loops, the reduced 
model, only one. This reduced model is bistable based on the same mechanisms that ensure bistability in the more 
detailed one: enzymatic (and simplified enzymatic) reactions that transform variables and shuttling reactions that 
circulate them, generating in this way a positive feedback loop that is the origin of bistability.

Summarizing, the novelty of this work relies on three aspects. First, the approach itself. In the article by Feliu 
and co-workers they used CRNT to find a parameter set leading to bistability followed by local analysis around 
those parameter values. It is explained that a high-dimensional parameter space exploration is likely not suc-
cessful. In this article, we could perform a parameter space exploration by first defining a reduced parameter 
space obtained by successive applications of CRNT. Second, with this approach, an analysis that is not completely 
global but is not local, was performed. It provided an insight on how robust bistability is in the system considered, 
and on how the different types of parameters, those associated with reactions, with shuttling and with concen-
trations, control not only the emergence of bistability but also its properties. Third, a very compact model with 
compartment-induced bistability was derived.

Bistable systems are one of the main building blocks of more complex behaviors such as oscillations, memory, 
and digitalization. Therefore, we expect that the proposed methodology and the results arising from it provide 
insight into how these behaviors can arise from compartmentalization.

Methods
Chemical reaction network toolbox. The Chemical Reaction Network Theory (CRNT) developed by 
Horn, Jackson, and M. Feinberg’s group draws relationships between the structure of chemical reaction networks 
and their qualitative properties, such as the existence, uniqueness, multiplicity, and stability of their fixed points. 
Among other questions, this theory allows us to decide whether there exists any combination of rate constant 
values such that a certain reaction network has the capacity for bistability. CRNT has been implemented by the 
authors as a computational Toolbox. In this work we use the Chemical Reaction Network Toolbox v2.3. The 
CRNToolbox produces distinct solutions depending on the order in which the reactions are fed. For this system, 
nine different solutions were found (see Supplementary Table 1).

Going-up and coming-down analysis. To identify bistable behaviors and their thresholds (see below) 
in those structures capable of bistability as proposed by CRNToolbox, we implemented the “going-up and 
coming-down” analysis17 in MATLAB (version 2015a, The MathWorks, Inc., Natick, Massachusetts, United 
States). Briefly, the steady-state response curve upon stimulus increase (“going-up” branch) is compared with the 
one obtained when the stimulus is decreased (“coming-down” branch). Importantly, for each stimulus, the initial 
condition is the steady-state output obtained with the previous stimulation. If the system is monostable both 
branches will coincide, as in this case the steady state solution is unique for each stimulus. In contrast, for a toggle 
switch the branches will not match for a certain stimulus range. At the lower (Stimoff) and upper (Stimon) limits of 
such range, the “coming-down” and “going-up” branches will respectively show a discontinuity.

We implemented the analysis by describing the biological model of interest as a system of coupled ordinary 
differential equations (ODE) defining the time evolution of the concentration of each biochemical species. The 
dynamical behavior is not only determined by the structure of the ODE system but also by its parameters (e.g. 
rate constants, total concentrations). Among those, one is considered as the stimulus while the others are the 
parameter sets at which the capability of a bistable response is assessed.

At its core, the computational code we developed evolves numerically the ODE system for a given parameter set 
and a predefined stimulus value until the relative change in concentrations is negligible and thereby a steady-state 
is considered to be found. The process is repeated first ascending and then descending through a predefined stimuli 
vector. For the first stimulus value, the initial concentrations are set so that all enzymes are in the cytoplasmic inac-
tive state. A small perturbation from the resulting response steady state is then used as the initial concentration for 
the next stimulus value and evolved to a new steady state. Discontinuities in both branches of the stimulus-response 
curve are identified as those values that deviate significantly from the trend given by neighboring values. Specifically, 
a discontinuity is said to exist at the stimulus value Stimi if the difference between the response for Stimi and Stimi−1 
is at least five times larger than the difference between the output for Stimi−1 and Stimi−2, and is higher than 10−3. 
This last threshold has been selected empirically to reduce the presence of false positives. If one discontinuity is 
found in each of the branches, the system is labeled bistable. In contrast if no discontinuities are found, the parame-
ter set is labeled monostable. If only one is found, the system is flagged for further analysis to evaluate if the system 
is actually a one-way-switch or the original stimulus vector was not appropriate (i.e. the range being considered 
does not include one discontinuity or the components of the vector are too separated). We restricted the analysis to 
responses that were greater or equal to 10−2 for at least one stimulus value.

Parameter sampling. Using Latin Hypercube Sampling (LHS)11,18, to ensure an homogenous sampling, we 
scanned the multidimensional parameter space and identified regions of bistability. To investigate the existence of 
patterns, we performed an enrichment test for each parameter19 followed by a test of the influence of each parameter.

