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ABSTRACT 

To predict electrical generation in piezoelectric small-scale beam energy harvesting 

devices, it is important to have a complete mathematical model that captures the different 

associated phenomena. In the literature, some authors propose several alternatives of non-

linear mathematical formulations, with non-linearities coming from different physical 

aspects. All these formulations present good aptitudes to predict the nonlinear behavior of 

the system under different values of accelerations, geometry and boundary conditions. At 

the same time, they do not represent a unified general proposal for modeling multimodal 

energy harvesting devices of any type of mode generation and boundary conditions at large 

excitations. In this sense, this paper presents a mathematical description of inextensional 

nonlinear Euler-Bernoulli piezoelectric beams that combines the best contributions of the 

literature to the voltage generation of multimodal nonlinear piezoelectric energy harvesters 

(geometric, material and damping  non-linearities). The developed analytical model yields 

a total set of N + 1 ordinary differential equations for the first N modes and for the output 

voltage. However, direct solution of this ordinary nonlinear differential system of N 

equations is computationally costly. Instead, a reduced algebraic system of 2(𝑁 + 1) 

algebraic equations is proposed applying the method of averaging. Its main advantage is 

that it makes more suitable and computationally economical for the implementation of a 

parameter identification process involving any number of piezoelectric inserts (unimorph 

or bimorph) and mode of generation (d33 or d31). Two types of validations are presented for 

some selected physical systems to test the validity of the assumptions: a numerical one, by 

the direct integration of the equations of motion and an experimental one. A final 

comparison between the results demonstrates the importance of the having a unified 

nonlinear model to predict the generated voltage in multimodal energy harvesters. 
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1. INTRODUCTION 

Energy harvesting is one of the fundamental issues in the technological application of 
small-scale energy sources for the industry. 

In particular, the harvest of energy based on the deformation of a piezoelectric material 
[1]caused by the vibration of the motors of the transport vehicles, is of interest in this work. 
Various types of devices have been reported in the literature for this purpose, from simple 
cantilever beams [2] to sophisticated multimodal devices [3, 4]. However, none of them 
seems to be definitive in the technological application of these types of devices. 

Regarding the mathematical formulations used to model micro-power generation 
systems, many researchers have developed linear models of energy harvesting devices such 
as Beeby et al. [5] and Erturk et al. [6]. These models mostly use the theory of Bernoulli-
Euler for the structural beam elements under base acceleration, considering a linear 
constitutive piezoelectric equation and Rayleigh proportional damping [7]. However, these 
formulations are accurate only for low excitation amplitudes [6]. As the amplitude of the 
base acceleration increases, linear models overestimate the electrical generation in a 
resonant condition, due to the intrinsic non-linearity of piezoelectric materials [8]. For this 
reason, nonlinear models are essential to describe the dynamic behavior of these systems 
and to predict energy generation in piezoelectric energy harvesters, as considered by 
different authors. 

Several analytical approaches have been applied to study this problem. Between them, 
some authors present their models considering only geometric nonlinearities due to large 
displacements [9]. Other authors, instead, focus their studies modeling material 
nonlinearities such as the nonlinear elastic behavior, the nonlinear electromechanical 
coupling or ferroelastic and ferroelectric hysteresis [10-17]. Generally speaking, the 
addition or not of these nonlinear phenomena in the constitutive equations will depend on 
the strength of the electric field or the applied stress. 

Concerning the proposals of non-linear constitutive equations, Joshi [10] presented in 
1992 non-linear constitutive relations for piezoceramic materials, which would later be the 
basis of many works on applied piezoelectricity. He deduced the constitutive equations 
from a thermodynamic viewpoint based on Gibbs free energy. His nonlinear second order 
relations include non-linear elasticity terms, non-linear elasto and electric-striction terms 
and non-linear permittivity effects. Later in 2006, Bertotti and Mayergoyz by one side [11] 
and Damjanovicby the other side [12] presented in two textbooks a meticulous study on the 
hysteresis phenomenon in piezoelectric and ferroelectric materials. Following a similar 
approach, Goldschmidtboeing et al. [13] analyzed the influence of  ferroelastic hysteresis on 
cantilever beams of PZT material, mechanically excited at the base. On the other hand, 
Stanton et al. [8] experimentally validated a mathematical model taking into account the 
non-linearity corresponding to high-order elastic effects and non-linear coupling associated 
with an energy harvesting circuit. Aurelle et al. [14] studied the contribution of 
deformations and electromechanical coupling in the non-linear response of a piezoelectric 
beam under weak electric fields in order to focus their study on nonlinearities separately. 
Following this line, Albareda et al. [15] considered a high-order formulation in the 
thermodynamic potential from which non-linear constitutive equations for the voltage and 
high-order electrical displacement in the deformation and electric field are obtained. Priya 
et al. [16] analyzed electrical non-linearities generated by strong electric fields and the 
influence of the ferroelastic phenomenon. Leadenham and Erturk [17] studied a model of 
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distributed parameters taking into account the softening effect and dissipative non-
linearities caused by  ferroelastic hysteresis of a bimorph piezoelectric beam of PZT 5A 
connected in series in its first flexional mode using the method of averaging. This 
formulation for the piezoelectric material was experimentally validated, both in actuation 
and in energy harvesting applications. 

The need to unify these non-linear models in a single work that combines the best 
characteristics of previous contributions for a general multimodal system constitutes the 
aim of this paper. In this sense, this work proposes a generalized and unified non-linear 
mathematical model that combines the quadratic non-linear viscous dissipation proposed 
by Stanton et al. [8],  the non-linear constitutive model proposed by Leadenham and Erturk 
[17] and a geometric non-linearity due to large deformations such as the one reported by 
Mak et al. [9]. In summary, the proposed model is capable to capture the physical 
phenomena that are observed in piezoelectric materials for energy harvesting due to large 
excitation amplitudes by the modification of its geometric, dissipative, structural and 
electrical characteristics. This includes the analytical description of d31 or d33 piezoelectric 
modes and unimorph or bimorph configurations in a beam-type structural element using 
an arbitrary number of structural modes for any type of boundary conditions. Additionally, 
the system of 𝑁 + 1 differential equations obtained from the model is reduced to a 2 (𝑁 +
1) generalized system of algebraic equations by means of the method of averaging. The 
numerical and experimental validation of the proposal is also presented for three different 
cases using a Macro Fiber Composite (MFC) piezoelectric sheet.  

 
The paper is organized as follows. A detailed mathematical treatment of a multimodal 

device [18] consisting of a composite beam (piezoelectric + substructure) with two mass-
spring systems attached to their ends which serves as a general application of the proposed 
formulation is presented in section 2. 

Section 3 presents the reduction of the system of ordinary differential equations to a 
system of algebraic equations, using the method of averaging [19]. The obtained system is 
validated for electromechanical devices under any type of piezoelectric inserts and their 
physical configurations (unimorph or bimorph). Finally, section 4 presents the reduced 
system which is computationally and experimentally validated for a cantilever system in d31 

and d33 mode generation as well as for the proposed multimodal system. 
Concluding remarks summarize the main findings of the present proposal at the end of 

the paper. 
 

2. THEORETICAL MODEL AND ELECTROMECHANICAL EQUATIONS 

In this section we present a detailed non-linear formulation of a multimodal energy 
harvesting device (MEHD) previously presented by the authors in [20] using a linear theory. 
Despite of this fact, the final general equations can be applied for any mode of generation 
(d31 or d33) and physical configuration (unimorph-bimorph). 

Figure1 shows the MEHD comprising a composite beam with two spring-mass systems at 
the ends of it. The natural frequencies of the device can be chosen by a proper selection of 
system’s parameters. The composite beam is represented by a substructure (steel or 
aluminum) and a sheet of piezoelectric material on the upper surface of the substructure 
(unimorph configuration). After analyzing  different commercially available options, a PZT-
5A macro fiber composite (MFC) with interdigitated electrodes (manufactured by Smart-
Materials, Inc) is used in the present study, since it presents important advantages over 
those conventionally used [20, 21]. 

