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1 Introduction

In the AdS/CFT context, Wilson loops have a dual description in terms of open strings [1,

2]. Wilson loop data such as curve profile and coupling to scalar and fermion fields are

encoded as boundary conditions for the string worldsheets. Classical worldsheets with pre-

scribed boundary conditions give the leading contribution to the strong coupling expansion

of the Wilson loop vacuum expectation value, subleading corrections are obtained from a

semiclassical expansion around the classical solution.

For the N = 4 super Yang-Mills case, the open strings propagate in AdS5 × S5 and,

depending on whether one imposes Dirichlet or Neumann boundary conditions on the S5
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directions, one accounts for either Maldacena-Wilson loops, coupled to scalars and gauge

fields, [3] or ordinary non-supersymmetric Wilson loops, coupled only to the gauge po-

tential [4]. In particular, for a straight Wilson line, the same dual classical string embed-

ding, with induced AdS2 geometry, solves the Dirichlet and Neumann boundary problems.1

Concomitantly, computing the string fluctuations one finds massless scalar fields for the S5

directions. Hence, the possibility of describing different Wilson loops with the same bulk

object correlates to the mass of fluctuating fields belonging to the Breitenlohner-Freedman

(BF) window [5, 6]. In fact, inside the BF window more general possibilities arise from lin-

ear combinations of Dirichlet and Neumann boundary conditions. These generically break

the scale symmetry, and, as shown in [7], turn out to be dual to relevant deformations of

the CFT by double trace operators (see also [8–11], and [12] for recent developments on

marginal deformations). Open strings with mixed boundary conditions, dual to N = 4

super Yang-Mills Wilson loops, have been studied in [13], with the ordinary and super-

symmetric Wilson loops corresponding to the UV and IR fixed points of a renormalization

group flow. More importantly for the present paper, it was shown in [13] that supersym-

metry was only preserved for Dirichlet boundary conditions on the S5.

Wilson loops in N = 6 super Chern-Simons-matter or ABJM theory are dual to open

strings in AdS4 × CP3, and the aim of the present article is to consider mixed boundary

conditions for the latter. We will find various interesting distinctions with respect to the

N = 4 super Yang-Mills (SYM) case. Initially two distinct supersymmetric Wilson loops

were found in ABJM: the 1/2 BPS coupled to gauge fields, scalars and fermions [14] and

the bosonic 1/6 BPS coupled to gauge fields and scalars [15–17] (see [18] for a recent

review on ABJM Wilson loops). The dual description of 1/2 BPS Wilson loops is given

in terms of Dirichlet boundary conditions for all the CP3 directions. On the other hand,

the dual description of bosonic 1/6 BPS Wilson loops was argued to be given in terms of a

delocalized string along a CP1 ⊂ CP3 [15], which was later interpreted in terms of Neumann

boundary conditions for those directions [19]. We will show below that in ABJM theory not

only Dirichlet but also Neumann boundary conditions are consistent with supersymmetry.

Moreover, we will find several supersymmetric mixed boundary conditions that interpolate

between Dirichlet and Neumann. After analyzing all of them, we will argue that the one

called Type III in this notes should account for the supersymmetric family of Wilson loops

that interpolates between the bosonic 1/6 BPS and the 1/2 BPS, recently found in [20, 21].

The paper is organized as follows: in section 2 we construct different sets of supersym-

metric mixed boundary conditions that interpolate between Dirichlet and Neumann, and

count the preserved supersymmetries in each case. We also identify the boundary terms

that enable to obtain them from a variational problem. In sections 3 and 4 we compute

holographic 2-point correlators and 1-loop corrections to the vacuum energy for the differ-

ent sets of supersymmetric mixed boundary conditions. Finally, in section 5, and based on

the results obtained, we make our proposal for the dual to the supersymmetric family of

Wilson loops. We close with a couple of appendices reviewing our spinor conventions in 2d

and the interpolating Wilson loops family.

1This also happens for the circular Wilson loop.
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2 String worldsheets and mixed boundary conditions

In this section we analyze different boundary conditions for open strings in AdS4 × CP3.

Eventually, we would like to identify those that correspond to a family of Wilson loops

which interpolate between the 1/2 BPS and the bosonic 1/6 BPS [20, 21]. The particular

family of Wilson loops we will identify is reviewed in appendix B.

We start with the Nambu-Goto action for strings

SNG =
L2

2πα′

∫
d2σ
√
|g|, gαβ = Gµν(X)∂αX

µ∂βX
ν , (2.1)

propagating in AdS4 × CP3 with metric

ds2 = ds2
AdS4

+ 4ds2
CP3 . (2.2)

AdS4 is foliated with AdS2 slices as,

ds2
AdS4

= du2 + cosh2u ds2
AdS2

+ sinh2u dφ2, (2.3)

and the CP3 metric reads

ds2
CP3 =

1

4

[
dα2 + cos2 α

2
(dθ2

1 + sin2 θ1dϕ
2
1) + sin2 α

2
(dθ2

2 + sin2 θ2dϕ
2
2)

+ sin2 α

2
cos2 α

2
(dξ + cos θ1dθ1 − cos θ2dθ2)2

]
. (2.4)

Classical string solutions anchored at the AdS boundary provide the starting point for the

strong coupling expansion of Wilson loops expectation value (L2/α′ � 1).

We will be interested in the open string worldsheet extending along the AdS2 factor,

with constant CP3 coordinates2

u(σ) = α(σ) = θ1(σ) = 0. (2.5)

This gives rise to a solution of the string equations of motion. By choosing Poincaré

coordinates the induced worldsheet metric results3

ds2
ind =

dτ2 + dy2

y2
, (2.6)

which describes a straight Wilson loop at the boundary.

It is important to stress now that the embedding (2.5) gives a solution to two different

boundary values problems for the coordinates spanning a CP1 ⊂ CP3:

Dirichlet: θ1(τ, 0) = 0, (2.7)

Neumann: ∂yθ1(τ, 0) = 0, ∂yϕ1(τ, 0) = 0. (2.8)

2Since CP3 is homogeneous one can fix an arbitrary point without loss of generality. The choice made

in (2.5) corresponds to the SU(4) orientation chosen in (B.4) for the Wilson loop definition.
3Alternatively, we could choose global coordinates for AdS2, doing so we describe the circular Wil-

son loop.
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Fixing the string to a point inside CP3 preserves an SU(3) ⊂ SU(4) and 1/2 of the

supersymmetry which suggests identifying the Dirichlet problem (2.7) with the 1/2 BPS

straight Wilson line. On the other hand, the Neumann problem leaves unspecified the

values θ0 and ϕ0 for θ1(τ, 0) and ϕ1(τ, 0) respectively. In this last case, through a κ-

symmetry analysis, one finds that the set of solutions for all possible values of θ0 and ϕ0

share four common supersymmetries and preserves SU(2) × SU(2) ⊂ SU(4) R-symmetry

group. Hence, a string worldsheet with Neumann boundary conditions on θ1 and ϕ1 is

associated with the bosonic 1/6 BPS Wilson line [15].

2.1 Free fields in AdS2 and supersymmetry

In what follows, we consider quadratic fluctuations of bosonic and fermionic degrees of free-

dom around the embedding (2.5). We analyze the supersymmetry of the action governing

their dynamics by turning to Lorentzian signature.

The action for the bosonic fluctuations is found by expanding (2.1) up to quadratic

order using

Xµ = Xµ
clas + δXµ, (2.9)

where Xµ
clas represents the embedding (2.5). In static gauge the longitudinal fluctuations

are set to zero and one is left with eight transverse scalars in an AdS2 geometry. The

two transverse fluctuations along AdS4 have mass m2
B = 2, while the remaining six scalars

along CP3 are massless m2
B = 0. Fermionic fluctuations are obtained from the quadratic

piece in the Green-Schwarz (GS) which in the present case comprises a 10-dimensional

Majorana spinor [26, 27]. After performing the reduction to 2 dimensions, one obtains six

massive spinors with |mF | = 1 and two massless ones with mF = 0 again on AdS2 [28, 29].

