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ABSTRACT

Nanoplatform concept was developed to synthesized accessible photoactive magnetic 

nanoparticles (MNPs) of Fe3O4 coated with silica. This approach was based on the covalent binding 

of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPPF20) to aminopropyl-grafted MNPs by 

nucleophilic aromatic substitution reaction (SNAr) to obtain conjugate MNP-P1. After in situ 

modification, the remaining pentafluorophenyl groups of TPPF20 attached to MNPs were substituted 

by dimethylaminoethoxy groups to form MNP-P2. The basic amine group of these conjugates can be 

protonated in aqueous media. In addition, MNP-P1 and MNP-P2 were intrinsically charged to 

produce cationic conjugates MNP+-P1 and MNP+-P2+ by methylation. All of them were easily 

purified by magnetic decantation in high yields. The average size of the MNPs was ~15 nm and the 

main difference between these conjugates was the greater coating with positive charges of MNP+-

P2+, as showed by the zeta potential values. Absorption spectra exhibited the Soret and Q bands 

characteristic of TPPF20 linked to MNPs. Furthermore, these conjugates showed red fluorescence 

emission of porphyrin with quantum yields of 0.011-0.036. The photodynamic effect sensitized by 

the conjugates indicated the efficient formation of singlet molecular oxygen in different media, 

reaching quantum yields values of 0.17-0.34 in N,N-dimethylformamide. The photodynamic activity 

of the conjugates was evaluated to inactivate the Gram-positive bacteria Staphylococcus aureus, the 

Gram-negative bacteria Escherichia coli and the yeast Candida albicans. The modified cationic 

MNP+-P2+ was the most effective conjugate for photodynamic inactivation (PDI) of microorganisms. 

Binding of this conjugate to bacteria and photoinactivation capability was checked by means of 

fluorescence microscopy. Also, sustainable use by recycling was determined after three PDI 

treatments. Therefore, this methodology is a suitable scaffold for the in situ modification of 

conjugates and in particular, MNP+-P2+ represents a useful photodynamic active material to eradicate 

microorganisms.
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1. INTRODUCTION

Magnetic nanoparticles (MNPs) are suitable to be decorated with different functional group 

and due to its magnetic properties, they can be visualized and guided in water and organic solvents 

by means of an external magnetic field.1 This effect allowed to exploit different pathways and 

applications of MNPs, from cellular targeting and hyperthermia therapy to the petroleum industry for 

emulsion separations.2-4 In particular, an interesting potential use of photosensitizer conjugated to 

MNPs involve the photodynamic inactivation (PDI) of microorganisms.5,6 This procedure is based on 

the addition of a photosensitizer to the medium contaminated with pathogenic microorganisms. Next, 

irradiation with visible light mainly leads to the formation of reactive oxygen species (ROS), which 

cause lethal damage to the microbial cells.7 In this sense, nanomagnet-porphyrin hybrids have been 

studied as efficient photosensitizers to inactivate bacteria and phages.8,9 Also, porphyrin conjugated 

to MNPs has been proposed to control microbial proliferation by PDI.10

Many of these MNPs-conjugated photosensitizers were formed using AB3-porphyrins. These 

asymmetrically substituted tetrapyrrole macrocycles contain three identical molecular structures B 

and one different A at the meso-position. In those cases, the structure A bears a functional group that 

can be used to link the porphyrin with other molecules, while B contain substituents that allow 

changing the polarity and interaction with the media.11 These porphyrins can be synthesized by a 

binary mixed aldehyde and pyrrole condensation. The purification requires slow chromatographic 

separation with very poor yields (<3%).12 Also, AB3-porphyrins can be obtained by the condensation 

of a dipyrromethane with a binary mixture of aldehydes. This approach involves two steps of 

synthesis and purification, using flash chromatography a large amount of organic solvents, with yields 

<15%.11,13 However, there are no reports that indicate the use of MNPs as nanoplatform for the in situ 

modification of photosensitizers. Therefore, a porphyrin with a sophisticated synthetic procedure and 

low reaction yield could be easily modified starting from a tetrapyrrole macrocycle covalently linked 

to MNPs. After each synthetic step, a desired macrocycle attached to MNPs can be isolated from 
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byproducts by washing using the magnetic decantation technique. This purification method also 

avoids the use of excessive amounts of organic solvents that are usually required in organic synthesis.

Considering our interest in developing accessible photoactive MNPs to inactivate 

microorganisms, here we report this new nanoplatform concept to facilitate the synthesis of four 

conjugates using 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPPF20) as a structurally 

modifiable photosensitizer. This A4-porphyrin is commercially accessible or can be easily 

synthesized with good yields.14,15 This porphyrin is a suitable and versatile building block for the 

construction of meso-substituted tetrapyrrolic macrocycles through the nucleophilic aromatic 

substitution reaction (SNAr).16 After in situ modification different conjugates were obtained, two of 

them (MNP-P1 and MNP-P2) do not present net intrinsic charges, while the other two (MNP+-P1 and 

MNP+-P2+) are substituted with cationic groups (Figure 1). The absorption and fluorescent 

spectroscopic characteristics of the MNPs-conjugated porphyrins were assessed in different media. 

Moreover, their photodynamic properties were studied in the presence of different photooxidizable 

substrates. The photodynamic activity of the conjugates was investigated to inactivate the Gram-

positive bacteria Staphylococcus aureus, the Gram-negative bacteria Escherichia coli and the yeast 

Candida albicans. These bacteria are representative of microorganisms responsible for numerous 

hospital-acquired infections and water-related diseases.17,18 Furthermore, invasive fungal infections 

are a major cause of morbidity and mortality in hospitalized patients.19 Therefore, this study was also 

focused on the ability to applicate these MNPs-conjugated porphyrins to photoinactivate these 

pathogens.