In Figure1, 𝑤(𝑥, 𝑡) is the relative vertical deflection of the beam, 𝑔(𝑡) is the temporary 
excitation of the base, 𝐿 is the total length of the composite beam and 𝑚1,2, 𝑘1,2 and 𝑘𝑡1,2 are 
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the masses and the vertical and torsional stiffness  of the springs at the ends 𝑥 = 0 and  𝑥 =
𝐿 respectively. In addition, 𝑎, 𝑏𝑝, ℎ𝑝, 𝑏𝑠 and ℎ𝑠 are the distance from the bottom piezoelectric 

side to the neutral fiber, the width and thickness of the piezoelectric sheet, and the width 
and thickness of the substructure, respectively. 

 

 

Figure1:Schematics of the model (left) with a detailed view of the composite beam (right). 

On the other hand, Figure2 shows the basic electrical circuit that provides the voltage 𝑣(𝑡) 
generated by the device. There, it is possible to observe the electric model of the 
piezoelectric considered as a current generator 𝑖(𝑡), with an internal ideal capacitor 𝐶𝑝 and 

a load resistance 𝑅𝑙 connected in parallel. 
 

 

Figure2:Electrical equivalent circuit of a piezoelectric. 

2.1. ELECTROMECHANICAL MODEL OF THE SYSTEM 

The piezoelectric beam is modeled according to the Euler-Bernoulli formulation [22], 
considering only the vertical displacement and assuming that it is inextensible. This last 
assumption implies, for example, that it can not be applied for beams subject to large 
centrifugal forces, beams with fixed boundary conditions, etc [23]. 

A Lagrangian approach [24] is used to build up the system of differential equations. To 
consider the material nonlinearity, a similar model such as the one presented by Leadenham 

and Erturk [17] which considers a non-linear elasticity coefficient (𝑐111
𝑝

) and a non-linear 

coupling coefficient given by a non-linear piezoelectric constant (𝑒333) is used. However, in 
contrast to [17] a structurally more complex piezoelectric beam with interdigitated 
electrodes is used to carry out this study. Regarding the dissipation of energy in the MEHD, 
a viscous non-linear quadratic model is selected, as presented by Stanton et al. [8] for a 
structurally different type of piezoelectric material. This model demonstrates to have a good 
agreement with experimental tests in piezoelectric beam-like systems such as the one 
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presented in this work. 
In the following, the axes 𝑥, 𝑦, 𝑧, shown in Figure1 correspond to the subscripts 1, 2 and 

3, respectively. The points in the upper part of the variables ( ̇ , ̈ , …) refer to the temporal 
derivatives, the quotes ( ′, ′′, …) to the derivatives with respect to the coordinate  𝑥  and 
the displacement in the  𝑧  direction is 𝑤(𝑥, 𝑡).  In addition, the superscripts 𝑝 and 𝑠 refer to 
the piezoelectric and substructure, respectively. 

The displacement vector, without considering pure axial displacements and 
incorporating the temporal excitation of the base 𝑔(𝑡), is: 

 

 𝒖 = [𝑢1 𝑢2 𝑢3]𝑡 = [−𝑧𝑤′ 0 𝑤 + 𝑔(𝑡)]𝑡 (1) 

The axial strain of a differential element is given by [24] 
 

 𝑒 = √(1 + 𝑢′1)
2 + 𝑢′3

2 − 1 (2) 

After considering an inextensible beam 𝑒 = 0, it is possible to obtain: 
 

 

𝑢′1 = −
1

2
𝑢′3

2 

𝑢1 = −
1

2
∫ 𝑢′3

2𝑑𝑙
𝑙

0

 

(3) 

In this sense, non-linear geometric strains are given by the following local expression:  
 

 휀1 = −𝑧 (𝑤′′ +
1

2
𝑤′′𝑤′2) (4) 

The first term on the right side of (4) is the axial strain of a problem of small displacements 
due to bending, while the second is the axial strain considering bending at large 
displacements. 

The expression of the enthalpy density of the piezoelectric material (𝐻𝑝) and of that the 
substructure (𝐻𝑠) are defined as [17]: 

 

 

𝐻𝑝 =
1

2
𝑐11

𝑝
휀1

2 +
1

3
𝑐111

𝑝
휀1

3𝑠𝑖𝑔𝑛(휀1) − 𝑒33휀1𝐸1 −
1

2
𝑒333휀1

2𝐸1𝑠𝑖𝑔𝑛(휀1)

−
1

2
𝜖11

𝜀 𝐸1
2 

𝐻𝑠 =
1

2
𝑐11

𝑠 휀1
2 

(5) 

Where 𝑐11
𝑝,𝑠

 are the elasticity modulus of the piezoelectric sheet and the substructure 

respectively, and 𝜖11
𝜀  is the electric permittivity at constant strain. Additionally, 𝑒33 = 𝑐11

𝑝
𝑑33 

is the linear piezoelectric stress constant and 𝐸1 is the longitudinal electric field in the 𝑥 
direction which is given by, 𝐸1 = −𝑣(𝑡)/ 𝑙𝑝 [20]. 

Applying the following relations [10]: 
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 𝜎1
𝑝

=
𝜕𝐻𝑝

𝜕휀1
     ,     𝜎1

𝑠 =
𝜕𝐻𝑠

𝜕휀1
     ,     𝐷1 = −

𝜕𝐻𝑝

𝜕𝐸1
 (6) 

it is possible to obtain the axial stresses in the piezoelectric element (𝜎1
𝑝,𝑠

) and in the 

substructure which, as functions of the electric displacement (𝐷1) result: 
 

 

𝜎1
𝑝

= 𝑐11
𝑝

휀1 + 𝑐111
𝑝

휀1
2𝑠𝑖𝑔𝑛(휀1) − 𝑒33𝐸1 − 𝑒333휀1𝐸1𝑠𝑖𝑔𝑛(휀1) 

𝜎1
𝑠 = 𝑐11

𝑠 휀1 

𝐷1 = 𝑒33휀1 +
1

2
𝑒333휀1

2𝑠𝑖𝑔𝑛(휀1) + 𝜖11
𝜀 𝐸1 

(7) 

Both expressions satisfy the necessary and sufficient condition [10]: 
 

 
𝜕𝜎1

𝑝

𝜕𝐸1
= −

𝜕𝐷1

𝜕휀1
 (8) 

 
It is important to clarify that the sign of the strain is incorporated in the quadratic terms 

in order to maintain the non-linear effect in both directions of the deformation of the beam. 
The total potential energy of the system, neglecting the gravitational potential energy, is 

the sum of the elastic potential energies of the beam 𝑈𝑏 and of the springs  𝑈𝑘1,2, 

𝑈 = 𝑈𝑏 + 𝑈𝑘1 + 𝑈𝑘2. 
The expression for the beam is given by [6]: 
 

 𝑈𝑏 = ∫ 𝐻𝑠𝑑𝑉𝑠
𝑉𝑠

+ ∫ 𝐻𝑝𝑑𝑉𝑝
𝑉𝑝

 (9) 

The first and second volume integral in (9) correspond to the elements of the substructure 
and the piezoelectric, respectively. Using expressions (4) and (5), replacing them in the 
equation (9) and integrating up to length 𝐿, we obtain: 

 

 

𝑈𝑏 =
1

2
∫ [𝐸𝐼𝑤′′2 +

1

3
𝐸𝐼𝑛𝑤′′3𝑠𝑖𝑔𝑛(𝑤′′) + 𝐸𝐼(𝑤′𝑤′′)2

𝐿

0

− 2 (𝐽𝑝(𝑥)𝑤′′ +
1

2
𝐽𝑝𝑛(𝑥)𝑤′′2𝑠𝑖𝑔𝑛(𝑤′′)

+
1

2
𝐽𝑝(𝑥)𝑤′2𝑤′′) 𝑣(𝑡)] 𝑑𝑥 −

1

2
𝐶𝑝𝑣(𝑡)2 

(10) 

Where 𝐸𝐼 is the coefficient of linear stiffness which, for the sections 1 and 3 (see Figure1) is 
𝐸𝐼1,3 and for section 2, which contains the piezoelectric sheet, it is 𝐸𝐼2. In addition, 𝐸𝐼𝑛 is the 

coefficient of non-linear stiffness valid only in section 2 due to the non-linear elasticity of 
the piezoelectric material. The expressions of these coefficients and those mentioned 
hereinafter are presented in Appendix A. 