The presence of massless fermions constitutes the crucial difference with respect to the

AdS5×S5 case and will eventually become the reason why boundary conditions other than

Dirichlet can be consistent with supersymmetry in ABJM models. The set of fluctuations

can be packed into 4 complex scalars, one massive and three massless, and 4 Dirac fermions,

three massive and one massless. We will generically refer to each of them as φ and ψ

respectively, and we will be particularly interested in the massless modes. For completeness

we remind the reader that in AdS2 alternative quantizations for scalars and fermions arise

for −1
4 ≤ m

2
B ≤

3
4 and |mF | ≤ 1

2 respectively (see [5, 6, 30]).

Consider now the following action for a complex scalar φ and a Dirac fermion ψ,

Sbulk =
1

2

∫
d2x
√
|h|(hαβ∂αφ∗∂βφ−m2

Bφ
∗φ+ iψ̄γαDαψ −mF ψ̄ψ), (2.10)

with hαβ the induced AdS2 worldsheet metric now in Lorentzian signature

ds2 =
dt2 − dy2

y2
. (2.11)

Under the condition m2
B = m2

F −mF , action (2.10) becomes invariant under the following

supersymmetry transformations [31],

δφ = ε̄ψ, δψ = −
(
iγα∂αφ+mFφ

)
ε, (2.12)
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where ε is a Dirac Killing spinor of AdS2,

Dαε+
i

2
γαε = 0. (2.13)

In Poincaré coordinates (2.6), the solution to the Killing spinor equation reads

ε(t, y) = y−1/2ξ(t) + y1/2iγ0 ξ̇(t) with iγ1ξ(t) = ξ(t) and ξ(t) = ξ0 + t ξ1.

(2.14)

ξ0 and ξ1 are constant spinors parametrizing four real supercharges. Summarizing, a com-

plex scalar of mass m2
B = m2

F −mF and a Dirac fermion of mass mF comprise a N = 2

supermultiplet in AdS2 (see appendix A.1 for details).

Massless scalar fields in AdS2 admit standard and alternate quantizations (correspond-

ing to Dirichlet and Neumann boundary conditions respectively). For the fluctuations of

the string dual to Wilson loops in N = 4 SYM, all massless scalars transform under super-

symmetry into fermions having |mF | = 1, and these lay outside the fermion BF window.

Hence, as shown in [13], only Dirichlet boundary conditions are consistent with supersym-

metry. As we show below, the appearance of an AdS2 supermultiplet comprising massless

scalars and fermions becomes the key point to enable more general types of supersymmetric

boundary conditions.

2.2 Supersymmetric boundary conditions for massless fields

In what follows we present some admissible supersymmetric boundary conditions for a

N = 2 supersymmetry multiplet consisting of massless bosonic and fermion fields in AdS2.

The behavior of the fields near the boundary is

φ(t, y) =
(
α(t) + · · ·

)
+ y
(
β(t) + · · ·

)
(2.15)

ψ(t, y) = y1/2
(
αψ(t) + y γ5α̇

ψ(t) + · · ·
)

+ y1/2
(
βψ(t) + y γ5β̇

ψ(t) + · · ·
)

(2.16)

where the ellipsis stands for higher orders in y and αψ, βψ are eigenvectors of the projectors

along the radial direction P± defined in (A.2)

P−α
ψ = αψ, P+β

ψ = βψ. (2.17)

Notice that αψ and βψ in (2.16) show the same asymptotic behaviour at the boundary. As

well known, this follows from massless fermions having a unique falloff at the boundary

∆F
±
∣∣
mF=0

= 1
2 . Using these results in combination with (2.12) and the Killing spinor (2.14)

one finds

δβ = ξ̄γ5β̇
ψ + ˙̄ξγ5β

ψ, δα = ξ̄αψ (2.18)

δβψ = βξ, δαψ = α̇γ5ξ . (2.19)

We say that a set of boundary conditions is consistent with supersymmetry if they

remain invariant under some supersymmetry transformation. It is immediate from (2.18)
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that imposing a Dirichlet boundary condition on the scalar field, i.e. α(t) = 0, will be in-

variant under supersymmetry if we impose αψ(t) = 0 on the fermion. Conversely, condition

α(t) = 0 guarantees that the fermionic counterpart αψ(t) = 0 remains invariant. There-

fore, setting α = αψ = 0 defines a supersymmetric boundary conditions which we call

Dirichlet. Alternatively, imposing a Neumann condition on the scalar field, i.e. β(t) = 0, in

combination with βψ(t) = 0 on the fermion allows for a second supersymmetric boundary

condition which we call Neumann. These are standard results for massless fields.

Summarizing, Dirichlet and Neumann boundary conditions are consistent with super-

symmetry for the case of massless multiplets in AdS2:

Dirichlet: α(t) = 0, αψ(t) = 0. 4 supersymmetries (2.20)

Neumann: β(t) = 0, βψ(t) = 0. 4 supersymmetries (2.21)

These two sets of supersymmetric boundary conditions concern transformations between

massless scalar and fermion fields, and the number of free parameters in the Killing

spinor (2.14) show that both types preserve four supersymmetries, hence 1/6 BPS. Ad-

ditional supersymmetries could arise from the transformation of the massless scalar fields

into massive fermions (see [31] and footnote 7 in [32]). Since these other fermions have

mass |mF | = 1, outside the fermionic BF window, additional supersymmetries can only

be found for Dirichlet boundary conditions. These account for the enhancement to 1/2

BPS in (2.7).

In what follows, we shall construct different types of mixed boundary conditions which

interpolate between Dirchlet and Neumann. These two cases provide the dual description

of the limiting examples of the aforementioned family of Wilson loops in ABJM. Given

the fact that whole family of Wilson loops is supersymmetric, we shall restrict our at-

tention to boundary conditions interpolating between Dirichlet and Neumann preserving

some supersymmetry.

2.2.1 Standard mixed boundary conditions

We start by considering a linear combination of Dirichlet and Neumann boundary condi-

tions for the scalar field,

χα− β = 0. (2.22)

This type of boundary condition has been shown to describe CFTs double trace deforma-

tions in the large N limit (see [7, 11]) and more recently related to interpolating Wilson

loops in N = 4 SYM [13, 25]. It is perhaps the simplest way to interpolate between

Dirichlet and Neumann boundary conditions. However, it turns out to be not adequate to

describe the ABJM interpolating Wilson loops family at hand.

The first problem is that (2.22) demands a restriction on the Killing spinor, such that

it leads to only two preserved supersymmetries. Condition (2.22) remains invariant under

a supersymmetry transformation if we impose the following constraint on the spinor

χαψ − γ5β̇
ψ = 0 . (2.23)

– 6 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
0

Fortunately, this condition remains invariant if (2.22) holds, however, only for those trans-

formations arising from the t-independent component, ξ0, of ξ(t). As a consequence, con-

ditions (2.22)–(2.23) preserve half the number of supersymmetries present in (2.14).

Another reason for them not being adequate to describe the family of Wilson loops

is the fact that the interpolating parameter χ is dimensionful. This implies that the scale

invariance of the dual 1-dimensional defect theory will be broken. This is a well known

result that becomes evident upon computing correlation functions [11].

Combining (2.22) and (2.23) we find

Type I: χα− β = 0, χαψ − γ5β̇
ψ = 0, 2 supersymmetries (2.24)

Decomposing the fields into real and imaginary parts, α = α1 + iα2 and β = β1 + iβ2,

conditions (2.24) turn into4

χα1 − β1 = 0, χα2 − β2 = 0, (2.25)

χαψ1 − γ5β̇
ψ
1 = 0, χαψ2 − γ5β̇

ψ
2 = 0. (2.26)

For completeness, we would like to mention a supersymmetric boundary condition that

arises in the context of N = 1 supersymmetry in AdS2. If we consider two N = 1 Wess-

Zumino5 multiplets Φi = (φi, ψi) (i = 1, 2) it is not difficult to see that the set of boundary

conditions

χα1 − β2 = 0, χ̃α2 − β1 = 0, (2.27)

χαψ1 − γ5β̇
ψ
2 = 0, χ̃αψ2 − γ5β̇

ψ
1 = 0, 1 supersymmetry (2.28)

is invariant under supersymmetry transformations generated by ξ0, which is now Majo-

rana. Being less supersymmetric, these boundary conditions involve two arbitrary mixing

parameters χ and χ̃. In the following sections we shall consider the case χ̃ = χ and refer to

it as Type Ib. The motivation for this specific choice is that the boundary conditions can

be implemented by the addition of a simple boundary term to the action (2.10).