2. EXPERIMENTAL SECTION

2.1. Synthesis of MNPs and conjugates

The conjugates of MNPs with TPPF20 were synthesized following the procedures 

schematically shown in Figure S1. TPPF20 was synthesized as previously reported.15
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2.1.1. Synthesis of MNPSiNH2

The synthesis of MNPSiNH2 was done as previously described.10,20 Briefly, MNPs of iron 

oxide (Fe3O4) were synthesized from FeCl2 and FeCl3 using the coprecipitation technique, followed 

by treatment with sodium metasilicate (Na2SiO3) to obtain MNPs coated with silica (MNPSi, average 

size 10  2 nm). Finally, (3-aminopropyl)triethoxysilane (APTS) was added to form MNPs 

functionalized with amine groups (MNPSiNH2, average size 11  2 nm).

2.1.2. Synthesis of MNP-P1

The covalent binding of TPPF20 to MNPSiNH2 was performed as described for 

pentafluorophenyl derivatives with amine groups with same modifications.21,22 From a suspension of 

MNPSiNH2 in water (84 mL, 4 mg MNPSiNH2/mL) the solvent was eliminated by magnetic 

decantation. Then, the MNPSiNH2 were washed with freshly distilled N,N-dimethylformamide 

(DMF) and resuspended in 10 mL of the same solvent. This suspension was mixed with a solution of 

TPPF20 (2 mL, 20 mM) in DMF. The reaction mixture was stirred at room temperature for 48 h. The 

progress of the reaction was followed by TLC analysis (silica gel; n-hexane / chloroform 3:2) of the 

supernatant in the mixture, which showed the consumption of TPPF20 (Rf = 0.45) due to the formation 

of the conjugate with the MNPs. The reaction mixture was sonicated for 5 min, then placed on a 

neodymium magnet for 5 min to produce magnetic decantation of the MNPs. The supernatant was 

discarded to remove non-magnetic materials. MNPs were resuspended in 10 mL DMF, sonicated for 

5 min, kept for 15 min at room temperature, recollected by magnetic decantation and the solvent was 

discarded. This washing process was repeated several times until the presence of impurities were not 

detected in the supernatant by UV-visible absorption spectroscopy in the range of 250-800 nm.  This 

first washing process was followed by a similar procedure but using acetone and methanol. In each 

washing step, 10 mL of solvent were used. The amount of TPPF20 attached to the MNPs was 

calculated by subtracting the amount of recovered TPPF20 in the combined washing solvents 
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(measured by UV-visible absorption spectroscopy) to the initial amount of TPPF20 used. The MNP-

P1 conjugate obtained was resuspended in 84 mL water.

2.1.3. Synthesis of MNP+-P1 and MNPSiN+(CH3)3

The formation of cationic groups was carried out with a large excess of CH3I.8 The water in 

the MNP-P1 suspension (21 mL, 4 mg MNP-P1/mL) was discarded by magnetic decantation. After 

successive washing with DMF, the MNPs were resuspended in 21 mL of the same solvent and 2 mL 

of CH3I were added. The reaction mixture was stirred 72 h at 40 °C. After this reaction time, the new 

MNP+-P1 were washed with DMF by magnetic decantation as described in 2.1.2 and resuspended in 

21 mL water. The same procedure was used to obtain MNPSiN+(CH3)3.

2.1.4. Synthesis of MNP-P2

The derivatization of TPPF20 attached to MNP-P1 was achieved similarly to the reactions of 

pentafluorophenyl porphyrinoids with alcohols.23 After washing MNP-P1 (42 mL, 4 mg MNP-

P1/mL) by magnetic decantation with freshly distilled tetrahydrofuran (THF), the conjugate was 

resuspended in THF (10 mL). Then, 2-(N,N-dimethylamino)ethanol (DAE, 80 mol), anhydrous 

potassium hydroxide (KOH, 64 mol) and tetrabutylammonium bromide (TBAB, 100 µL) were 

added. The reaction mixture was continuosly stirred at room temperature for 12 h. The MNP-P2 were 

purified whashing with THF and water by magnetic decantation following the methodology detailed 

in 2.1.2 and the conjugated was resuspended in 42 mL water.

2.1.5. Synthesis of MNP+-P2+

An aliquot of MNP-P2 (21 mL) was methylated with CH3I following the procedure described 

above for the synthesis of MNP+-P1. After washing with DMF by magnetic decantation as indicated 

in 2.1.2, MNP+-P2+ was resuspended in 21 mL water.
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2.2. Preparation of samples of the MNPs conjugates

After the synthesis of each conjugate, aliquots that were used as a stock suspension in the 

different studies were separated (Figure S1). The recovery of the conjugates after each process was 

calculated by weighing. Stock solutions were prepared at the same concentration for all conjugates, 

which was 4 mg MNPs/mL containing 10 nmol porphyrin/mg MNPs. Before each experiment, the 

solutions were sonicated for 5 min to disaggregate the MNPs.

2.3. Morphology of MNPs and zeta potential determinations

The morphology and size of the MNPs were examined by transmission electron microscopy 

(TEM). A drop of each suspension of MNPs conjugate was placed on a formvar-coated copper grid 

and the solvent was evaporated under reduced pressure. The zeta potential (ζ) determinations were 

performed using aqueous dispersions of the different MNPs conjugates. The measurements were 

carried out in 1 mg/mL dispersions of the corresponding samples, ultrasonically dispersed for 5 min. 