In view of equation (10) 𝐽𝑝(𝑥) is the coefficient of linear electromechanical coupling in 

section 2 due to the piezoelectric material, and it is defined as: 
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 𝐽𝑝(𝑥) = 𝐽𝑝𝑓𝐻(𝑥) (11) 

where  𝐽𝑝 is the linear electromechanical coupling constant and 𝑓𝐻(𝑥) is a function 

dependent on the generation mode (d31 o d33) and the piezoelectric type (unimorph or 
bimorph). This function is introduced to consider the coupling only in the length of the 
piezoelectric sheet and to retain the corresponding term after the spatial differentiation.  
For a d33 generation mode, the electric field is assumed to be uniform in the longitudinal 
direction x over the effective electrode spacing, as considered in ref [31]. This leads to a 
linear function for the electric potential (voltage) over the length of the harvester, as can be 
seen in Figure 12 in the Appendix. Then, the function 𝑓𝐻(𝑥) results: 
 

 

𝑓𝐻(𝑥) = ∑{(1 +
𝑥 − 𝑥𝑖2

𝑥𝑖2 − 𝑥𝑖3
) [𝐻(𝑥 − 𝑥𝑖2) − 𝐻(𝑥 − 𝑥𝑖3)]

𝑛

𝑖=1

+ (
𝑥 − 𝑥𝑖4

𝑥𝑖5 − 𝑥𝑖4
) [𝐻(𝑥 − 𝑥𝑖4) − 𝐻(𝑥 − 𝑥𝑖5)]} 

(12) 

Where 𝐻(𝑥) is the Heaviside function and the 𝑥𝑖𝑗  can be seen in Figure12 of Appendix A. 

For a d31 generation mode, the electric field is also assumed to be uniform in the vertical 
direction y, between the electrodes. In this sense, the voltage is constant at the top and 
bottom electrodes, as can be observed in Figure 14, in the Appendix. Then, the function 
𝑓𝐻(𝑥) takes the form:  

 

𝑓𝐻(𝑥) = ∑[𝐻(𝑥 − 𝑥𝑖1) −

𝑛

𝑖=1

𝐻(𝑥 − 𝑥𝑖1) + 𝐻(𝑥 − 𝑥𝑖3) − 𝐻(𝑥 − 𝑥𝑖4) + 𝐻(𝑥 − 𝑥𝑖5)

− 𝐻(𝑥 − 𝑥𝑖6)] 
 
Where 𝐻(𝑥) is the Heaviside function and the 𝑥𝑖𝑗  can be seen in Figure 14 of Appendix A. 

 
In equation (10) 𝐽𝑝𝑛(𝑥) is the coefficient of non-linear electromechanical coupling in 

section 2, and it is defined as: 
 

 𝐽𝑝𝑛(𝑥) = 𝐽𝑝𝑛𝑓𝐻(𝑥) (13) 

where 𝐽𝑝𝑛 is the non-linear coupling constant whose approximate expression, considering 

a constant electric field throughout the length of the piezoelectric, is presented in Appendix 
A. 

To conclude with the potential energy of the beam, it should be clarified that for the 
nonlinear geometric terms, only the quadratic terms coming from 휀1

2 were taken into 
account. In addition, in order to obtain an approximate analytical expression for the sign 
function, only the component of small displacements of the deformation (휀1 = −𝑧𝑤′′) which 
represent its linear part, is considered for the sign function. 

On the other hand, the elastic potential energy of the springs, taking into account the 
vertical and torsional deformation with respect to the 𝑦 axis, turns out to be: 

 

 𝑈𝑘𝑖 =
1

2
[𝑘𝑖𝑤(𝑥𝑗, 𝑡)

2
+ 𝑘𝑡𝑖𝑤′(𝑥𝑗, 𝑡)

2
]     ,     𝑖 = 1,2   ,   𝑥𝑗 = 0, 𝐿 (14) 
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Similarly, the total kinetic energy of the system is the sum of the kinetic energies of the 
beam 𝑇𝑏 and the tip masses at the ends of the beams 𝑇𝑚1,2. 

Then, 𝑇 = 𝑇𝑏 + 𝑇𝑚1 + 𝑇𝑚2. It should be noted that the rotational inertia of the beam is 
neglected. However, the rotational inertia of the tip masses is taken into account. Finally, 
the expression for the beam results [6]: 

 

 𝑇𝑏 =
1

2
(∫ 𝜌𝑠(�̇� + �̇�)2𝑑𝑉𝑠

𝑉𝑠

+ ∫ 𝜌𝑝(�̇� + �̇�)2𝑑𝑉𝑝
𝑉𝑝

) (15) 

where 𝜌𝑝,𝑠 is the density of the piezoelectric and the substructure, respectively. Expanding 

equation (15) and integrating for a length 𝐿, we obtain: 
 

 𝑇𝑏 =
1

2
∫ (𝜌𝐴�̇�2 + 2𝜌𝐴�̇��̇�)𝑑𝑥

𝐿

0

+
1

2
𝑚𝑡�̇�

2 (16) 

Where 𝜌𝐴 is the unitary mass of the beam, given by: 𝜌𝐴1,3 for sections 1 and 3, and 𝜌𝐴2for 

section 2. In the last term of equation (16), 𝑚𝑡 is the total mass of the beam. 
The kinetic energy of the masses, taking into account the vertical displacement and their 
rotational inertias results: 

 

 𝑇𝑚𝑖 =
1

2
{𝑚𝑖[�̇�(𝑥𝑗, 𝑡) + �̇�]

2
+ 𝐽𝑖�̇�′(𝑥𝑗 , 𝑡)

2
}    ,   𝑖 = 1,2   ,   𝑥𝑗 = 0, 𝐿 (17) 

As already mentioned above, for the dissipation of energy in the device, two types of 
effects are considered: (a) viscous damping in the composite beam and (b) dissipation by 
Joule effect [25] in the load resistance. For the viscous damping, a linear and a nonlinear 
quadratic model is proposed, following Stanton [8], Bandstra [26] and Yang [27] adopting 
the form: 

 

 𝐹𝑣 = 𝑐�̇� + 𝑐𝑛�̇�2𝑠𝑖𝑔𝑛(�̇�) (18) 

where 𝑐 and 𝑐𝑛 are the linear and non-linear damping coefficients respectively. 
In order to apply Hamilton's principle for deducing the electromechanical equations, we 

include these dissipation effects via the work of non-conservative forces 𝛿𝑊𝑛𝑐 resulting in: 
 

 𝛿𝑊𝑛𝑐 = −𝐹𝑣  𝛿𝑤 − 𝑖 𝛿𝜆 (19) 

Where λ is the electric flow and the electric current 𝑖 is calculated by Ohm's Law as 𝑖 = �̇�/𝑅𝑙 

where �̇� = 𝑣 is the voltage in the load resistance. 
 

2.2. Electromechanical Lagrange Equations 

Applying Hamilton’s principle we obtain the Lagrange equations [24] for the system 
considered: 
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𝜕

𝜕𝑡
(
𝜕𝐿

𝜕�̇�
) +

𝜕

𝜕𝑥
(

𝜕𝐿

𝜕𝑤′
) −

𝜕

𝜕𝑥2
(

𝜕𝐿

𝜕𝑤′′
) + 𝑐�̇� + 𝑐𝑛�̇�2𝑠𝑖𝑔𝑛(�̇�) = 0 (20) 

 
𝜕

𝜕𝑡
(
𝜕𝐿

𝜕𝑣
) +

𝑣

𝑅𝑙
= 0 (21) 

where the Lagrangian is 𝐿 = 𝑇 − 𝑈. 
Then equation (20) becomes: 
 

 

𝜌𝐴�̈� + 𝑐�̇� + 𝑐𝑛�̇�2𝑠𝑖𝑔𝑛(�̇�) + 𝐸𝐼𝑤𝐼𝑉 + 𝐸𝐼𝑛(𝑤′′′2 + 𝑤′′𝑤𝐼𝑉)𝑠𝑖𝑔𝑛(𝑤′′)