2.2.2 Mixed boundary conditions involving derivatives

There are more interesting possibilities preserving four real supersymmetries, which is the

number of supersymmetries preserved by the Wilson loops of interest to us. To discover

4Had we replaced χ 7→ iχ in (2.24), the decomposition into real and imaginary components would give

χα1 − β2 = 0, χα2 + β1 = 0,

χαψ1 − γ5β̇
ψ
2 = 0, χαψ2 + γ5β̇

ψ
1 = 0.

However, these boundary conditions cannot be derived by the addition of a boundary term to the action.
5A N = 1 Wess-Zumino supermultiplet in d = 2 comprises a real scalar and a Majorana fermion. The

supersymmetry transformations are simply (2.12) for each of the multiplets. In terms of the asymptotic

data (2.15)–(2.16) they read

δβj = ξ̄γ5β̇
ψ
j + ˙̄ξγ5β

ψ
j , δαj = ξ̄αψj δβψj = βjξ, δαψj = α̇jγ5ξ,

with ξ(t) = ξ0 + tξ1 now being Majorana and subject to the projection iγ1ξ = ξ. Each of the (constant)

spinors ξ0, ξ1 account for one real supersymmetry.

– 7 –
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them, notice that preserving the Dirichlet fermionic boundary condition αψ = 0 under

supersymmetry requires actually a less stringent scalar field condition, namely α̇ = 0

(cf. (2.19)). Thus, we examine a mixed condition between β = 0 and α̇ = 0. More precisely,

iχα̇− β = 0. (2.29)

Now, the supersymmetry variation of the bosonic boundary condition (2.29) vanishes pro-

vided we impose on the fermion

iχαψ − γ5β
ψ = 0. (2.30)

In contrast with the previous case, conditions (2.29) and (2.30) are supersymmetric without

any restriction on the Killing spinor and therefore preserve as many supersymmetries as

Neumann and Dirichlet boundary conditions. Additionally, the interpolating parameter χ

is dimensionless and, as will be we shown in the next section, scale symmetry in the dual

1-dimensional defect theory will be preserved.

Therefore, we have found

Type II: iχα̇− β = 0, iχαψ − γ5β
ψ = 0, 4 supersymmetries (2.31)

When considering real and imaginary components of the fields we get6

χα̇1 − β2 = 0, χα̇2 + β1 = 0, (2.32)

χαψ1 − γ5β
ψ
2 = 0, χαψ2 + γ5β

ψ
1 = 0. (2.33)

Still, the mixed boundary condition (2.31) is not an interpolation of the kind required,

since condition α̇ = 0 rather than α = 0 sits at one of the endpoints. More precisely,

boundary conditions (2.31) admit constant mode solutions, φ = const., for any value of χ,

which should be associated with delocalized configurations, and that is not what we expect

for the dual description of the interpolating Wilson loop family. In the next example we

consider adding an additional constraint to the Type II, so that the limiting case of the

interpolation reduces to the standard Dirichlet condition α = 0.

2.2.3 Mixed boundary conditions without constant modes

In what follows, we complement (2.31) so that constant modes are removed. One way of

achieving this is to impose, as an additional constraint, that functions αi vanish at some

specific point. For example, we can additionally demand that

α1(t0) = 0, α2(t̃0) = 0. (2.34)

Proceeding as before, it is straightforward to check that conditions (2.34) in combina-

tion with (2.31) are supersymmetric, if we further impose that

β2(t0) = 0, βψ2 (t0) = 0, β1(t̃0) = 0, βψ1 (t̃0) = 0. (2.35)

6Had we not introduced the imaginary unit in (2.29), we would have obtained χα̇j − βj = 0. It is not

clear what boundary term could enforce such a condition, since χφ̇φ is a total time derivative.
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Thus, our last example of supersymmetric boundary conditions is

Type III: χα̇1(t)− β2(t) = 0, χα̇2(t) + β1(t) = 0, 4 supersymmetries (2.36)

α1(t0) = 0, α2(t̃0) = 0, (2.37)

β2(t0) = 0, β1(t̃0) = 0, (2.38)

χαψ1 (t)− γ5β
ψ
2 (t) = 0, χαψ2 (t) + γ5β

ψ
1 (t) = 0. (2.39)

βψ2 (t0) = 0, βψ1 (t̃0) = 0, (2.40)

Type III boundary conditions meet all the requirements so far: they are supersymmetric

for unrestricted Killing spinor transformations, the interpolating parameter is dimensionless

and the endpoints are precisely the Dirichlet and Neumann boundary conditions. In the

following sections, motivated by the t-translation invariance of the Wilson loops we would

like to describe, we will consider the specific case of t0 and t̃0 going to ±∞. Furthermore, it

is for this case that we will be able to identify an appropriate boundary term that added to

the action implements the additional constraints (2.37). With this necessary ingredients, we

will compute 2-point correlators holographically and confirm our expectation that boundary

conditions (2.36)–(2.38) do not break the conformal invariance in the 1-dimensional theory.

All this will lead us to propose that the supersymmetric boundary conditions of Type III

give the holographic description of the family of Wilson loops interpolating between the

bosonic 1/6 BPS loop and 1/2 BPS one.

2.3 Boundary terms and well posed variational problems

The different boundary conditions discussed so far should arise from the vanishing of bound-

ary terms in a well posed variational problem. To achieve this, the action (2.10) must be

supplemented with appropriate boundary terms. The specification of these boundary terms

is important when it comes to the evaluation of the on-shell action in order to compute

correlation functions in the dual 1-dimensional defect theory (see [33] for related work).

2.3.1 Type I: standard mixed boundary conditions

To implement the first example, Type I boundary conditions, we add the following boundary

term to the action (2.10)

SI
bdry =

χb
2

∫ ∞
−∞

dt
√
γ φ∗φ|y=ε , (2.41)

with γ the induced metric on the y = ε surface. The bosonic piece in the variation of the

total action, after imposing the equations of motion, reads

δ(SBbulk + SI
bdry) =

1

2

∫ ∞
−∞

dt
√
γ
[
δφ∗(∂nφ+ χbφ) + (∂nφ

∗ + χbφ
∗)δφ

]
y=ε

. (2.42)

Here ∂nφ = n · ∂φ stands for the (outer) unit normal derivative to the boundary. To

make (2.42) vanish we impose

(χbφ+ ∂nφ)|y=ε = 0, (2.43)

which is exactly the boundary condition (2.22) upon inserting the expansion (2.15).7

7The relation between mixing parameters is χb = εχ+O(ε2), see [11].
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We now turn to the fermionic piece. Following [34], the variation of the fermionic

action evaluated on-shell takes the form

δSFbulk =
i

2

∫ ∞
−∞

dt
√
γ ψ̄γnδψ =

1

2

∫ ∞
−∞

dt(β̄ψδαψ − ᾱψδβψ), (2.44)

here γn = n · γ. This variation vanishes when fermions satisfy (2.23), indeed

δSFbulk =
1

2χ

∫ ∞
−∞

dt(β̄ψγ5δβ̇
ψ + ˙̄βψγ5δβ

ψ) =
1

2χ

∫ ∞
−∞

dt
d

dt

(
β̄ψγ5δβ

ψ
)

= 0 . (2.45)

Hence, the action (2.10) supplemented by the boundary term (2.41) is the appropriate

action for Type I boundary conditions. No fermionic boundary term is needed.