Electrophoretic mobilities were converted to ζ using the Smoluchowski equation.24

2.4. Spectroscopic studies

UV-visible absorption and fluorescence spectra of the different conjugates (concentration 

between 1-2 µM in immobilized porphyrin) were recorded as reported.20 An excitation wavelength 

of 428 nm was used to acquire the emission spectra. 5,10,15,20-Tetrakis(4-

sulfonatophenyl)porphyrin (TPPS4-) was used as a reference (F = 0.080) to determine the 

fluorescence quantum yield (F) of each MNPs conjugates in water.25 All spectral measurements 

were performed at room temperature using a quartz cell of 1 cm path length. The absorbances of the 

conjugates and TPPS4- (<0.05) were matched at the excitation wavelength. The areas under the 

emission spectra were integrated and compared in the 600-800 nm range.

2.5. Steady state photolysis of substrates
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Photooxidation of tetrasodium 2,2’-(anthracene-9,10-diyl)bis(methylmalonate) (ABMM) and 

9,10-dimethylantracene (DMA) were performed in aqueous media and DMF, respectivaly.10,20 

Samples of anthracene derivative (35 M) in the presence of MNPs conjugates (3 M of immobilized 

porphyrin) were irradiated with light (455-800 nm) in 1 cm path length quartz cells (2 mL). The 

photooxidation rate of both substrates were studied by following the decrease of the absorbance at 

378 nm for DMA and 379 nm for ABMM. The observed rate constants (kobs) and quantum yields of 

O2(1g) production () were calculated as previously reported, using TPPS4- was used as a reference 

(  = 0.71).26,27

2.6. Strains and cultures of microorganism

The microbial strains were S. aureus ATCC 25923, E. coli EC7 and C. albicans PC31 that 

were previously characterized and identified.28 Cultivation of microorganisms and handling of cells 

to obtain ~108 colony forming units (CFU)/mL for bacteria and ~106 CFU/mL for yeast in phosphate-

buffered saline (PBS, pH = 7.4) were achieved as reported.10 Viable microbial cells were quantified 

after serial dilutions 10-fold in PBS by the spread plate technique after an incubation of 24 h for 

bacteria or 48 h for yeast at 37 °C in the dark.

2.7. Photoinactivation of microorganisms

Cell suspensions (1.9 mL) of E. coli (108 CFU/mL) and S. aureus (108 CFU/mL) and C. 

albicans (106 CFU/mL) in PBS were incubated with 0.1 mL MNPs conjugate in Pyrex culture tubes 

(13x100 mm) for 30 min in the dark at 37 °C. That mean the addition of 0.4 mg MNPs conjugate in 

a final volume of 2 mL (0.2 mg MNPs conjugate/mL, 2 M immobilized TPPF20). The same 

conditions were used with MNPSiN+(CH3)3. Subsequently, 200 μL of the cell suspensions were 

transferred to 96-well microtiter plates. The cultures were exposed to visible light (90 mW/cm2) for 

different irradiation periods (5, 15 and 30 min, which match the light fluences of 27, 81 and 162 

J/cm2, respectively). Description of the light source was previously reported.29 After each irradiation 
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time, a 100 l aliquot of wells was taken to perform 10-fold serial dilutions in PBS of the bacterial 

cells. Different wells were used for each irradiation period. Viable cells were quantified as mentioned 

in section 2.6. Three values were obtained per each condition and each experiment was repeated 

separately three times. For recycling experiments, MNPs conjugates were recovered by magnetic 

decantation after PDI treatment and resuspended in a new cell suspension. An average time of 5 min 

was used to collect the MNP by the application of the external magnetic field. The cultures were kept 

in the dark for 30 min and irradiated again to complete the cycle.10 The unpaired t-test was used to 

obtain the significance of differences between experiments. Differences between means were tested 

for significance by one-way ANOVA. Results were statistically significant with a confidence level 

of 95% (p < 0.05). Data were denoted as the mean ± standard deviation of each experiment. Controls 

were performed with cultures of microorganisms in the dark, with and without conjugates and 

irradiated cells in the absence of conjugates.

2.8. Bioimaging and PDI by fluorescence microscopy

Fluorescence microscopy investigations were carried out using the methodology previously 

reported with same modifications.20,30 Bacterial suspension (100 μL) was incubated in a chamber 

composed of a polymeric cylinder glue to a coverslip for 30 min. This procedure was used to allow 

cells to attach to the glass surface. Unbound bacteria were removed by washing with PBS. Bioimaging 

experiments were performed addicting 200 µL MNP+-P2+ (0.8 mg MNPs) to attached cells on glass 

surface of a chamber. Cells were incubated for 30 min in dark, the chamber was rinsed to eliminate 

MNPs the chamber was rinsed with PBS to remove the MNPs that were not bound to the cells and 

filled with 500 µL PBS. After PDI treatments, the cell viability was determined with propidium iodide 

(PI). Fluorescence images PI were performed using an emission band pass filter (645/75). The 

fluorescence emitted from the MNP+-P2+ or PI was collected by the same objective and captured in 

a CMOS camera. Phase contrast images were also attained to verify bacterial presence in the sample 

chamber.
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3. RESULTS AND DISCUSSION

3.1. Design of the new conjugates nanomagnet-porphyrin

The synthesis of MNPs conjugates with TPPF20 are summarized in Figure 1. This is an 

idealized representation of the conjugates in their simplest forms. Possibly, some of the TPPF20 

porphyrins may be attached to the MNPs by more than one pentafluorophenyl group. The formation 

of the nanoplatforms (MNPSiNH2) was done following the procedure described in a previous work.10 