+ 𝐸𝐼(𝑤′′3 + 4𝑤′𝑤′′𝑤′′′ + 𝑤′2𝑤𝐼𝑉) − 𝐽𝑝
′′𝑣

− 𝑣𝐽𝑝𝑛𝑤𝐼𝑉𝑠𝑖𝑔𝑛(𝑤′′) − 𝑣 (𝐽𝑝
′ 𝑤′𝑤′′ +

1

2
𝐽𝑝
′′𝑤′2) = −𝜌𝐴�̈� 

(22) 

and equation (21) turns into: 

 
𝐶𝑝𝑣 +

𝑣

𝑅𝑙
+ ∫ [(𝐽𝑝 + 𝐽𝑝𝑛𝑤′′𝑠𝑖𝑔𝑛(𝑤′′) +

1

2
𝐽𝑝𝑤′2) �̇�′′ + 𝐽𝑝𝑤′𝑤′′�̇�′] 𝑑𝑥

𝑙

0

= 0 

(23) 

These expressions are a generalization of others previously proposed in the literature, 
particularly for the nonlinear terms. The equation proposed by Leadenham and Erturk [17] 
can be recovered by neglecting the nonlinear geometrical terms (sixth term of the left hand 
side in Eq. 22 and fifth and sixth terms of the left hand side in Eq. 23) and modifying the 
damping terms (second and third terms of the left hand side in Eq. 22) by his own proposal. 
Additionally, there is a difference in the last term of the left hand side in Eq. 22 due to 𝑓𝐻(𝑥), 
which depends on the interdigitated electrodes of the MFC (Leadenham and Erturk [17] 
used a piezo sheet T226-A4-103X with no fibers). On the other hand, the equations 
proposed by Stanton et al. [8] can be obtained by eliminating the sign function and the 
nonlinear geometrical terms in Eqs. 22 and 23. 

2.3. Spatial discretization of electromechanical equations 

One of the main procedures to obtain an analytical solution of the Lagrange equations for 
continuous media is the spatial discretization of the displacement, applying the classical 
method of modal expansion by separation of variables. In this method, the deflection of the 
beam is represented as a finite sum of 𝑁 generalized coordinates 𝑞𝑖(𝑡) multiplied by modal 
shape functions 𝜙𝑖(𝑥)as follows: 

 

 𝑤(𝑥, 𝑡) = ∑𝜙𝑖(𝑥)

𝑁

𝑖=1

𝑞𝑖(𝑡) (24) 

Modal shape beam-type functions are proposed of the following form: 
 

 𝜙𝑖(𝑥) = 𝐶1 cos(𝛽𝑖𝑥) + 𝐶2 cosh(𝛽𝑖𝑥) + 𝐶3 sin(𝛽𝑖𝑥) + 𝐶4 sinh(𝛽𝑖𝑥) (25) 

where the eigenvalues 𝛽𝑖 are related to their respective natural frequencies 𝜔𝑖 by 𝜔𝑖 =

(𝛽𝑖𝐿)2√𝐸𝐼/𝜌𝐴𝐿4 and the constants 𝐶𝑗(𝑗 = 1 − 4) are determined by the boundary 
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conditions and normal mode normalization condition [18]. 
Replacing equation (24) in (22), multiplying both members by 𝜙𝑖(𝑥) and integrating in 

the total length 𝐿, we obtain a set of 𝑖 = 1. . 𝑁 equations of the form: 
 

 

𝑀𝑖�̈�𝑖 + 𝐶𝑖�̇�𝑖 + ∑ 𝐶𝑛𝑖𝑗𝑘�̇�𝑗�̇�𝑘𝑠𝑖𝑔𝑛(�̇�𝑗)

𝑁

𝑗,𝑘=1

+ 𝐾𝑖𝑞𝑖 + ∑ 𝐾𝑛𝑖𝑗𝑘𝑞𝑗𝑞𝑘𝑠𝑖𝑔𝑛(𝑞𝑗)

𝑁

𝑗,𝑘=1

+ ∑ 𝐾𝐺𝑖𝑗𝑘𝑙𝑞𝑗𝑞𝑘𝑞𝑙

𝑁

𝑗,𝑘,𝑙=1

− (𝜃𝑖 + ∑𝜃𝑛𝑖𝑗𝑞𝑗𝑠𝑖𝑔𝑛(𝑞𝑗)

𝑁

𝑗=1

+ ∑ 𝜃𝐺𝑖𝑗𝑘𝑞𝑗𝑞𝑘

𝑁

𝑗,𝑘=1

)𝑣

= −𝑀𝑎𝑖�̈� 

(26) 

Similarly, using (24) in (23), an electromechanical equation for the voltage 𝑣 can be 
obtained: 

 

 𝐶𝑝�̇� +
𝑣

𝑅𝑙
+ ∑(𝜓𝑖 + ∑𝜓𝑛𝑖𝑗𝑞𝑗 𝑠𝑖𝑔𝑛(𝑞𝑗)

𝑁

𝑗=1

+ ∑ 𝜓𝐺𝑖𝑗𝑘𝑞𝑗𝑞𝑘

𝑁

𝑗,𝑘=1

)

𝑁

𝑖=1

�̇�𝑖 = 0 (27) 

Equation (26) and (27) are the governing electromechanical equations of the energy 
harvesting model. It is important to note that the terms involving the electromechanical 
couplings 𝜓 and 𝜃 are different because in this case the electrodes of the piezoelectric sheet 
do not cover the entire length of the substructure. This situation differs from most works in 
the literature where the electrode covers the entire surface of the piezoelectric or where 
this approach is considered valid as an approximation to the real problem. 

 

3. REDUCTION OF EQUATIONS 

The system of differential equations (26)-(27) is constituted by 𝑁 + 1 differential 
equations, where 𝑁 is the number of modes. The direct integration of these equations via a 
numerical method demands an increasingly large time as the number of modes increases, 
making the problem hard to solve. To overcome this drawback, in this section we propose 
to reduce the entire non-linear model to a system of algebraic equations by applying the 
averaging method [19]. The resulting system consists of two subsystems of 𝑁 mechanical 
equations, plus two coupled electrical equations, constituting a system of 2(𝑁 + 1) 
algebraic equations which is computationally economical to solve. An additional advantage 
lies in the fact that it is easier and faster to apply methods of identification of parameters 
and optimization methods to improve power generation. However, the reduction is valid 
for problems in absence of internal resonances between modes. Despite of this drawback, 
the multimodal character of the reduced solution permits to consider the contribution of N 
modes to problem, unlike a large body of research work conducted to date [13,14,17]. 

The averaging method has been widely used to analyze periodic solutions of ordinary 
non-linear differential equations. A solution is assumed in sines and cosines, replacing the 
ordinary differential equations by algebraic equations. Then, the error in the approximate 
solution is minimized with the Galerkin method [29]. Finally, the resulting system of 
algebraic equations is solved iteratively, with methods such as Newton-Raphson. 
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To perform the reduction of equations (26)-(27) applying this method, we first propose 
a harmonic base acceleration of the form �̈�(𝑡) = 𝐺 𝑐𝑜𝑠(𝛺𝑡) and then assume that the 
temporal response of the mode 𝑖, 𝑞𝑖

∗(𝑡) and of the voltage 𝑣(𝑡), is harmonic of the form: 

 

 
𝑞𝑖

∗(𝑡) = 𝑞𝑖 𝑐𝑜𝑠(𝛺𝑡 + 𝜙𝑖) 

𝑣(𝑡) = 𝑉 𝑐𝑜𝑠(𝛺𝑡 + 𝜙) 
(28) 

These equations can be expressed in an equivalent way by means of the following 
trigonometric relations: 

 

 
𝑞𝑖 𝑐𝑜𝑠(𝛺𝑡 + 𝜙𝑖) = 𝑄(2𝑖−1) 𝑐𝑜𝑠(𝛺𝑡) + 𝑄(2𝑖) 𝑠𝑖𝑛(𝛺𝑡) 

𝑉 𝑐𝑜𝑠(𝛺𝑡 + 𝜙) = 𝑉1 𝑐𝑜𝑠(𝛺𝑡) + 𝑉2 𝑠𝑖𝑛(𝛺𝑡) 
(29) 

where   

 
𝑐𝑜𝑠(𝜙𝑖) =

𝑄(2𝑖−1)

𝑞𝑖
   ,   𝑠𝑖𝑛(𝜙𝑖) =

𝑄(2𝑖)