We conclude this subsection, briefly discussing the less supersymmetric example Type

Ib at the end of section 2.2.1. Consider a pair of real scalar fields satisfying

χbφ1 + ∂nφ2 = 0, χbφ2 + ∂nφ1 = 0, (2.46)

which is condition (2.27) for χ̃ = χ. For these, the appropriate boundary term is

SIb
bdry = χb

∫ ∞
−∞

dt
√
γ φ1φ2. (2.47)

2.3.2 Type II: mixed boundary conditions involving derivatives

Type II boundary conditions are obtained by adding the following boundary term to the

action (2.10),

SII
bdry =

iχb
2

∫ ∞
−∞

dt
√
γ φ∗∂tφ|y=ε . (2.48)

Indeed, after imposing the equations of motion, the bosonic piece one obtains is

δ(SBbulk + SII
bdry) =

1

2

∫ ∞
−∞

dt
√
γ
(
δφ∗(∂nφ+ iχb∂tφ) + δφ(∂nφ

∗ − iχb∂tφ∗)
)
. (2.49)

Thus, the variational problem becomes well defined if we demand

(∂nφ+ iχb∂tφ)|y=ε = 0. (2.50)

This equation reproduces (2.29) when we take into account that χb = εχ+O(ε2) and (2.15).

Again, no boundary term is required for the fermion sector since fields satisfying (2.30)

make (2.44) identically zero. Summarizying, the action (2.10) supplemented by the bound-

ary term (2.48) is the appropriate action for Type II boundary conditions.

2.3.3 Type III: mixed boundary conditions without constant modes

As defined above, Type III boundary conditions amount to impose some additional con-

straints to the the Type II boundary conditions. We are interested in the case in which (2.50)

is supplemented with φ1(−∞, ε) = φ2(+∞, ε) = 0. These can be conveniently presented as

χφ1 +

∫ t

−∞
dt′
√
γ ∂nφ2

∣∣∣
y=ε

= 0, and χφ2 +

∫ ∞
t

dt′
√
γ ∂nφ1

∣∣∣
y=ε

= 0, (2.51)

– 10 –



J
H
E
P
0
3
(
2
0
2
0
)
0
1
0

which can be derived from the following boundary term,

SIII
bdry =

1

χ

∫ ∞
−∞

dt
√
γ

∫ t

−∞
dt′
√
γ ∂nφ1(t, y)∂nφ2(t′, y)

∣∣
y=ε

. (2.52)

Indeed,

δ(SBbulk + SIII
bdry)

=

∫ ∞
−∞

dt
√
γ (δφ1 ∂nφ1 + δφ2 ∂nφ2) (2.53)

+
1

χ

∫ ∞
−∞
dt
√
γ

∫ t

−∞
dt′
√
γ
[
δ
(
∂nφ1(t, y)

)
∂nφ2(t′, y) + ∂nφ1(t, y)δ

(
∂nφ2(t′, y)

)]
y=ε

=

∫ ∞
−∞
dt
√
γ

[
∂nφ1 δ

(
φ1 +

1

χ

∫ t

−∞
dt′
√
γ ∂nφ2

)
+ ∂nφ2 δ

(
φ2 +

1

χ

∫ ∞
t
dt′
√
γ ∂nφ1

)]
y=ε

.

Hence, imposing (2.51) makes the variations in the third line to vanish.8 For the fermion

sector no boundary terms are required, the discussion in the previous subsection applies to

the present case.

3 Correlators

In this section we compute holographically, for the different types of boundary conditions

discussed above, 2-point correlation functions in the dual 1-dimensional defect. We will

obtain correlation functions for bosonic operators performing the canonical GKPW proce-

dure in Euclidean space (see [35, 36]). We will be mainly interested in studying whether

scale invariance is broken or not. More concretely, we will solve the Klein-Gordon equation

for scalar fields in AdS2 as a function of arbitrary sources fi(τ) located at the boundary.

The on-shell action, as a functional of sources, gives the generating function for n-point

correlators in the dual QFT1 in the strong coupling limit. Two point correlators will be

obtained by computing functional derivatives of it. Our work can be understood as an ex-

tension of the analysis presented in [11] to a pair of real massive scalars and to the different

boundary conditions we have described in previous sections.

We work in Euclidean AdS2, written in Poincaré coordinates as in (2.6), so many

expressions are going to be re-written replacing t by τ . We regularize the problem in the

standard way, i.e. by setting the boundary conditions at y = ε > 0 and taking the ε → 0

at the end of the computations. From now on, only the bosonic part of the action will be

relevant, decomposing the complex scalar field into its real and imaginary parts φ = φ1+iφ2

we have

SB =
1

2

∫
d2x
√
h
(
hαβ(∂αφ1∂βφ1 + ∂αφ2∂βφ2) +m2

B(φ2
1 + φ2

2)
)

+ Sbdry. (3.1)

From this action one gets the usual Klein-Gordon equations of motion for scalar fields

(�−m2
B)φi = 0. (3.2)

8In passing to the third line we used the identity
∫∞
−∞ dt F1(t)

∫ t
−∞ dt′F2(t′) =

∫∞
−∞ dt F2(t)

∫∞
t
dt′F1(t′).
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These have to be solved, in a well posed variational problem, with boundary conditions

derived from enforcing δSbulk + δSbdry = 0 in each of the cases, as discussed in the previ-

ous section.

A Fourier transform in the temporal variable,

φi(τ, y) =
1√
2π

∫ ∞
−∞

dω φ̃i(ω, y)eiωτ . (3.3)

translates equation (3.2) into[
y2 d

2

dy2
− ω2y2 −m2

B

]
φ̃i(ω, y) = 0. (3.4)

Its solution is well known to be given in terms of a Bessel functions [35, 37]

φ̃i(ω, y) = y1/2Kν(|ω|y)Ai(ω), ν =
√

1
4 +m2

B . (3.5)

Here Ai are arbitrary coefficients to be fixed by the boundary source fi. The case of interest

to us is particularly simple, since for massless scalar fields ν = 1/2 and the Bessel function

reduces to an exponential.

3.1 Type I: standard mixed boundary conditions

The first example we discuss is that of two real scalars satisfying Type Ib boundary condi-

tion, now with arbitrary sources

χbφ1 + ∂nφ2

∣∣
y=ε

= εf1(τ) and χbφ2 + ∂nφ1

∣∣
y=ε

= εf2(τ). (3.6)

The corresponding boundary term, modified to account for the sources, reads

SIb
bdry =

∫ ∞
−∞

dτ
√
γ (χbφ1φ2 − εφ1f2(τ)− εφ2f1(τ))|y=ε , (3.7)

The boundary conditions (3.6) fix the coefficients Ai in (3.5) to be

A1(ω) =
−|ω|f̃2(ω) + χf̃1(ω)

χ2 − ω2

√
2|ω|
π
e|ω|ε, A2(ω) =

−|ω|f̃1(ω) + χf̃2(ω)

χ2 − ω2

√
2|ω|
π
e|ω|ε,

(3.8)

where f̃i(ω) are the Fourier transforms of the sources.

The total on-shell action, as a functional of the sources, becomes

SB,Ib[f1, f2] =
1

2

∫ ∞
−∞

dω
|ω|f̃1(ω)f̃1(−ω) + |ω|f̃2(ω)f̃2(−ω)− 2χf̃1(ω)f̃2(−ω)

χ2 − ω2
. (3.9)

Thus, for the Fourier transform of the of the 2-point correlation functions we get

〈Õ1(ω1)Õ1(ω2)〉 = 〈Õ2(ω1)Õ2(ω2)〉 = −δ(ω1 + ω2)|ω1|
χ2 − ω2

1

, (3.10)

〈Õ1(ω1)Õ2(ω2)〉 = 〈Õ2(ω1)Õ1(ω2)〉 =
χδ(ω1 + ω2)

(χ2 − ω2
1)

. (3.11)
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As one might have expected, due to the introduction of the dimensionful parameter χ, the

correlators are not scale invariant unless one considers them in the χ → 0 or the χ → ∞
limits. Indeed, one gets

〈O1(τ1)O1(τ2)〉 '


− 1

π
(log |τ1 − τ2|+ γE) for χ→ 0

1

π
1

(τ1−τ2)2χ2 for χ→∞
(3.12)

Thus, as χ goes from 0 to ∞ one finds an interpolation between CFT1 2-point functions of

scalar operators with dimension ∆ = 0 and ∆ = 1, corresponding to Neumann and Dirichlet

quantizations respectively. The logarithmic behavior in the 2-point function for χ → 0

arises from IR divergences, so the appropriate quantum operators are not Oi themselves

but their time derivatives [13].