Subsequently, TPPF20 was selected as a porphyrin derivative with good versatility that allows the 

modifications of its functional groups with simple synthetic procedures. With a A4 symmetry, this 

porphyrin is decorated with four pentafluorophenyl group. The synthetic versatility relies on the 

fluorine atom at the para position, which is prone to undergo SNAr by different nucleofiles.22,31 The 

reaction of pentafluorophenyl substituents in the porphyrin macrocycle to the amine groups of MNPs 

was previously described.8,9 To synthesize MNP-P1, MNPSiNH2 was mixed with an excess of 

TPPF20. The coupling reaction was done in DMF stirring for 48 h at room temperature. MNP-P1 is a 

versatile nanoplatform that was used as starting material to obtain the other three conjugates. First, 

the porphyrin structure in this conjugate was modified to obtain MNP-P2. For a successful reaction, 

the following stoichiometric ratio was necessary (with respect to the concentration of TPPF20 in 

MNP-P1): TPPF20 1 equiv., DAE 20 equiv. and KOH 16 equiv. Due to TPPF20 bound to MNP has 

three substitutable groups, the previous stoichiometric triplicates. For this purpose, MNP-P1 was 

reacted with DAE in basic conditions using TBAB as a catalyst. After 12 h at room temperature the 

photosensitizing nanomagnet containing dimethylaminoethoxy ramifications was obtained (MNP-

P2). This modification provides to each porphyrin unit of basic amine groups, which can acquire 

positive charges by protonation in a biological medium.28,32 These ramifications can improve the 

MNPs binding to the microbial cell wall. It is known that the great majority of pathogens have an 

overall negative charge on the external wall.7 With this under consideration, cationic analogues of 

MNP-P1 and MNP-P2 were synthesized. In the case of MNP-P1, the primary amine groups attached 
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to the MNPs were exhaustively methylated with an excess of methyl iodide to obtain MNP+-P1. 

Similarly, primary and tertiary amines in MNP-P2 were precursors of positive charges to form MNP+-

P2+. Through this reaction both, the free aminopropyl groups on the core of the Fe3O4 MNPs and the 

dimethylaminoethoxy substituents attached to the porphyrin were positively charged. Thus, both 

conjugates are surrounded by intrinsic positive charges. In particular, in the MNP+-P2+ the cationic 

centers are isolated from the porphyrin ring by an aliphatic spacer, which provides a higher mobility 

of the charge facilitating the interaction with the cell envelope. To remark on these synthetic pathways 

based on a nanoplatform concept is that in all cases the conjugates were easily purified by magnetic 

decantation and the MNPs were recovered in > 95% yields.
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Figure 1. Simplified structures of the MNPs synthesized in this work. Reagents and conditions: a) 

TPPF20, DMF, r.t., 48 h; b) CH3I, DMF, 40 °C, 72 h; c) DAE, THF, KOH, TBAB, r.t., 12 h.

3.2. Characterization of conjugates by TEM and zeta potential

TEM images reveled that the average size of the MNPs in all conjugates was 12  2 nm (Figure 

S2). Particles with similar sizes were previously obtained using a similar synthetic procedure.10 The 

coating of the MNPs with TPPF20 does not change the size of the particles. The images showed the 

formation of aggregates between MNPs due to the magnetization and attraction between the 

nanomagnet. Similar behavior was previously found for porphyrins attached to MNPs.8,20

On the other hand, the zeta potential (ζ) was determined to evaluate the surface load and 

stability of the suspensions. The values of ζ are indicated in Table 1. The ζ measurements yielded 

positive values in all conjugates. There is not a significant difference on the ζ values between the two 

control MNPSiNH2, MNPSiN+(CH3)3 as expected due to protonation of the amine at pH ~7. 

However, the ζ value dropped from 28 mV to 16 mV and from 25 to 19 mV upon covalently binding 

TPPF20 to MNPSiNH2 and MNPSiN+(CH3)3, respectively. The difference in these values may be due 

to the fact that the bulky neutral porphyrin groups on the external layer of the MNPs produce a 

decrease in the overall surface charge, decreasing the amount of exposed cationic amines. However, 

ζ values increased 11 mV and 14 mV upon decorating MNP-P1 and MNP+-P1 with tertiary amines 

to yield MNP-P2 and MNP+-P2+, respectively. These increase in ζ values with the amount of positive 

charges is expected for this kind of aggregates, as it was previously described.33,34 An overall analysis 

of the colloidal stability and in accordance to the electrostatic interactions of the conjugates, the order 

is the following: MNP+-P2+ > MNP-P2 > MNP+-P1 ~ MNP-P1. An increasing on the amount of 

positive charges enhances MNPs repulsion and favors the stability.

3.3. Absorption and fluorescence spectroscopic properties of conjugates
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The UV-visible absorption spectra of MNPs conjugates are shown in Figure 2A. Furthermore, 

they are compared with those of MNPSiNH2 and a water-soluble porphyrin TPPS4-, which was used 

as a reference. Spectra of MNPs conjugates were corrected considering the scattering of the 

MNPSiNH2 (Figure 2A, inset). Suspensions of these conjugates in water showed the typical porphyrin 

Soret band at ~430 nm (Table 1). Also, the four Q-bands can be observed between 515 and 650 nm 

of the modified TPPF20 attached to the MNPs. Therefore, absorption spectra also confirmed the 

binding of TPPF20 to MNPs. Moreover, the absorption spectra of conjugates were carried out in DMF 