𝑞𝑖
   ,   𝑐𝑜𝑠(𝜙) =

𝑉1

𝑉
   ,   𝑠𝑖𝑛(𝜙) =

𝑉2

𝑉
 

(30) 

from which the displacement modal amplitudes 𝑞𝑖 and voltage 𝑉 can be defined as: 
 

 

𝑞𝑖 = √𝑄(2𝑖−1)
2 + 𝑄(2𝑖)

2  

𝑉 = √𝑉1
2 + 𝑉2

2 

(31) 

Substituting equations (28) and the expression for �̈�(𝑡) into equations (26)-(27) and 
applying  the averaging method yields the following set of 2(𝑁 + 1) algebraic equations in 
𝑄(2𝑖−1), 𝑄(2𝑖), 𝑉1, 𝑉2: 

 

 

−𝑀𝑖𝛺
2𝑄(2𝑖−1) + 𝐶𝑖𝛺𝑄(2𝑖) + 𝐾𝑖𝑄(2𝑖−1) − 𝜃𝑖𝑉1 +

8

3𝜋
𝐶𝑛

∗𝛺2𝑄(2𝑖)

+
8

3𝜋
𝐾𝑛

∗𝑄(2𝑖−1)

+
4

3𝜋
𝜃𝑛

∗[(2𝑄(2𝑖−1)
2 + 𝑄(2𝑖)

2 )𝑉1 + 𝑄(2𝑖−1)𝑄(2𝑖)𝑉2]

+
3

4
𝐾𝐺

∗𝑄(2𝑖−1)

+
1

4
𝜃𝐺

∗[𝑉1(3𝑄(2𝑖−1)
2 + 𝑄(2𝑖)

2 ) + 2𝑄(2𝑖−1)𝑄(2𝑖)𝑉2] + 𝐹𝑖

= 0 

(32) 
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−𝑀𝑖𝛺
2𝑄(2𝑖) − 𝐶𝑖𝛺𝑄(2𝑖−1) + 𝐾𝑖𝑄(2𝑖) − 𝜃𝑖𝑉2 −

8

3𝜋
𝐶𝑛

∗𝛺2𝑄(2𝑖−1)

+
8

3𝜋
𝐾𝑛

∗𝑄(2𝑖)

+
4

3𝜋
𝜃𝑛

∗[(𝑄(2𝑖−1)
2 + 2𝑄(2𝑖)

2 )𝑉2 + 𝑄(2𝑖−1)𝑄(2𝑖)𝑉1]

+
3

4
𝐾𝐺

∗𝑄(2𝑖)

+
1

4
𝜃𝐺

∗ [𝑉2(𝑄(2𝑖−1)
2 + 3𝑄(2𝑖)

2 ) + 2𝑄(2𝑖−1)𝑄(2𝑖)𝑉1] = 0 

(33) 

 𝐶𝑝Ω𝑉2 +
𝑉1

𝑅𝑙
+ Ω∑𝑄(2𝑖) [𝜓𝑖 +

4

3𝜋
𝜓𝑛

∗ +
1

4
𝜓𝐺

∗ ]

𝑁

𝑖=1

= 0 (34) 

 𝐶𝑝Ω𝑉1 −
𝑉2

𝑅𝑙
+ Ω∑𝑄(2𝑖−1) [𝜓𝑖 +

4

3𝜋
𝜓𝑛

∗ +
1

4
𝜓𝐺

∗ ]

𝑁

𝑖=1

= 0 (35) 

which constitute the reduced system of differential equations that model the behavior of 
flexural Euler-Bernoulli beams with electromechanical (piezoelectric) inserts  in any type 
of generation mode (d31 o d33) and piezoelectric configuration  (unimorph or bimorph). In 
the previous equations, the following coefficients are defined: 

 

𝐶𝑛
∗ =

𝑞1

𝑞𝑖
∑ 𝐴𝑗𝑘𝐶𝑛𝑖𝑗𝑘

𝑁

𝑗,𝑘=1

   , 𝐾𝑛
∗ =

𝑞1

𝑞𝑖
∑ 𝐴𝑗𝑘𝐾𝑛𝑖𝑗𝑘

𝑁

𝑗,𝑘=1

   ,   𝐾𝐺
∗ =

𝑞1

𝑞𝑖
∑ 𝑞𝑗𝐴𝑘𝑙𝐾𝐺𝑖𝑗𝑘𝑙

𝑁

𝑗,𝑘,𝑙=1

 

𝜃𝑛
∗ =

𝑞1

𝑞𝑖
3 ∑𝐴𝑖𝑗𝜃𝑛𝑖𝑗

𝑁

𝑗=1

   ,   𝜃𝐺
∗ =

𝑞1

𝑞𝑖
2 ∑ 𝐴𝑗𝑘𝜃𝐺𝑖𝑗𝑘

𝑁

𝑗,𝑘=1

   ,   𝜓𝑛
∗ = ∑𝑞𝑗𝜓𝑛𝑖𝑗

𝑁

𝑗=1

   ,   𝜓𝐺
∗ = 𝑞1 ∑ 𝐴𝑗𝑘𝜓𝐺𝑖𝑗𝑘

𝑁

𝑗,𝑘=1

 

where 𝐴𝑖𝑗 = 𝐴𝑗𝑘 = 𝐴𝑘𝑙 are the components of the so-defined amplitude coefficient matrix 𝑨, 

which is expressed as: 
 

 𝑨 =

[
 
 
 
 
 
 
 
 

𝑞1
2

𝑞1

𝑞1𝑞2

𝑞1
⋯ ⋯

𝑞1𝑞𝑁

𝑞1

⋱
𝑞2𝑞𝑁

𝑞1

⋱ ⋮
⋱ ⋮

𝑆𝑦𝑚
𝑞𝑁

2

𝑞1 ]
 
 
 
 
 
 
 
 

 (36) 

4. NUMERICAL AND EXPERIMENTAL VALIDATION 

In order to validate the results presented in section (3), here we compare the solutions 
obtained by the reduced system, equations (32)-(35), to those obtained by direct 
integration of the equations of motion (Eqs. 22-23) and to experimental results. This is 
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carried out for the following cases: a cantilever beam in d33 and d31 generation mode and 
the multimodal device presented in section 2. For the numerical validation, the reduced 
system is solved iteratively using the method of least squares by means of the trust-interval 
algorithm (trust-region) implemented by MatlabR fsolve command. On the other hand, the 
system of differential equations is integrated numerically through the implementation of an 
explicit Runge-Kutta formula by the variable step algorithm of Dormand-Prince [30], 
through the command ode45 of MatlabR. For the experimental measurements, the systems 
are excited by its base through an electrodynamical shaker with variable frequency, 
waveforms and acceleration levels, and the voltage and accelerations are acquired via PCB 
accelerometers (model 80C) and a NI data acquisition system (model 9230) at a rate of 2048 
samples/sec.  

 

4.1. CANTILEVER d33 BEAM 

The cantilever beam of Figure 3 is selected for the first case experimental and  numerical 
validation of the reduced equations. A piezoelectric sheet MFC 8507-P1 bonded over a steel 
beam constitutes the piezoelectric system which generates in d33 mode.  

 
 

 

 

Figure 3: Schematic representation of the cantilever model and experimental setup. 
 

Numerical values of the physical parameters of the cantilever system can be found in 
Table 1. 

To obtain the linear and nonlinear coefficients that were introduced in the analytical 
model, we carry out an identification process. This process was performed in two stages, 
minimizing the norm of the difference between theoretical and experimental data over a 
region that includes the first mode of a cantilever d33 beam.  The first stage includes the 
identification of the linear coefficients at very low (constant) acceleration amplitude of 0.04 
g (g=9.8 m/s2) with an electrical load of 255 kΩ.  As a result, the linear coefficient ξ1 and the 
correction factors α (included in the definition of matrices θ, θn, θG) and β (included in ψ, 
ψn y ψG) were simultaneously identified. 
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The second stage devotes to identify the nonlinear coefficients. To this end, the numerical 
values of linear coefficients identified in the first stage were introduced into the model. 
Then, we performed the identification process at 1 g of constant acceleration amplitude 

with an electrical load of 255 kΩ. As a result, the nonlinear coefficients ξn1, c111
p

 and e333 

were simultaneously identified.  
Several tests were performed at constant base acceleration with values of 1, 0.5, 0.1 and 

0.04 G, while measuring the stationary voltage in the range of 14-26 Hz. Figure 4 shows the 
results for: the experimental cases (circles), the reduced model considering only one mode 
of vibration (Eqs. 32-34 for N = 1, solid lines) and the curves obtained by direct integration 
of the equations of motion (Eqs. 26-27) for N=1 and N=3, which are plotted as dashed lines 
and dash-dotted lines, respectively. 