3.2 Type II: mixed boundary condition involving derivatives

The appropriate boundary term, enforcing boundary conditions

χb∂τφ1 + ∂nφ2

∣∣
y=ε

= εf1(τ), χb∂τφ2 − ∂nφ1

∣∣
y=ε

= εf2(τ), (3.13)

written in terms of two real scalar fields is

SII
bdry =

∫ ∞
−∞

dτ
√
γ (χb φ2∂τφ1 + εφ1f2(τ)− εφ2f1(τ))|y=ε . (3.14)

The coefficients Ai(ω) in this case result

A1(ω) =
−|ω|f̃2(ω) + iχωf̃1(ω)

ω2(1− χ2)

√
2|ω|
π
eε|ω|, A2(ω) =

|ω|f̃1(ω) + iχωf̃2(ω)

ω2(1− χ2)

√
2|ω|
π
eε|ω|,

(3.15)

and the on-shell action takes the form

SB,II[f1, f2] = −1

2

∫ ∞
−∞

dω
|ω|f̃1(ω)f̃1(−ω) + |ω|f̃2(ω)f̃2(−ω)− 2iχωf̃1(ω)f̃2(−ω)

ω2(1− χ2)
. (3.16)

The 2-point correlation functions associated to the sources f1 and f2 are

〈Õ1(ω1)Õ1(ω2)〉 = 〈Õ2(ω1)Õ2(ω2)〉 =
δ(ω1 + ω2)

|ω2|(1− χ2)
, (3.17)

〈Õ1(ω1)Õ2(ω2)〉 = −〈Õ2(ω1)Õ1(ω2)〉 = −iχδ(ω1 + ω2)

ω1(1− χ2)
. (3.18)

In configuration space they are given by

〈O1(τ1)O1(τ2)〉 = 〈O2(τ1)O2(τ2)〉 = −(γE + log |τ1 − τ2|)
π(1− χ2)

, (3.19)

〈O1(τ1)O2(τ2)〉 = −〈O2(τ1)O1(τ2)〉 = −1

2

χ sign(τ1 − τ2)

(1− χ2)
. (3.20)

The first line indicates that the correlators are conformal, and correspond to operators

with dimension ∆ = 0 for all values of χ. As in the previous subsection, time derivatives

of Oi should be considered as the good quantum operators. The mixed correlators (3.20)

should be seen as contact terms.
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3.3 Type III: mixed boundary condition without constant modes

For our last example we consider the boundary term

SIII
bdry =

1

χ

∫ ∞
−∞

dτ
√
γ

∫ τ

−∞
dτ ′
√
γ ∂nφ1(τ, y)∂nφ2(τ ′, y)

∣∣
y=ε

. (3.21)

The variation of the action in this case was computed in (2.53) and its vanishing is achieved

with boundary conditions

χφ1 +

∫ τ

−∞
dτ ′
√
γ ∂nφ2

∣∣
y=ε

= F1(τ), χφ2 +

∫ ∞
τ

dτ ′
√
γ ∂nφ1

∣∣
y=ε

= F2(τ), (3.22)

where F1(τ) and F2(τ) are arbitrary sources.

Solving for the coefficients Ai one finds9

A1(ω) =
i sign(ω)F̃2(ω) + χF̃1(ω)

χ2 − 1

√
2|ω|
π
eε|ω|,

A2(ω) =
−i sign(ω)F̃1(ω) + χF̃2(ω)

χ2 − 1

√
2|ω|
π
eε|ω|. (3.23)

Replacing in the on-shell action we get,

SB,III[F1, F2] =
1

2χ

∫ ∞
−∞

dω
|ω|χ

(
F̃1(ω)F̃1(−ω) + F̃2(ω)F̃2(−ω)

)
− 2iωF̃1(ω)F̃2(−ω)

χ2 − 1
.

(3.24)

So, for the correlators we have

〈Õ1(ω1)Õ1(ω2)〉 = 〈Õ2(ω1)Õ2(ω2)〉 = −|ω1|δ(ω1 + ω2)

χ2 − 1
, (3.25)

〈Õ1(ω1)Õ2(ω2)〉 = −〈Õ2(ω1)Õ1(ω2)〉 =
iω1δ(ω1 + ω2)

χ(χ2 − 1)
, (3.26)

which in configuration space read

〈O1(τ1)O1(τ2)〉 = 〈O2(τ1)O2(τ2)〉 =
1

π

1

χ2 − 1

1

|τ1 − τ2|2
, (3.27)

〈O2(τ1)O1(τ2)〉 = −〈O1(τ1)O2(τ2)〉 = −δ
′(τ1 − τ2)

χ(χ2 − 1)
. (3.28)

As expected we find conformal correlators in the first line and contact terms in the sec-

ond line. It is instructive to spell the relation between correlation functions (3.19)–(3.20)

and (3.27)–(3.28) which, up to contact terms, can be schematically expressed as

〈OIII(τ1)OIII(τ2)〉 = ∂τ1∂τ2〈OII(τ1)OII(τ2)〉.

This is an immediate consequence of the following relations between the corresponding

on-shell actions,

SB,II[Ḟ1, Ḟ2] = SB,III[F1, F2] +
ε

χ

∫ ∞
−∞

dτ
√
γ F1Ḟ2.

9We have discarded the evaluation in −∞ since we can express it as: limΛ→∞
∫∞
−∞ dω |ω|

ω
e−|ω|εeiΛωA(ω),

which for any well behaved function vanishes.
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4 Vacuum energy

In this section we compute the 1-loop correction to the vacuum energy for the AdS2 su-

permultiplets with the supersymmetric mixed boundary conditions discussed so far. The

interest in the vacuum energy for the fluctuation modes is due to its relation to the 1-loop

partition function for open strings. This has been discussed in several works, see for ex-

ample [32, 38, 39]. The idea is to compare these vacuum energies for different boundary

conditions. More precisely, we would like to see whether this computation depends on the

interpolating parameter χ or not.

The full set of modes consists in two scalars of mass m2
B = 2, six scalars of mass

m2
B = 0, two fermions with mF = 0 and six other fermions with |mF | = 1. Following [32],

we will compute the 1-loop correction to vacuum energy by the on-shell method adding up

the zero point energies of the quantum field modes in global AdS2 with metric

ds2 =
1

cos2 σ
(dt2 − dσ2). (4.1)

The supersymmetry analysis of the different types of mixed boundary conditions we have

considered so far can be naturally translated to global coordinates. Some details are pre-

sented in appendix A.2. The global time coordinate t appears with a different font to

manifest the fact that it is not the same time coordinate as in Poincaré coordinates.

In [31], the set of modes for free bosons and fermions in AdS2 were chosen based on

fall-offs that guarantee the conservation of: (i) energy and (ii) the bosonic and fermionic

inner products. In particular, one starts with the formally conserved charge associated to

the timelike Killing vector k = ∂t,

E =

∫ π
2

−π
2

dσ
√
−ggtµTµνkν , (4.2)

where Tµν is the energy-momentum tensor. Proper conservation is achieved by imposing

the vanishing of the energy flux at spatial infinity,

√
−ggσµTµνkν

∣∣
σ=±π

2
= 0. (4.3)

For a scalar field this equation becomes equivalent to

−∂tφ∂σφ
∣∣
σ=±π

2
= 0. (4.4)

Demanding the scalar field to have a single fast fall-off at the boundary of the form

φ ∼ (π2 ± σ)∆+ , loosely referred to as Dirichlet boundary condition,10 forces the following

supersymmetric spectrum of frequencies [31]

ω D
B (n,m2

B) = n+ ∆+ and ω D
F (n, |mF |) = n+ |mF |+

1

2
. (4.5)

10We denote ∆± = 1
2
± ν where ν =

√
1
4

+m2
B .
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The total vacuum energy contributing to the 1-loop partition function of the Dirichlet

string, dual to the 1/2 BPS Wilson line, was computed in [40] as

E1−loop
1/2 =

1

2

( ∞∑
n=0

(2ω D
B (n, 2) + 6ω D

B (n, 0)− 2ω D
F (n, 0)− 6ω D

F (n, 1)

)
, (4.6)

which, as usual, requires an appropriate regularization. This vacuum energy can be re-

expressed in terms of the Hurwitz ζ-function,

ζ(s,∆) =
∞∑
n=0

(n+ ∆)−s and ζ(−1,∆) = −1

2

(
∆2 −∆ +

1

6

)
. (4.7)