(Figure S3). Similar to those obtained in water, well defined bands of porphyrin are observed in this 

organic solvent and thus, they can be compared with that of TPPF20. Upon attachment of TPPF20 and 

its consecutive analogues to the MNPs, a ~20 nm bathochromic shift in the Soret band was observed 

in all the conjugates. This displacement of the band to higher wavelength can be attributed to 

immobilization of the porphyrin core to the MNPs with different electronic properties. This effect 

was also visualized in similar systems when a porphyrin is anchored to MNPs.10,35

The fluorescence emission spectra of the conjugates and TPPS4- in water are given in Figure 

2B. Porphyrin unit attached to MNPs presented two bands in the four conjugates centered at 657 and 

713 nm, which are characteristic of free-base porphyrin derivatives (Table 1). These emission bands 

correspond to Qx(0-0) and Qx(0–1) transitions.11,36 The spectrum of porphyrin bound to MNPs in 

water maintains the shape of TPPF20 in DMF, with the band at higher wavelength more intense than 

the first.36 The presence of the MNPs was also reflected on a 20 nm shift to lower energy compare to 

TPPF20 alone in DMF. Furthermore, a Stokes shifts of ~5 nm were calculated for the conjugates taken 

into account the intersection of the absorption and fluorescence spectra of the Qx(0-0) band in water. 

This small Stokes shifts indicate that in this porphyrin the spectroscopic energies are similar to the 

relaxed energies of the lowest singlet excited state, according to the rigid planar structure of the 

tetrapyrrolic macrocycle. Therefore, only a minor geometric relaxation occurs in the first excited state 

of TPPF20 attached to MNPs. Fluorescence quantum yields (F) of these conjugates were calculated 

in water using TPPS4- as a reference (Table 1). The values of F for conjugates are smaller than that 
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of a free-base porphyrin in aqueous medium or TPPF20 in DMF.36 As it was previously shown, MNPs 

can quench emission from the singlet excited state of photosensitizers due to oxidative photoinduced 

electron transfer (PeT) from the porphyrin singlet excited state to the Fe3O4 nucleus.20,37
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Figure 2. (A) UV-visible absorption spectra and (B) emission spectra of MNPs conjugates in water. 

MNP-P1 (magenta), MNP+-P1 (green), MNP-P2 (blue), MNP+-P2+ (orange), TPPS4- (black) and 

MNPSiNH2 scattering (gray). Inset: absorption spectra of the conjugates background corrected.

Table 1. Zeta potential (ζ) and spectroscopic properties of conjugates MNP-P1, MNP+-P1, MNP-P2 

and MNP+-P2+ in water.

Conjugates ζ (mV) a λabs
Soret (nm) λem

max (nm) F b

MNP-P1 16 430 657 0.036±0.003

MNP+-P1 19 430 657 0.021±0.002

MNP-P2 27 430 657 0.028±0.003

MNP+-P2+ 33 429 657 0.011±0.001

a ζ = 28 mV for MNPSiNH2 and ζ = 25 mV for MNPSiN+(CH3)3; b fluorescence 

quantum yields using TPPS4- as the reference ΦF = 0.080 in water.25
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3.4. Photosensitized oxidation of substrates

The formation of O2(1g) sensitized by conjugates in water was detected by the decomposition 

of ABMM to form the corresponding 9,10-endoperoxide product ABMM-O2.27 Despite the short 

lifetime of O2(1g) in water (~4 s), ABMM can act as effective trapping probe of this ROS due to 

its high solubility in aqueous solutions. Photooxidation of ABMM induced by conjugates was 

compared with that photosensitized by an anionic water-soluble porphyrin TPPS4-. Figure 3A 

describes the progress of the decomposition reaction for ABMM as first-order kinetic plots. From 

these plots, the values of kobs
ABMM were calculated and they are given in Table 2. Photooxidation of 

ABMM was not observed in presence of MNPSiN+(CH3)3 (Figure 3A). The photodecomposition rate 

of the ABMM sensitized by conjugates was about six times higher than that found for TPPS4- in 

water. Moreover, highest values of kobs
ABMM were obtained with MNP+-P1 and MNP+-P2+, in 

comparison with those produced by MNP-P1 and MNP-P2. Similar results were also found when the 

ABMM decomposition was studied in PBS (Figure S4, Table 2). These can be attributed to the 

presence of four anionic groups on the malonic groups of ABMM.27 These negative charges are 

involved in electrostatic interactions with the positively charged of MNPs. Thus, the ABMM are 

located close to the side where the is sensitized by TPPF20, producing an increase in the 

decomposition rate of ABMM. This effect was more pronounced in conjugated with intrinsic cationic 

charges. In contrast, the anionic photosensitizer TPPS4- was repelled by the negative charges of 

ABMM.

To avoid this electrostatic interaction, the production of O2(1Δg) by the conjugates was 

evaluated monitoring the decomposition of DMA in DMF under aerobic condition (Figure 3B).20 The 

values of kobs
DMA were calculated from first-order kinetic plots of the DMA absorption at 378 nm with 

time. Negligible decomposition of DMA was found using MNPSiN+(CH3)3 (Figure 3B). As can be 

observed in Table 2, similar reaction rates were found for the conjugates, although slightly higher for 

MNP-P1 and MNP+-P1. However, the kobs
DMA values sensitized by conjugates are less than half than 
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that found for TPPS4- in this organic solvent. Similar result was also observed for the decomposition 

of DMA sensitized by TPPF20. From the kinetic data of DMA decomposition, the values of  were 

calculated by comparing the reaction rates for the conjugates with that for the reference (TPPS4-).11 