 

Coefficient Value Coefficient Value 

𝐿1 17.6 𝑚𝑚 𝜌𝑠 7900 𝑘𝑔/𝑚3 

𝐿2 85 𝑚𝑚 𝜌𝑝 7750 𝑘𝑔/𝑚3 

𝐿3 21.8 𝑚𝑚 𝑐11
𝑠  193 𝐺𝑃𝑎 

𝐿 124.4 𝑚𝑚 𝑐11
𝑝

 61 𝐺𝑃𝑎 

𝑎 0.176 𝑚𝑚 𝑐111
𝑝

 0 

ℎ𝑠 0.38 𝑚𝑚 𝑑33 440 𝑝𝑚/𝑉 

𝑏𝑠 12.7 𝑚𝑚 𝑒333 6.5663 ×  104 

ℎ𝑓 0.18 𝑚𝑚 𝜖11
𝜀  15.3 nF/m 

𝑏𝑓 0.355 𝑚𝑚 𝐶𝑝 1.5 𝑛𝐹 

ℎ𝑘  0.06 𝑚𝑚 𝜉1 0.0115 

𝑙𝑝 0.41 𝑚𝑚 𝜉𝑛1 1.387 ×  10−4 

𝑤𝑝 0.097 𝑚𝑚 𝛼 0.2 

𝑛𝑓 18 𝛽 0.2 

Table 1: Material and geometric parameters of the cantilever model (d33 generation). 

From the results it can be observed that both, the reduced system and the direct 
integration of the ODES present a good agreement between them and, in turn, fit 
satisfactorily to the experimental values. This implies that the reduced system predicts with 
good accuracy the output voltage for different acceleration amplitudes, including those 
cases not considered in the identification process. Regarding the number of modes assumed 
in the solution, the direct integration of the ODES shows no sensitive difference to this 
number. It is important to note that, for the maximum value of acceleration (1G), a 
hardening nonlinearity is evidenced for this type of physical system. 
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Figure 4: Output voltage for different methods: reduced model with N=1 (Reduced N=1), direct 
integration of the equations of motion with N=1 and N=3 (ODE N=1 and ODEN=3), and 

experimental results for a cantilever beam in d31 generation mode.(a) for 1g of base acceleration, 
(b) for 0.5g of base acceleration, (c) for 0.1g, and (d) for 0.03g (g=9.8 m/s2). 

 

 

Figure 5: Comparison between linear and nonlinear model in d33 generation mode. 

Figure 5 presents the comparison with a linear model which is implemented equating to 
zero the nonlinear terms of the reduced equations (32)-(35)with 𝑁 = 1. From the results, it 
is possible to observe an overestimation of the generated voltage by an amount of more 
than 3 Volts, which represents more than 10% of the predicted value of the nonlinear model. 

4.2. CANTILEVER d31 BEAM 

In a similar manner, a cantilever beam with a piezoelectric sheet MFC 8507-P2 is used to 
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build the piezoelectric system which generates in d31 mode.  
Table 2 shows the numerical values of the physical parameters of the cantilever system.  
Following the same approach presented in section 4.1, the linear and nonlinear 

coefficients were obtained from an identification process following two stages. In the first 
stage, the linear parameters 𝜉1 and γ were identified at very low (constant) acceleration 
amplitude of 0.04 g and electrical load of 255 kΩ.  The second stage identified the nonlinear 

coefficients ξn1, c111
p

 and e311 . The identification process was carried out at 1 g of constant 

acceleration amplitude using the linear parameters obtained in the first stage and the same 
electrical load of 255 kΩ.  

 
 

Coefficient Value Coefficient Value 

𝐿1 17.2 𝑚𝑚 𝑐11
𝑠  193 𝐺𝑃𝑎 

𝐿2 85 𝑚𝑚 𝑐11
𝑝

 61 𝐺𝑃𝑎 

𝐿3 21.5 𝑚𝑚 𝑐111
𝑝

 −2.685 × 1012 

𝐿 123.7 𝑚𝑚 𝑑31 −190 𝑝𝑚/𝑉 

𝑎 0.176 𝑚𝑚 𝑒311 9.4553 × 103 

ℎ𝑠 0.38 𝑚𝑚 𝜖33
𝜀  16.81 nF/m 

ℎ𝑝 0.3 𝑚𝑚 𝐶𝑝 49 𝑛𝐹 

𝑏𝑠 12.7 𝑚𝑚 𝜉1 0.0059 

𝑏𝑝 8 𝑚𝑚 𝜉𝑛1 3.0071 ×  10−4 

𝜌𝑠 7900 𝑘𝑔/𝑚3 𝛾 0.65 

𝜌𝑝 7750 𝑘𝑔/𝑚3   

Table 2: Material and geometric parameters of the cantilever model (d31 generation). 

Figure 5 shows the results at constant base acceleration considering 1, 0.5, 0.1 and 0.04 
G, while measuring the stationary voltage in the range 14-26 Hz. A very good agreement is 
observed for all the analyzed cases. This is, the experimental curves (circles), the reduced 
model curves with one mode (N = 1, solid lines) and the curves which are the result of the 
direct integration of the equations of motion with 1 and 3 modes (N = 1, dashed lines, N = 3, 
dash-dotted lines). In contrast with the d33 case, a softening nonlinearity can be observed 
for the maximum considered acceleration of 1G.  Additionally, the generated voltage is 
larger in comparison with the previous case (d33). For example, for a base acceleration of 
1G, the maximum voltage is 46 V for the MFC 8507-P2 (d31) and 26 V for the MFC 8507-P1 
(d33). This difference is still larger for lower accelerations, for example 0.1 G, getting values 
of 9 and 3 V for MFC 8507- P2 and MFC 8507- P1, respectively. 
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Figure 6: Output voltage for different methods: reduced model with N=1 (Reduced N=1), direct 
integration of the equations of motion with N=1 and N=3 (ODE N=1, ODE N=3), and experimental 
results for a cantilever beam in d31 generation mode. (a) for 1g of base acceleration, (b) for 0.5g of 

base acceleration, (c) for 0.1g, and (d) for 0.03g (g=9.8 m/s2) 
 
 

 

 

Figure 7: Comparison between linear and nonlinear model in d31 generation mode. 

Similarly, Figure 7 presents the comparison with a linear model. This time, the 
overestimation of the generated voltage is notably larger compared with the d33 case. It is 
possible to observe a difference of more than a 100% between the nonlinear predictions, 
the experiments and the linear values for an acceleration of 1 G.  

Figure 8 presents the contribution to the voltage of the nonlinear terms of equations (26)-
(27) in d31 generation mode. The different terms are labelled according to the coefficients 
presented in table 2: 𝜉𝑛1 (quadratic damping coefficient) represents the nonlinear damping 

Page 17 of 26 AUTHOR SUBMITTED MANUSCRIPT - SMS-110159.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



term (third term in the LHS of equation 26), 𝑐111
𝑝

  (nonlinear elasticity coefficient) 

characterizes the nonlinear restoring force (fifth term in the LHS of equation26), 𝑒311 
(nonlinear piezoelectric constant) represents the nonlinear electromechanical coupling 
(eighth term in the LHS of equation 26) and nonlin-geom characterizes the nonlinear 
geometric terms (sixth and ninth terms in the LHS of equation 26).  