Thus, for Dirichlet boundary conditions the 1-loop correction (4.6) results

E1−loop
1/2 =

1

2

[
2ζ(−1, 2) + 6ζ(−1, 1)− 2ζ

(
− 1,

1

2

)
− 6ζ

(
− 1,

3

2

)]
= −1

4

[
2×

(
2 +

1

6

)
+ 6×

(
1

6

)
− 2×

(
− 1

12

)
− 6×

(
1− 1

12

)]
= 0. (4.8)

When we turn to the 1-loop partition function of the Neumann string, dual to the

bosonic 1/6 BPS Wilson line, two of the massless scalar modes have the slower fall-off

(π2 ± σ)∆− . The bosonic frequencies in the Neumann case result

ω N
B (n,m2

B) = |n+ ∆−|. (4.9)

Their supersymmetric fermion partners, with −1
2 < mF <

1
2 , have frequencies

ω N
F (n,mF ) = n+mF +

1

2
, (4.10)

For the case of interest, the modes with the Neumann boundary conditions have mB =

mF = 0, thus their contribution to the total vacuum energy does not change. This implies

that [40]

E1−loop
1/6 = 0.

One finds that 1-loop determinants for the string fluctuations dual to either the 1/2 or 1/6

BPS Wilson lines are trivial. The result is consistent with the fact that these Wilson lines

have unit expectation values.

4.1 Mixed boundary conditions

We are now interested in computing the vacuum energies for Type II and Type III boundary

conditions, which preserve as many supersymmetries as the Neumann case. We start

analyzing Type II boundary conditions (2.50). In global coordinates they read

iχ∂tφ− ∂σφ
∣∣
σ=±π

2
= 0. (4.11)

The solution for a massless complex scalar in global AdS2 is simply given by

φ(t, σ) = eiωt
(
A cos(ωσ) +B sin(ωσ)

)
, (4.12)
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with ω ≥ 0. To find the spectrum of modes, we now proceed to impose (4.11) at both ends.

From the behavior at σ = π
2 we get a relation between integration constants,

B =
sin
(
πω
2

)
− χ cos

(
πω
2

)
χ sin

(
πω
2

)
+ cos

(
πω
2

)A. (4.13)

Then,

φ(t, σ) = Aeiωt
(
χ sin

(
ωπ
2 − ωσ

)
+ cos

(
ωπ
2 − ωσ

))
χ sin

(
πω
2

)
+ cos

(
πω
2

) . (4.14)

Imposing now the boundary condition at σ = −π
2 , we obtain,

A
(
χ2 + 1

)
ω sin(πω)

χ sin
(
πω
2

)
+ cos

(
πω
2

) = 0. (4.15)

This implies for Type II,

ω II
B (n, 0) = n with n = 0, 1, 2 . . . (4.16)

To analyze the fermionic sector we adopt the representation (A.8) for γ-matrices, then

upper and lower components of the spinor corresponds to eigenvectors of P±. Solutions to

the Dirac equation (A.10) are of the form

ψ(t, σ) = eiωt

(
ψ+(σ)

ψ−(σ)

)
, (4.17)

where

ψ+(σ) =
√

cosσ (µ1 cos(ωσ) + µ2 sin(ωσ)) , ψ−(σ) =
√

cosσ (µ2 cos(ωσ)− µ1 sin(ωσ)) ,

(4.18)

and ω > 0. The supersymmetric boundary conditions for fermions associated to (4.11) are

(see (A.23) in appendix A.2)

(χψ± ± ψ∓)
∣∣
σ=±π

2
= 0. (4.19)

Imposing the right boundary condition we get the relation,

µ2 =
sin
(
πω
2

)
− χ cos

(
πω
2

)
χ sin

(
πω
2

)
+ cos

(
πω
2

)µ1. (4.20)

From the left boundary we obtain,

µ1(1 + χ2) cos(πω)

χ sin
(
πω
2

)
+ cos

(
πω
2

) = 0. (4.21)

This implies

ω II
F (n, 0) = n+

1

2
with n = 0, 1, 2 . . . (4.22)
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From (4.16) and (4.22) we find that for Type II boundary conditions, the frequency spectrum

for fermions and bosons becomes independent of χ and coincides with that for Neumann

or Dirichlet. We thus conclude that the vacuum energy and its associated 1-loop correc-

tion are independent of the interpolating parameter χ. The analysis we have carried is

straightforwardly extended to the integrated Type III boundary conditions leading to the

same conclusion.

Had we have considered mixed boundary conditions Type Ib of the form

χφ∓ ∂σφ
∣∣
σ=±π

2
= 0 (4.23)

we would have obtained the following condition on the scalar field frequencies

χ+ ω tan

(
ωπ

2

)
= 0 or χ− ω cot

(
ωπ

2

)
= 0. (4.24)

In this case, as one might have expected, the frequency spectrum depends non-trivially on

the deformation parameter.

5 Discussion

We will now discuss several properties of the mixed boundary conditions for scalar and

fermionic fields in AdS2 studied in section 2.2. We have explored different possibilities

for boundary conditions interpolating between Dirichlet and Neumann. Our aim was to

identify boundary conditions that could correspond to a family of supersymmetric Wilson

loops preserving four real supercharges [20, 21], therefore we restricted our analysis to

boundary conditions invariant under supersymmetry transformations (2.18)–(2.19). In

particular, keeping in mind that we wanted to describe the fluctuations on an AdS2 open

string world-sheet in the AdS4×CP3 background, we concentrated on massless scalar and

fermionic fields. As we have seen, the existence of massless fermionic fields turned out to

be crucial in order to allow for supersymmetric Neumann and mixed boundary conditions.

This should be correlated to the fact that in ABJM models one finds a richer variety of

supersymmetric Wilson loops, as compared to the N = 4 SYM case.

The first example analyzed, which we named Type I, was supersymmetric only when

restricting to transformations generated by ξ0. Thus, this type of boundary conditions

preserved 2 real supersymmetries. Since the 1/6 BPS family of Wilson loops is invari-

ant under 4 real supersymmetries, Type I conditions of the form χα − β = 0 were ruled

out as their holographic description. Another sign of inadequacy followed from the fact

that the interpolating parameter χ is dimensionful. Explicitly, the breaking of confor-

mal invariance in the dual field theory was revealed in the computation of holographic

correlators (3.10)–(3.11).

The boundary conditions termed Type II and Type III appeared to be much more

appealing. Firstly, they preserved 4 real supersymmetries, which are as many as those in

the Neumann case. Secondly, the interpolating parameter is dimensionless suggesting that

in the dual theory conformal invariance will not be broken. This was further confirmed

in section 3 by explicitly computing holographic 2-point correlation functions. Moreover,
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in section 4, we computed the 1-loop correction to the partition function for both Type II

or Type III boundary conditions finding a χ-independent result. These results then agree

with the expectations for the Wilson loop family vev which is also independent of the

interpolating parameter ζ.11

Still, Type II and Type III are not equally good candidates. In the χ → ∞ limit of

the interpolation, the Type II case becomes α̇ = 0 rather than α = 0 as expected for the

Dirichlet endpoint. Therefore, we proposed that the holographic description of the ABJM

family of interpolating Wilson loops [20, 21] is in terms of boundary conditions for the

world-sheet fluctuations of the Type III, given in section 2.2.3. This is the main result of

the paper.

Our proposal gives support for Neumann boundary conditions as the correct dual

interpretation of the bosonic 1/6 Wilson loop. The latter preserve a SU(2)× SU(2) rather

than SU(3) of the R-symmetry group, and it was known since its original construction that

it could not correspond to a string localized at a point in CP3. The proposal in [15] was to

smear the dual string along a CP1 ⊂ CP3, although its meaning as a boundary condition

was not clear. This was later interpreted as Neumann boundary conditions along that

CP1 [19]. The results of the present paper further confirm this interpretation: Neumann

boundary conditions for the CP1 modes preserve 4 real supersymmetries and lead to a

vanishing 1-loop correction to the partition function. The 1/6 BPS boundary conditions

then interpolate between Neumann and Dirichlet as χ goes from zero to infinity.