Enrichment test. Given a set of values of a parameter, enrichment tests19 can be used to assess whether the members 
of a subset of the original set are randomly distributed or whether they are clustered in specific regions. Here, we 
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performed enrichment tests to investigate the existence of patterns in the parameter values that give rise to bistable 
behavior. Sampled values were separated into logarithmically spaced bins (classes). Let N be the total number of 
values sampled for a parameter, and M the number of those for which the system was found to be bistable. Also, let 
yi and xi be the number of those values that correspond to the i-th class in N and M, respectively, so that ∑ =y Ni i  
and ∑ =x Mi i . The main idea is to determine whether the behavior in each class is enriched with respect to the case 
in which M values of the parameter under analysis are selected independently and uniformly in a random way with-
out replacement among the N values sampled (null hypothesis). If that was the case, the probability of observing at 
least xi values in the i-th class giving place to bistability would follow a hypergeometric distribution:
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We can then calculate a p-value pi to measure the statistical significance of the probability of observing at least 
xi values giving place to bistability in the i-th class, when the null hypothesis is assumed as the real underlying 
distribution. In this work, we considered the i-th classed to be enriched if pi < 10−4.

Test of the influence of each parameter in controlling bistability. To assess the influence of each parameter in the 
control of bistability, we partitioned the distribution of values for each parameter in two groups: the positive 
group contained the values of the parameter for which the system behaved in a bistable fashion, while values for 
which the system was monostable were included in the negative group. Statistical significance was tested using 
a Mann-Whitney U20 test implemented in MATLAB (Statistical Toolbox, version 2015a, The MathWorks, Inc., 
Natick, Massachusetts, United States).

MatCont. We used MatCont, a graphical MATLAB software package implemented for the interactive numer-
ical study of dynamical systems. Briefly, the algorithm finds the steady state and then performs a continuation 
analysis while changing the parameter of choice to build a bifurcation diagram.

Methods for the width, area and distance analysis. After removing the parameter sets with responses 
lower than 10−2, we studied the bistable outputs. For each parameter set, we measured the following four prop-
erties: the width of the bistable region (Stimon-Stimoff), the area of the hysteresis loop (area of the “coming-down” 
branch - area of the “going up branch”), and the distance between the two branches (distance1 = difference 
between branches at Stimon; distance2 = difference between the output at Stimoff and at Stimon).

First, we plotted the distribution of values for the corresponding variable (width, area, distance) in logarithmic 
classes. This gave us 7 classes for the width (between 10−6 and 101), 9 for the area (between 10−8 and 101), 6 for 
distance1 (between 10−3 and 10°, divided in halves: 10−3 – 0.5 × 10−2, 0.5 × 10−2 – 10−2, etc.) and 7 for distance2 
(between 10−4 and 10°, also divided in halves, with an empty 10−4 – 0.5 × 10−3 class).

Then, we defined two groups among the parameter sets: one containing the two classes with the higher values 
for each variable, the other containing the rest of the classes. The value separating the two groups for all four var-
iables is the same: 10−1. Using a Mann-Whitney U test implemented in MATLAB, we could analyze the influence 
of each parameter in the values of the four variables.

Finally, for the two parameters with the highest absolute zvalue, we plotted one parameter versus the other in a 
colormap as a function of the corresponding variable. This allowed us to interpret the kind of control that the two 
parameters have over the variables.

Some considerations: for the first step in this method, the classes for the distances were divided in halves to 
have a higher number of classes; in the third step, only the two parameters with the highest absolute zvalues showed 
a pattern in the colormap. Also, out of the 1117 parameter sets with bistable curves (with an S shape), 78 showed 
negative values for the area, due to small values in the width, which resulted in integration errors. These cases 
were not considered.

Jacobian injectivity criterion. Given a network of interacting species, the Jacobian injectivity criterion14 
allows us to either preclude multistationarity or derive conditions on the rate constants that guarantee monosta-
tionarity4. Given  = … →f f f( , , ):n

n n
1  a differentiable function, the Jacobian at a point = …x x x( , , )i n  in 

n, J f( )x , is defined as the ×n n matrix having ∂

∂

f
x
i

j
 as the (i,j) element. If f is a polynomial function, then all ele-

ments of J f( )x  are polynomials in x, and so is its determinant. The Jacobian injectivity criterion states that if all fi 
are polynomials of order less than or equal to two, and the determinant of the Jacobian is not zero in a convex 
domain Ω ⊆ n, then f is injective in Ω.

The positive steady states for a system of biochemical reactions described by the law of mass action are given 
by the positive solutions of a system of polynomial equations = = …κf x i n( ) 0, 1, , ,i,  where n is the number of 
species in the system. The coefficients of polynomials 

κf i,  depend on the form of the conservation laws and on the 
rate constants κ = { }kj , where kj is the rate constant for reaction rj. If the function = …κ κ κ( )f f f, n,1 ,  is injective 
over the positive real numbers +

n , then there cannot be more than one positive solution to the equation 
= …κf x( ) (0, , 0), and multistationarity cannot happen. Hence, the Jacobian injectivity criterion allows us to 

find conditions that assure the injectivity of fk, and consequently the monostationarity of the network. If all the 
coefficients of the determinant of κJ f( )x  have the same sign, it will not vanish for any positive value of x, and there-
fore, fk will be injective in +

n  and the system will not present more than one steady state. However, if that is not 
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the case, the criterion will still allow us to find conditions for the rate constants that are necessary for multistation-
arity to occur4.

It is possible to use this criterion to create an algorithm that selects the structural positive feedback loops that 
are relevant for the emergence of bistability. Structural because they do not depend on the exact functional form 
of the flows, and relevant because, if they are all broken, bistability is lost. For this work, we used a Maple imple-
mentation of this algorithm15.
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