To better discuss the results, some contributions are presented individually and others 
are added to each other in Figure 8. For example, the contribution of the nonlinear damping 
term 𝜉𝑛1, (blue dashed line) is presented alone. Instead, the contribution labelled by 𝜉𝑛1 

+𝑐111
𝑝

(red dashed line) represents the combined effect of the nonlinear damping term and 

the nonlinear restoring force. It is interesting to observe the influence of each term to the 
voltage response 𝑉(𝜔). Regarding the nonlinear damping term, it can be clearly observed 
that it is not capable by itself to dampen sufficiently the response to fit the experimental 
data. Additionally, the nonlinear geometric terms bend the response peak to the right 
(typical of a hardening behavior) while the nonlinear restoring force gives a totally different 
(softening) response. However, compared to the experimental data, a fundamental 
contribution of the nonlinear electromechanical coupling appears to be necessary to match 
the measurements. In this sense, there is an additional damping provided by this term as 
can be clearly observed from Figure 8 (𝜉𝑛1 + 𝑒311 green squares).  

 

 
 

 

Figure 8: Contribution to the voltage of the nonlinear terms of Eqs. 26-27 in d31 generation mode. 

 
 

4.3. MULTIMODAL DEVICE 

The last configuration tested in this section is the multimodal device developed in section 
2with a piezoelectric sheet MFC 8507-P1 (see Figure1). In this case, only numerical 
predictions will be compared. The interesting point inthis case is the possibility to validate 

Page 18 of 26AUTHOR SUBMITTED MANUSCRIPT - SMS-110159.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



the reduced nonlinear model for a multimodal device. To this end, the reduced model (Eqs. 
32-34) with N=3 (red solid lines), the linear model (red dashed lines) and the direct 
integration of the equations of motion (Eqs. 26 and 27) with N=3 (blue dotted lines) are 
shown in Figure 6. The numerical values of the geometrical, mechanical and material 
parameters used in both methods are presented in Table 3. 

From the analysis of the results, it is possible to conclude that the linear model always 
overestimates the voltage generation, especially for the first and third modes.  

Considering the nonlinear model, a good general agreement between the curves is 
observed for the three modes. However, there are some frequency regions wherethe 
reduced model overestimates the voltage obtained from the direct integration values, 
particularly for the second and third mode. 

 

Coefficient Value Coefficient Value Coefficient Value 

𝐿1 23.3 𝑚𝑚 𝑎 0.176 𝑚𝑚 𝜉𝑛1 1.387 ×  10−4 

𝐿2 85 𝑚𝑚 𝜌𝑠 7900 𝑘𝑔/𝑚3 𝜉1 0.011 

𝐿3 17.2 𝑚𝑚 𝜌𝑝 5440 𝑘𝑔/𝑚3 𝜉2 0.039 

𝐿 125.5 𝑚𝑚 𝑐11
𝑠  193 𝐺𝑃𝑎 𝜉3 0.008 

ℎ𝑠 0.38 𝑚𝑚 𝑐11
𝑝

 15.85 𝐺𝑃𝑎 𝑚1 19.1 𝑔 

𝑏𝑠 12.7 𝑚𝑚 𝐶𝑝 2.37 𝑛𝐹 𝑚2 6.09 𝑔 

ℎ𝑓 0.18 𝑚𝑚 𝑑33 440 𝑝𝑚/𝑉 𝑘1 4708 𝑁/𝑚 

𝑏𝑓 0.355 𝑚𝑚 𝜖11
𝜀  7.01 nF/m 𝑘2 3217 𝑁/𝑚 

ℎ𝑘  0.06 𝑚𝑚 𝛼 0.2 𝑘𝑡1 0.54 𝑁𝑚/𝑟𝑎𝑑 

𝑙𝑝 0.41 𝑚𝑚 𝛽 0.2 𝑘𝑡2 0.36 𝑁𝑚/𝑟𝑎𝑑 

𝑤𝑝 0.097 𝑚𝑚 𝑐111
𝑝

 0 𝐽1 3.35 × 10−7 𝑘𝑔/𝑚2 

𝑛𝑓 18 𝑒333 6.5663 ×  104 𝐽2 5.86 × 10−8 𝑘𝑔/𝑚2 

Table 3: Material and geometrical parameters of the model. 

 

 

Figure9: Comparison of voltage curves for N=3 between the reduced model and the direct 
integration of the equations of motion (ODE). 

Then, it is worth to analyze the sources of these deviations. If we look at section 3, 
equation (28), it is possible to observe that only the first harmonic is taking into account in 
the reduced model. To analyze the consequences of this approach, Figure10shows the 
steady state of the output voltage and its spectrum (coming from the direct integration of 
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the equations of motion) in a temporal interval of 0.1 seconds for two different excitation 
frequencies: 100 and 122 Hz. From the figure, it is possible to observe that the steady state 
response seems to have a sinusoidal appearance for both analyzed cases. This is confirmed 
by its spectrum which is shown in the bottom part of the same figure. In this case, the 
contribution of the first harmonic represents almost the 90% of the total amplitude for both 
excitation frequencies. As a consequence, it is almost irrelevant for the present case to take 
higher harmonics in the approximate solution for the reduction of the system. Another 
source of possible discrepancy between the methods is the approximation of the sign 
function assumed in the approximate analytical solution provided by the reduction of the 
equations. 

 

Figure10: Temporal response and spectrum at a)100 Hz (off-resonance)andb) 122 Hz (resonance). 

In order to show the importance of the reduced model, Table4 shows the computational 
calculation times to solve each system as a function of the number of modes. In addition, it 
shows the relative percentage that it takes to solve the ODES. From the times observed in 
the first and second columns, it can be clearly deduced that the time it takes to solve a 
system with 𝑁 = 3 represent 5.5% of the time tosolve the ODE. And this difference is 
increased when increasing the number of modes, reaching 1.7% when  𝑁 = 6. 

 
 

 Time (seconds) Reduced 
relative to ODE  ODE Reduced 

𝑁 = 3 271.11 15.02 5.54 % 

𝑁 = 4 515.69 20.69 4.01 % 

𝑁 = 5 1143.43 28.56 2.49 % 

𝑁 = 6 2274.13 38.84 1.70 % 

Table4: Calculation time for the reduced and ODE models 
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By analyzing the difference provoked by the reduced equations it can be said that it is 
acceptable taking into account the tradeoff introduced by the great reduction in calculation 
time. This saving in time makes it possible the implementation of an identification and/or 
optimization process in a reasonable time with the aim of maximizing the output power of 
the energy harvesting device.  

 

5. CONCLUSIONS  

This paper presented a nonlinear mathematical formulation for inextensional Bernoulli-
Euler beams with (unimorph or bimorph) piezoelectric sheets working in d31 or d33 mode 
that combines the most relevant contributions of the literature to this problem: (i) 
geometric nonlinearity induced by large displacements, (ii) material nonlinearities coming 
from ferroelastic hysteresis and (iii) quadratic non-linear viscous damping.  

The final analytical model yields a total set of 𝑁 + 1 ordinary differential equations for 
the first 𝑁 modes and for the voltage output of the piezoelectric sheet. However, the direct 
solution of this ordinary nonlinear differential system of N equations is computationally 
costly. As an alternative, a reduced algebraic system of 2(𝑁 + 1) algebraic equations is 
proposed which was obtained by using the method of averaging. The main advantage of this 
reduced system is that it makes more suitable and computationally economical for the 
implementation of a parameter identification process. 

Additionally, it is demonstrated that the linear formulation overestimates the generated 
voltage in a resonance condition and this effect is larger for a cantilever beam in a d31 
generation mode. In the same sense, the contribution of each nonlinear parameter is 
carefully analyzed for cantilever beams, showing the importance of nonlinear analysis in 
this type of problems. 