The relation between the Wilson loop parameter ζ and the boundary condition pa-

rameter χ is still missing in our proposal. In principle, χ could be a non-trivial function of

ζ and the ’t Hooft coupling λ (cf. [11] for related work). Thus, in order to determine the

relation, one would need a field theory computation that depends on ζ and that could be

extrapolated to the strong coupling limit.

The quest for the appropriate boundary conditions for the dual description of certain

supersymmetric interpolating Wilson loops, led us to explore different possibilities. While

Type I and Type II might be regarded as false attempts for the original motivation, they

seem to be perfectly consistent boundary conditions from a world-sheet perspective. This

prompts the opposite question of whether it is possible to realize them in terms of Wilson

loops. If a dual Wilson loop corresponded to a Type I condition, it should be a less

supersymmetric one, breaking the conformal invariance on the d = 1 defect. We do not

have a concrete proposal for it, but it would be interesting to further explore this possibility.

Type II condition, which interpolates between α̇ = 0 and β = 0, leaves the boundary

value of the scalar fields delocalized for any χ. Thus, a dual Wilson loop should not only be

1/6 BPS but also preserve a SU(2)×SU(2) R-symmetry. This might be realized averaging

the Wilson loop family, defined in terms of (B.4), over the SU(2) ⊂ SU(4) rotations that

act in the internal space directions I = 1, 2. The ζ = 1 endpoint will preserve only 4 real

supersymmetries, those common to all orientations. The ζ = 0 endpoint will correspond

to the usual bosonic 1/6 BPS loop, since in this case the SU(2) averaging do not have any

effect on it.

11A fact following from all the ζ-deformed Wilson loops being cohomologically equivalent (see ap-

pendix B).
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There are further interesting problems in connection with this family of interpolating

Wilson loops. One could study them perturbatively as in [25] and also to compute higher

point holographic correlators as in [43]. The study of correlators in defect CFT’s defined by

ABJM Wilson lines [44, 45] could be extended to the whole family of interpolating Wilson

loops. Additionally, one could ask about integrability aspects of this interpolating Wilson

loop not only from the gravity side but also from the field theory as was done for the

N = 4 SYM case in [46]. Interpolating Wilson loops have also been constructed in quiver

Chern-Simons-matter theories [21, 47] and could also be described holographically along

the lines of this article. More ambitiously, one would also like to understand the rich phase

space structure of Wilson loops in ABJM. While we have focused only on a 1-parameter

family of Wilson loops associated with marginal deformations in the 1-dimensional defect,

there are many other possible interpolations. For example, one can consider interpolations

in which the full SU(4) R-symmetry is preserved at one of the endpoints, meaning a Wilson

loop coupled only to gauge fields or a matrixM proportional to the identity. Although we

were mainly interested in investigating dual description of Wilson loops, it is also natural to

think in using these mixed boundary conditions as holographic double trace deformations

in other setups were AdS2 appears as holographic dual, for example supersymmetric SYK

models [48].
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A AdS2 spinor conventions and supersymmetry

A.1 Conventions

In this appendix we collect different conventions we use along the paper to describe spinors

and supersymmetry in AdS2.

Poincaré coordinates:

ds2 =
dt2 − dy2

y2
. (A.1)

Frames: e0 = dt
y , e1 = dy

y  Spin connection: ω01 = e0.

Covariant derivatives: Dµ = ∂µ+ 1
4ωµ

abγab  Dt = ∂t+
1
2yγ5, Dy = ∂y with γ5 = γ0γ1.

Curved gammas: γµ = eaµγa. Then, γt = 1
yγ0, γy = 1

yγ1 with {γa, γb} = 2ηab, ηab =

diag(1,−1). It is convenient to define projectors along the (unit) normal direction to the

boundary n = −y∂y as

P± ≡
1

2
(1± inαγα) =

1

2
(1± iγ1)  ψ− = P−ψ and ψ+ = P+ψ. (A.2)
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Killing spinor equation:

Dµε+
i

2
γµε = 0. (A.3)

We start solving the y component from (A.3)

∂yε = − i

2y
γ1ε → ε(t, y) = e−

i
2

log y γ1ε(t)

Inserting in the t-equation one finds

ε̇(t) = − i
y
ei log y γ1P+γ0 ε(t) →

{
ε̇−(t) = 0

ε̇+(t) = −iγ0 ε−(t)
→ ε(t) = (1− itγ0P−) ε

The Killing spinor ends up depending on a constant spinor ε which we decomposed as

ε = ε+ + ε− with iγ1ε± = ±ε± gives [49]

ε(t, y) = y−1/2ε+ +
(
y1/2 + y−1/2(−itγ0)

)
ε− (A.4)

Notice that there are two different types of supersymmetries: (i) those generated by ε+ are

independent of the boundary coordinate t and (ii) those coming from by ε− depend on t.

In the analysis of supersymmetric boundary conditions it is useful to notice that the

Killing spinor can be written as

ε(t, y) = y−1/2ξ(t)+y1/2iγ0 ξ̇(t) with ξ̈(t) = 0, iγ1ξ(t) = ξ(t)  ξ(t) = ξ0+tξ1 , (A.5)

ξ0,1 are easily related to ε± in (A.4).

Global coordinates: we denote the time coordinate by t to stress the different folliation

in global coordinates

ds2 =
dt2 − dσ2

cos2 σ
, for − π

2
≤ σ ≤ π

2
. (A.6)

The solution to (A.3) in this case is [31]

ε(t, σ) = cos−1/2 σ

(
cos

σ

2
− iγ1 sin

σ

2

)
ξ(t) where ξ(t) =

(
cos

t

2
− iγ0 sin

t

2

)
ξ0. (A.7)

with ξ0 an arbitrary constant spinor.

Dirac gammas: so far we have not attached ourselves to any particular representation.

At some point we will use the representation,

γ0 =

(
0 1

1 0

)
, γ1 = i

(
1 0

0 −1

)
, γ5 = γ0γ1, C =

(
0 −i
i 0

)
. (A.8)
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A.2 Supersymmetry analysis in global AdS2

In global coordinates, the Klein-Gordon and the Dirac equations read,

1

cos2 σ

(
∂2φ

∂t2
− ∂2φ

∂σ2

)
+m2

B φ = 0, (A.9)

cosσ

(
γ0
∂ψ

∂t
− γ1

∂ψ

∂σ

)
− 1

2
sinσγ1ψ −mF ψ = 0. (A.10)

Since there are two asymptotic boundaries, we shall use indices p and m to distinguish

between the expansions of the fields near σ = +π
2 and σ = −π

2 respectively.

Right boundary: the Killing spinor takes the form

ε(t, σ) =
√

2

(
π

2
− σ

)−1/2

P−ξ(t) +
1√
2

(
π

2
− σ

)1/2

P+ξ(t) +O
((

π

2
− σ

)3/2)
. (A.11)

For massless scalars and Dirac fields, the asymptotic expansions read

φ(t, σ) =

(
αp(t) +

1

2
α̈p(t)

(
π

2
− σ

)2

+ · · ·
)

+

(
π

2
− σ

)(
βp(t) +

1

6
β̈p(t)

(
π

2
− σ

)2

+ · · ·
)

(A.12)

ψ(t, σ) =

(
π

2
− σ

) 1
2
(
αψp (t)−

(
π

2
− σ

)
γ5α̇

ψ
p (t) + . . .

)
+

(
π

2
− σ

) 1
2
(
βψp (t)−

(
π

2
− σ

)
γ5β̇

ψ
p (t) + . . .

)
(A.13)

where, as in Poincaré coordinates, P−α
ψ
p = αψp and P+β

ψ
p = βψp .

Left boundary: for the Killing spinor we have

ε(t, σ) =
√

2

(
π

2
+ σ

)−1/2

P+ξ(t) +
1√
2

(
π

2
+ σ

)1/2

P−ξ(t) +O
((

π

2
− σ

)3/2)
. (A.14)

While for massless Klein-Gordon and Dirac fields we obtain

φ(t, σ) =

(
αm(t) +

1

2
α̈m(t)

(
π

2
+ σ

)2

+ . . .
)

+

(
π

2
+ σ

)(
βm(t) +

1

6
β̈m(t)

(
π

2
+ σ

)2

+ . . .