Comparable values can be also obtained using TPPF20 as a reference ( = 0.70).38 The results for 

 are summarized in Table 2. On average, the ΦΔ for all the conjugates was 0.25 being the highest 

value for MNP-P1 (0.34) and the lowest for MNP-P2 (0.17). Values of ΦΔ of the same magnitude 

were previously found for porphyrin attached to MNPs.10 Comparing these values to the reference 

(Table 2), it can be noticed that the presence of the supermagnetic core in close proximity of the 

porphyrin ring affects the triplet excited state of the photosensitizer, which is responsible for 

producing the cytotoxic species. As described above, magnetite quenches the fluorescence emission 

of porphyrin units bound to MNPs possibly by PeT.37 This process can compete with the intersystem 

crossing producing a decrease triplet state formation and consequently O2(1Δg) production.20 

Furthermore, the partial aggregation of the immobilized porphyrin molecules in the MNP can 

preclude the photodynamic activity.10 Likewise, the photodynamic activity to produce O2(1Δg) 

sensitized by conjugates was high enough to induce damage in microbial cells.
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Figure 3. First-order plots for the photooxidation of (A) ABMM (35 μM) in deionized water and (B) 

DMA (35 μM) in DMF photosensitized by MNP-P1 (), MNP+-P1 (), MNP-P2 (), MNP+-P2+ (), 

MNPSiN+(CH3)3 (), TPPS-4 () and TPPF20 (); λirr= 455-800 nm.

Table 2. Kinetic parameters for the photooxidation reaction of ABMM (kobs
ABMM), DMA (kobs

DMA), 

Trp (kobs
Trp), and singlet molecular oxygen quantum yield (ΦΔ) sensitized by conjugates MNP-P1, 

MNP+-P1, MNP-P2 and MNP+-P2+.

Conjugates kobs
ABMM (s-1) a kobs

ABMM (s-1) b kobs
DMA (s-1) c  d

MNP-P1 (2.4±0.1)x10-3 (1.9±0.1)x10-3 (1.9±0.1)x10-3 0.34±0.02

MNP+-P1 (3.4±0.3)x10-3 (2.9±0.2)x10-3 (1.6±0.1)x10-3 0.29±0.02

MNP-P2 (2.9±0.2)x10-3 (1.9±0.1)x10-3 (1.0±0.1)x10-3 0.17±0.01

MNP+-P2+ (3.2±0.2)x10-3 (3.1±0.2)x10-3 (1.2±0.1)x10-3 0.21±0.01

TPPS4- (5.5±0.3)x10-4 (7.8±0.4)x10-4 (4.0±0.4)x10-3 0.71

a In water; b in PBS; c in DMF, kobs
DMA = 3.9x10-3 s-1 using TPPF20 as a photosensitizer; d in 

DMF using TPPS4- as the reference.

3.5. PDI in cell suspensions

For the PDI experiments we selected two bacterial strain and a yeast with the intention of 

testing the conjugates in vitro in pathogenic microorganism with different cell envelopes 

complexities.7 Suspensions of the Gram-positive S. aureus, the Gram-negative E. coli and the yeast 

C. albicans were treated with 0.2 mg MNPs conjugate/mL (2 M immobilized TPPF20) of the neutral 

and cationic conjugates. Control experiments showed that the viability of microbial cells was not 

affected by irradiation alone (Figure S5). Also, no toxicity was found in microorganisms treated with 

0.2 mg/mL of the MNPs without porphyrin (MNPSiNH2 and MNPSiN+(CH3)3) and irradiated (Figure 

4). Likewise, dark incubation with MNPs conjugates was not toxic to the cells. Therefore, 
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photokilling of microbial cells observed after irradiation of the cultures incubated with the MNPs 

conjugates was due to the photodynamic action sensitized by porphyrin.

Cell survival for cultures treated with conjugates are shown in Figure 4. Furthermore, 

photokilling capacities induced by conjugates were compared with those produced by the starting 

porphyrin. In all cases, the inactivation of the microbial cells treated with 2 M TPPF20 was less than 

that sensitized by the conjugates. Photoinactivation of microorganisms was dependent on irradiation 

times and conjugates. For all times irradiated, cell survival in the presence of the conjugates decreased 

significantly compared to control (p < 0.05). The photodynamic action sensitized by MNP+-P2+ 

produced 6 log decrease in S. aureus cell survival after 30 min irradiation (Figure 4A). Similar killing 

activity was found for MNP+-P1 and MNP-P2 (p > 0.05), reaching 4 log of cell inactivation, while 

MNP-P1 induced 3.5 log reduction in cell viability. Also, MNP+-P2+ was effective to inactivate S. 

aureus at shorter irradiation time of 15 min, producing 5 log of killing. Furthermore, E. coli 

suspensions treated with MNP+-P2+ and irradiated for 15 min produced 2.7 log decrease in viability, 

whereas the photosensitizing activity of this conjugate exhibited 4.5 log units after 30 min (Figure 

4B). In the Gram-negative bacteria, lowest inactivating effect was also found for MNP-P1, producing 

a reduction of 2 log. In addition, photokilling activity induced by MNP+-P1 was slightly more 

effective than MNP-P2. Moreover, the photodynamic effect sensitized by the conjugates was 

compared in the yeast C. albicans (Figure 4C). After PDI treatment for 30 min, photoinactivation of 

cultures incubated with MNP+-P2+ yielded 3.7 log decrease in the cell viability. Photokilling of 2.8 

log and 2.4 log were found for MNP+-P1 and MNP-P2, respectively. In contrast, photocytotoxic effect 

mediated by MNP-P1 produced 1.9 log reduction in the survival of the yeast cells.