Several numerical and experimental tests were conducted to test the validity of the 
assumptions: an MFC piezoelectric cantilever beam in d33 and d31 mode and a multimodal 
system with an MFC in d33 mode. After performing an identification process using the 
proposed analytical model to obtain the linear and nonlinear coefficients, the reduced 
algebraic system is validated against numerical and experimental data.  
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APPENDIX A: COEFFICIENTS 

 

𝑀𝑖 = 1        ,        𝐶𝑖 = 2𝜉𝑖𝜔𝑖        ,        𝐾𝑖 = 𝜔𝑖
2 

𝐶𝑛𝑖𝑗𝑘

= 2𝜉𝑛𝑖𝜔𝑖 ∫ 𝜙𝑖𝜙𝑗𝜙𝑘𝑠𝑖𝑔𝑛(𝜙𝑗)𝑑𝑥
𝐿1+𝐿2

𝐿1

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

𝐾𝑛𝑖𝑗𝑘 = 𝐸𝐼𝑛 ∫ 𝜙𝑖(𝜙𝑗′′′𝜙𝑘′′′ + 𝜙𝑗′′𝜙𝑘
𝐼𝑉)𝑠𝑖𝑔𝑛(𝜙𝑗′′)𝑑𝑥

𝐿1+𝐿2

𝐿1
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𝐾𝐺𝑖𝑗𝑘𝑙 = 𝐸𝐼 ∫ 𝜙𝑖(𝜙𝑗′′𝜙𝑘′′𝜙𝑙′′ + 4𝜙𝑗′𝜙𝑘′′𝜙𝑙′′′ + 𝜙𝑗′𝜙𝑘′𝜙𝑙
𝐼𝑉)𝑑𝑥

𝐿

0

= 𝐸𝐼1,3 (∫ (… )𝑑𝑥
𝐿1

0

+ ∫ (…)𝑑𝑥
𝐿

𝐿1+𝐿2

) + 𝐸𝐼2 ∫ (…)𝑑𝑥
𝐿1+𝐿2

𝐿1

 

𝜃𝑖 = ∫ 𝜙𝑖𝐽𝑝(𝑥)′′𝑑𝑥
𝐿1+𝐿2

𝐿1

 

𝜃𝑛𝑖𝑗 = ∫ 𝐽𝑝𝑛(𝑥)𝜙𝑖𝜙𝑗
𝐼𝑉𝑠𝑖𝑔𝑛(𝜙𝑗′′)𝑑𝑥

𝐿1+𝐿2

𝐿1

 

𝜃𝐺𝑖𝑗𝑘 = ∫ 𝜙𝑖 (𝐽𝑝(𝑥)′𝜙𝑗′𝜙𝑘′′ +
1

2
𝐽𝑝(𝑥)′′𝜙𝑗′𝜙𝑘′) 𝑑𝑥

𝐿1+𝐿2

𝐿1

 

𝑀𝑎𝑖 = 𝜌𝐴∫ 𝜙𝑖𝑑𝑥
𝐿

0

= 𝜌𝐴1,3 (∫ 𝜙𝑖𝑑𝑥
𝐿1

0

+ ∫ 𝜙𝑖𝑑𝑥
𝐿

𝐿1+𝐿2

) + 𝜌𝐴2 ∫ 𝜙𝑖𝑑𝑥
𝐿1+𝐿2

𝐿1

 

𝜓𝑖 = 𝛾𝐽𝑝 ∫ 𝜙𝑖′′𝑑𝑥
𝐿1+𝐿2

𝐿1

 

𝜓𝑛𝑖𝑗 = 𝛾𝐽𝑝𝑛 ∫ 𝜙𝑖′′𝜙𝑗′′𝑠𝑖𝑔𝑛(𝜙𝑗′′)𝑑𝑥
𝐿1+𝐿2

𝐿1

 

𝜓𝐺𝑖𝑗𝑘 = 𝛾𝐽𝑝 ∫ (𝜙𝑖′𝜙𝑗′𝜙𝑘′′ +
1

2
𝜙𝑗′𝜙𝑘′𝜙𝑖′′) 𝑑𝑥

𝐿1+𝐿2

𝐿1

 

𝐸𝐼1,3 =
1

12
𝑐11

𝑠 𝑏𝑠ℎ𝑠
3 

𝐸𝐼2 =
1

3
[𝑐11

𝑠 𝑏𝑠ℎ𝑠(3𝑎2 − 3𝑎ℎ𝑠 + ℎ𝑠
2) + 𝑐11

𝑝
𝑏𝑝ℎ𝑝(3𝑎2 + 3𝑎ℎ𝑝 + ℎ𝑝

2)] 

𝐸𝐼𝑛 =
1

2
𝑐111

𝑝
𝑏𝑝ℎ𝑝(4𝑎3 + 6𝑎2ℎ𝑝 + 4𝑎ℎ𝑝

2 + ℎ𝑝
3) 

𝑎 =
𝑐11

𝑠 𝑏𝑠ℎ𝑠
2 − 𝑐11

𝑝
𝑏𝑝ℎ𝑝

2

2(𝑐11
𝑠 𝑏𝑠ℎ𝑠 + 𝑐11

𝑝
𝑏𝑝ℎ𝑝)

 

𝐶𝑝 =
𝑛𝜖11𝑏𝑝ℎ𝑝

𝑙𝑝
 

𝜌𝐴1,3 = 𝜌𝑠𝐴𝑠 = 𝜌𝑠𝑏𝑠ℎ𝑠 

𝜌𝐴2 = 𝜌𝑠𝐴𝑠 + 𝜌𝑝𝐴𝑝 = 𝜌𝑠𝑏𝑠ℎ𝑠 + 𝜌𝑝𝑏𝑝ℎ𝑝 

𝑚𝑡 = 𝜌𝑠𝐴𝑠𝐿 + 𝜌𝑝𝐴𝑝𝐿2 

𝐽𝑝 =
1

2
𝑒33𝑛𝑓𝑏𝑓

ℎ𝑓

𝑙𝑝
(2𝑎 + 2ℎ𝑘 + ℎ𝑓)(1 − 2𝛼) 
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𝐽𝑝𝑛 =
1

3
𝑒311𝑛𝑓𝑏𝑓

ℎ𝑓

𝑙𝑝
[3𝑎2 + 3𝑎(ℎ𝑓 + 2ℎ𝑘) + 3ℎ𝑘(ℎ𝑓 + ℎ𝑘) + ℎ𝑓

2](1 − 2𝛼) 

Where 𝑛𝑓 is the total number of piezoelectric fibers, 𝑏𝑓 is the width of each fiber, and ℎ𝑓 

and ℎ𝑘 are the thickness of the fiber and the polyamide respectively, as can be observed in 
Figure 11. Parameter α is a correction empiric parameter introduced to take into account 
the non-uniformity of the electric field in the thickness of the fiber [31]. 

 



Figure11: Detail of a sheet of piezoelectric fibers of interdigitated electrodes for d33 mode 

generation.  

 
For a d33 generation mode, the positions 𝑥𝑖1 of function  𝑓𝐻(𝑥) related with Figure12, are 

given by: 

for𝑖 = 1:     𝑥11 = 𝐿1,        for 𝑖 = 𝑘:     𝑥𝑘1 = 𝑥(𝑘−1)6 

and for the rest: 

𝑥𝑖2 = 𝑥𝑖1 +
𝑤𝑝

4
    ,    𝑥𝑖3 = 𝑥𝑖2 + 𝑙𝑝 +

𝑤𝑝

2
 

𝑥𝑖4 = 𝑥𝑖3 +
𝑤𝑝

2
    ,    𝑥𝑖5 = 𝑥𝑖4 + 𝑙𝑝 +

𝑤𝑝

2
    ,    𝑥𝑖6 = 𝑥𝑖5 +

𝑤𝑝

4
 

 

 

Figure12: Schematic representation of interdigitated electrodes for d33 generation mode. 
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For a d31 generation mode, the detail of the geometric parameters and the polarization of 

the electrodes over a sheet of piezoelectric fibers is shown in Figure 13. 

 

Figure13: Detail of a sheet of piezoelectric fibers of interdigitated electrodes for d31 mode 

generation.  

 

The electric potential for a d31 generation mode over the length of the MFC is shown in  

Figure 14. 

 

Figure 14: Schematic representation of interdigitated electrodes for d31 generation mode. 

 
For a d31 generation mode, the positions 𝑥𝑖1, of  function 𝑓𝐻(𝑥)  related with Figure 14, are 

given by: 

for𝑖 = 1:     𝑥11 = 𝐿1,        for 𝑖 = 𝑘:     𝑥𝑘1 = 𝑥(𝑘−1)6 

and for the rest: 

𝑥𝑖2 = 𝑥𝑖1 +
𝑤𝑝

2
    ,    𝑥𝑖3 = 𝑥𝑖2 + 𝑙𝑝 

𝑥𝑖4 = 𝑥𝑖3 + 𝑤𝑝    ,    𝑥𝑖5 = 𝑥𝑖4 + 𝑙𝑝    ,    𝑥𝑖6 = 𝑥𝑖5 +
𝑤𝑝

2
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