)
(A.15)

ψ(t, σ) =

(
π

2
+ σ

) 1
2
(
αψm(t) +

(
π

2
+ σ

)
γ5α̇

ψ
m(t) + . . .

)
+

(
π

2
+ σ

) 1
2
(
βψm(t) +

(
π

2
+ σ

)
γ5β̇

ψ
m(t) + . . .

)
(A.16)
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Susy transformations: from (2.12) we get:

• σ → +π
2 :

δαp =
√

2ξ̄βψp , δβp = −
√

2
d

dt

(
ξ̄γ5α

ψ
p

)
(A.17)

δαψp = −i
√

2βpP−ξ, δβψp = i
√

2α̇pγ5P−ξ. (A.18)

• σ → −π
2 ,

δαm =
√

2ξ̄αψm, δβm =
√

2
d

dt

(
ξ̄γ5β

ψ
m

)
(A.19)

δαψm = −i
√

2α̇mγ5P+ξ, δβψm = −i
√

2βmP+ξ, (A.20)

where we have used that ξ̇(t) = − i
2γ0ξ(t), cf. (A.7).

Susy invariance of boundary conditions: we impose in both boundaries12

iχ∂tφ− ∂σφ
∣∣
σ=±π

2
= 0, (A.21)

which in terms of the expansion coefficients give

iχα̇p + βp = 0, iχα̇m − βm = 0. (A.22)

Acting with (A.17)–(A.20) on these equations, we find they are preserved if

iχβψp − γ5α
ψ
p = 0, iχαψm − γ5β

ψ
m = 0, (A.23)

with no constraint on the Killing spinor. We conclude that boundary conditions (A.22)–

(A.23) preserve all the supersymmetries generated by ε.

The integrated boundary conditions in global coordinates are

iχαp(t) +

∫ t

−∞
dt′βp(t

′) = 0, iχαm(t)−
∫ t

−∞
dt′βm(t′) = 0, (A.24)

which are shown to preserve all the supersymmetries when accompanied with fermionic

boundary conditions (A.23).

B Supersymmetric Wilson loops family in ABJM

Supersymmetric ABJ(M) Wilson loops can be expressed in terms of a U(N |M) supercon-

nection L [14, 22, 23],

WR = trRPei
∮
Ldτ (B.1)

12The relative orientations between time and radial derivatives have to be the same in both boundaries.

This enforces the same relative sign for the terms in the boundary conditions at π
2

and −π
2

in (A.21).
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where,

L =

Aµẋµ − 2πi
k |ẋ|M

I
JCIC̄

J −i
√

2π
k |ẋ|η

α
I ψ̄

I
α

−i
√

2π
k |ẋ|η̄

I
αψ

α
I Âµẋ

µ − 2πi
k |ẋ|M̂

I
J C̄

JCI

 . (B.2)

For a straight line

xµ(τ) = (0, 0, τ), (B.3)

and taking

M = M̂ = diag(−1,−1 + 2ζ2, 1, 1), ηαI = ζη δα+δ
1
I , η̄Iα = ζη̄ δ+

α δ
I
1 , (B.4)

with ηη̄ = 2i [20, 21], one describes a 1-parameter family of supersymmetric Wilson loops.

This family interpolates between the bosonic 1/6 BPS Wilson loop for ζ = 0 and the 1/2

BPS Wilson loop for ζ = 1. For generic values of ζ, the Wilson loop preserves the same

supercharges as the bosonic 1/6 Wilson loop and U(1) ×U(1)× SU(2) ⊂ SU(4).

The expectation value of the bosonic 1/6 straight Wilson line is equal to 1. Thus, the

fact that the difference W
(ζ)
R −W

(0)
R is Q-exact for all values of ζ [21] implies that the whole

family has trivial expectation value.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and

Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[2] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002] [INSPIRE].

[3] N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60

(1999) 125006 [hep-th/9904191] [INSPIRE].

[4] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[5] P. Breitenlohner and D. Z. Freedman, Positive energy in Anti-de Sitter backgrounds and

gauged extended supergravity, Phys. Lett. B 115 (1982) 197.

[6] P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals

Phys. 144 (1982) 249 [INSPIRE].

[7] E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence,

hep-th/0112258 [INSPIRE].

[8] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[9] S.S. Gubser and I. Mitra, Double trace operators and one loop vacuum energy in AdS/CFT,

Phys. Rev. D 67 (2003) 064018 [hep-th/0210093] [INSPIRE].

– 24 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803001
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803002
https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1103/PhysRevD.60.125006
https://arxiv.org/abs/hep-th/9904191
https://inspirehep.net/search?p=find+EPRINT+hep-th/9904191
https://doi.org/10.1088/1126-6708/2007/11/068
https://arxiv.org/abs/0710.1060
https://inspirehep.net/search?p=find+EPRINT+arXiv:0710.1060
https://doi.org/10.1016/0003-4916(82)90116-6
https://doi.org/10.1016/0003-4916(82)90116-6
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,144,249%22
https://arxiv.org/abs/hep-th/0112258
https://inspirehep.net/search?p=find+EPRINT+hep-th/0112258
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905104
https://doi.org/10.1103/PhysRevD.67.064018
https://arxiv.org/abs/hep-th/0210093
https://inspirehep.net/search?p=find+EPRINT+hep-th/0210093


J
H
E
P
0
3
(
2
0
2
0
)
0
1
0

[10] S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of

double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

[11] T. Hartman and L. Rastelli, Double-trace deformations, mixed boundary conditions and

functional determinants in AdS/CFT, JHEP 01 (2008) 019 [hep-th/0602106] [INSPIRE].

[12] C.P. Herzog and I. Shamir, On marginal operators in boundary conformal field theory, JHEP

10 (2019) 088 [arXiv:1906.11281] [INSPIRE].

[13] J. Polchinski and J. Sully, Wilson loop renormalization group flows, JHEP 10 (2011) 059

[arXiv:1104.5077] [INSPIRE].

[14] N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter

theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

[15] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric

Chern-Simons theory and their string theory duals, JHEP 11 (2008) 019 [arXiv:0809.2787]

[INSPIRE].

[16] B. Chen and J.-B. Wu, Supersymmetric Wilson loops in N = 6 super Chern-Simons-matter

theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].

[17] S.-J. Rey, T. Suyama and S. Yamaguchi, Wilson loops in superconformal Chern-Simons

theory and fundamental strings in Anti-de Sitter supergravity dual, JHEP 03 (2009) 127

[arXiv:0809.3786] [INSPIRE].

[18] N. Drukker et al., Roadmap on Wilson loops in 3d Chern-Simons-matter theories,

arXiv:1910.00588 [INSPIRE].

[19] A. Lewkowycz and J. Maldacena, Exact results for the entanglement entropy and the energy

radiated by a quark, JHEP 05 (2014) 025 [arXiv:1312.5682] [INSPIRE].

[20] H. Ouyang, J.-B. Wu and J.-j. Zhang, Novel BPS Wilson loops in three-dimensional quiver

Chern–Simons-matter theories, Phys. Lett. B 753 (2016) 215 [arXiv:1510.05475] [INSPIRE].

[21] H. Ouyang, J.-B. Wu and J.-j. Zhang, Construction and classification of novel BPS Wilson

loops in quiver Chern–Simons-matter theories, Nucl. Phys. B 910 (2016) 496

[arXiv:1511.02967] [INSPIRE].

[22] K.-M. Lee and S. Lee, 1/2-BPS Wilson loops and vortices in ABJM model, JHEP 09 (2010)

004 [arXiv:1006.5589] [INSPIRE].

[23] V. Cardinali, L. Griguolo, G. Martelloni and D. Seminara, New supersymmetric Wilson loops

in ABJ(M) theories, Phys. Lett. B 718 (2012) 615 [arXiv:1209.4032] [INSPIRE].

[24] D.H. Correa, J. Aguilera-Damia and G.A. Silva, Strings in AdS4 × CP3 Wilson loops in

N = 6 super Chern-Simons-matter and bremsstrahlung functions, JHEP 06 (2014) 139

[arXiv:1405.1396] [INSPIRE].

[25] M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in N = 4 SYM

and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].
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