Comparing the inactivation in both prokaryote cells, the Gram-positive was more susceptible 

than the Gram-negative to the photodynamic effect induced by conjugates. This difference between 

the two types of bacteria can be understood by considering the structural characteristics of the cell 

envelope. Gram-positive bacteria have a cell wall composed of lipoteichoic and teichoic acids, which 

are organized in multiple layers of peptidoglycan.39 This cellular envelope gives permeability to the 
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bacteria wall to facilitate the anchoring and the photodynamic action of the PSs.7 In contrast, Gram-

negative bacteria have a complex outer membrane on the cell wall, which contains phospholipids, 

lipopolysaccharides, lipoteichoic acids, and lipoproteins, producing a protective barrier impervious 

to antimicrobial agents. The constituents of the Gram-negative cell wall generate electrostatic 

interactions with cationic PSs that promote destabilization of the native organization of the cell 

envelope. In the case of yeast, this eukaryotic cell contains a wall with chitin, glucans and lipoproteins 

that represent a barrier with intermediate permeability in comparison to Gram-positive and Gram-

negative bacteria.

It is not easy to compare the PDI results obtained here with previous investigations due to the 

different experimental conditions used. In was demonstrated that 5,10,15-tris(1-methylpyridinium-4-

yl)-20-(pentafluorophenyl)porphyrin immobilized in cationized silica-coated MNPs of Fe3O4 was 

effective in the photoinactivation of both Gram-positive and Gram-negative bacteria.8 Also, the 

analogue with a CoFe2O4 core showed a notable antimicrobial activity using water contaminated with 

the Gram-negative bacterium Allivibrio fischeri.9 Furthermore, a cationic indium phthalocyanine 

attached to MNPs of Fe3O4 showed to be effective in the photoinactivation of E. coli.40 The log 

reduction produced by this material was greater than the accepted log 3 and it can be easily separated 

with a magnet. Also, a ClIn(III) octacarboxy phthalocyanine bound to MNPs were investigated to 

reduce S. aureus cells in water samples.41 This MNPs provided 90.6% photokilling of microbes in a 

water sample from the stream. In the same way, a cationic indium porphyrin conjugated to 

Ag/CuFe2O4 nanoparticles were able to photosensitize the inactivation of S. aureus.42 The 

quaternized porphyrin attached to Ag/CuFe2O4 MNPs produced a high reduction in the S. aureus cell 

survival. A multifunctional chitosan functionalized magnetic chlorin e6 was constructed to combat S. 

aureus infection, showing an effective in vitro photodynamic sterilization ability.43 Target-oriented 

photofunctional nanoparticles were fabricated by an esterification reaction to introduce 

hematoporphyrin and S. aureus antibody to the surface of Fe3O4 nanoparticles.44 The results in vitro 

showed that these MNPs killed selectively S. aureus in L-929 cells and the PDI effect was also 
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confirmed in vivo experiments. Moreover, a nanosystem for early sepsis diagnosis and complete 

extracorporeal blood disinfection was prepared based on Fe3O4 nanoparticles functionalized with 

chlorin e6 and bacterial species-identifiable aptamers.45 This nanosystem was used for successful 

diagnosis of sepsis caused by single S. aureus or multiple S. aureus and E. coli species of bacteria in 

mice. Under conditions similar to those used in the present study, PDI was investigated using 

5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin covalently bound to MNPSiNH2.10 The 

photodynamic effect of this MNPs produced 2.5 log reduction in S. aureus and C. albicans, while the 

decrease reached 3 log in E. coli, after 30 min irradiation. In the present investigation, MNP+-P2+ 

showed outstanding results, inactivating 99.9999% of the S. aureus strain in 30 min followed by 

99.99% and 99.98% annihilation of E. coli and C. albicans, respectively. Therefore, this is an 

interesting photosensitizing conjugate to eradicate microorganisms.
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Figure 4. Cells survival of (A) S. aureus, (B) E. coli and (C) C. albicans cell suspensions treated with 

MNP-P1 (), MNP+-P1 (), MNP-P2 (), MNP+-P2+ () (0.2 mg MNPs conjugate/mL, 2 M 

immobilized TPPF20) and TPPF20 () (2 M) for 30 min at 37 ºC in dark and exposed to irradiation 

with visible light (90 mW/cm2) for different times. Controls of untreated cells (), cells incubated 

with MNPSiNH2 () and MNPSiN+(CH3)3 () (* p < 0.05 compared with control, ** p > 0.05 

compared between MNP+-P1 and MNP-P2, *** p < 0.05 compared between conjugates).

3.6. PDI recycling of MNP+-P2+
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To test this concept, the recyclability of the MNP+-P2+ was assessed in cultures treated with 

MNP+-P2+. After incubation of the pathogens for 30 min in the dark, followed by exposition to visible 

light for 15 min (S. aureus) or 30 min (E. coli and C. albicans) the conjugate was recovered applying 

magnetic decantation and reused in another PDI cycle. Cell survival results after each cycle of PDI 

are shown in Figure 5. After a second cycle of PDI, the photokilling of the three microorganisms 

incubated with MNP+-P2+ was the same as in the first treatment. Furthermore, photoinactivation 

remained effective after a third cycle of PDI, there being no significant difference between the cell 

survival of the three PDI experiments. In this conjugate, the silica coating avoids the oxidation of 

magnetite and consequent degradation of the magnetic core. It was previously found that recycling 

was not possible using MNPs without the silica coating protection due to structural destruction and 

demagnetization.10 In our case, the magnetic properties of the MNP+-P2+ allow the instant recovery 

of the conjugates after a treatment. Therefore, the PS attached to the MNPs can be reused several 

times. These experiments reveal that the porphyrin remains bound to the magnetic core with the same 

PDI potential over the cycles.
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Figure 5. Cells survival of (A) S. aureus, (B) E. coli and (C) C. albicans treated with 0.2 mg MNPs 

conjugate/mL (2 M immobilized TPPF20) for 30 min in dark and exposed to irradiation with visible 

light (90 mW/cm2) for 15 min (S. aureus) and 30 min (E. coli and C. albicans).

3.7. Binding and PDI of MNP+-P2+ by fluorescence microscopy

In the subsequent set of experiments, we examined cell binding and PDI efficacy of MNP+-

P2+ by observing bacteria under a fluorescence microscope. To focus on a determinate number of 

bacteria, we used a technique previously describe that involves monitoring cells attached to the 

surface of a coverslip in a chamber containing 200 L of PBS.30 This experimental approach relies 

on bacterial pilus; protrusions that assist bacterial attachment on a surface. Unfortunately, C. albicans 
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lacks of these protrusions, reason why the yeast was left aside for this assay. Each fluorescence image 

was accompanied with a phase contrast photograph to confirm the presence and position of the 

bacteria. After incubation of the cells with 0.8 mg MNP+-P2+ in 200 mL PBS for 30 min in dark, 

florescence intensity reached a plateau for either S. aureus and E. coli, indicating complete cellular 

uptake of conjugate (Figure 6, first row). As can be observed, the red emission of MNP+-P2+ was 

detected for both bacteria, indicating the binding of this conjugate to the cells. After a previous 

incubation with MNP+-P2+ for 30 min in the dark, PI was added and the cells were incubated for 

another 15 min. PI is a well-known cell death marker that bind to DNA by intercalating between the 

bases upon membrane disruption.46 Unbound PI has a ΦF ~0.01, similar to the value obtained for 

MNP+-P2+ in aqueous medium. Upon PI binding to DNA this emission value can increase up to 30-

fold.47 Since the emission spectrum of MNP+-P2+ and the PI overlaps, we used this difference in the 

values of the ΦF to distinguish between dead cells and living cells. Basically, the sensibility in the 

CMOS camera was lowered down until no fluorescence was observed after preincubation of bacteria 

with the PS, using a light dose of 1.2 J/cm2. After 30 min of PDI therapy all bacteria of either strain 

were dead showing the enhanced red fluorescence from the cell death marker (Figure 6, middle row). 

Moreover, control experiments with MNP+-P2+ and PI incubated for 75 min (30 min to ensure PS 

uptake, 15min to ensure PI uptake if cells are initially dead and another 30 min as control) but no 

irradiation showed negligible red fluorescence emission, indicating that pathogens inactivation occurs 

only in the presences of light (Figure 6, last row). These experiments demonstrate that the MNP+-P2+ 

conjugate was also effective in photoinactivating bacteria attached to a surface, an oversimplified 

example of a first stage of biofilm formation.
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Figure 6. Microscopic images of S. aureus and E. coli incubated with 0.2 mg MNPs conjugate/mL 

(2 M immobilized TPPF20) for 30 min in the dark and then irradiated with visible light for 30 min. 

First and third columns, cells under bright field; second and fourth columns, fluorescence emission 

fluorescence emission of PI after the PDI treatment (scale bar 5 µm).

4. CONCLUSIONS

In this work, the MNP-P1 conjugate was synthesized by covalently binding TPPF20 to 

MNPSiNH2 through the SNAr reaction of the F atom in the para position of the pentafluorophenyl 

groups of the porphyrin. This conjugate was the platform to obtain modifications in the tetrapyrrolic 

macrocycle. Thus, it was possible to add dimethylaminoethoxy groups to the TPPF20 porphyrin 

immobilized on the MNPs. This synthetic modification also involves the SNAr reaction of the F atoms 

in the para-remaining positions to produce MNP-P2. The periphery of this conjugate is crowded with 

basic aliphatic amine groups, which can acquire positive charges in aqueous media by protonation.

Furthermore, the amine substituents in MNP-P1 and MNP-P2 were methylated to form conjugates 

with intrinsic cationic charges named MNP+-P1 and MNP+-P2+, respectively. An average size of 12 

Page 26 of 35

ACS Paragon Plus Environment

ACS Applied Bio Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 2 nm was found for these MNPs, while the main difference between conjugates was the greater 

coating with positive charges of MNP+-P2+, as indicated by the ζ values. This approach of in situ 

modification and purification by magnetic decantation allows to obtain conjugates with a simple 

procedure and high yields. The UV-visible spectra of each conjugate showed the characteristic bands 

of the porphyrin that correspond to TPPF20 immobilized in the MNPs. In all cases, a bathochromic 

shift of the Soret band was found with respect to it of free TPPF20. Furthermore, the porphyrin bound 

to the MNPs retain the ability to emit red fluorescence. These spectroscopic results corroborated the 

binding between porphyrin and MNPs. On the other hand, the photodecomposition of oxidizable 

substrates in the presence of the different conjugates indicated an efficient production of O2(1Δg). PDI 

studies in S. aureus, E. coli and C. albicans indicate that MNP+-P2+ is the most effective conjugate 

for the eradication of microorganisms. In contrast, the lowest photoinactivating capacity was found 

for the unmodified MNP-P1 conjugate. Microscopic observations indicated the binding of MNP+-P2+ 

to cells and its ability to photoinactivate individual cells of bacteria attached to a surface. Moreover, 

this conjugate can be recycled and reused, reducing the costs of PDI applications and without 

contaminating the environment. Thus, in situ approach is a suitable scaffold to obtain modified 

conjugates and the intrinsically charged MNP+-P2+ is an interesting photoactive material to inactivate 

pathogens.
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