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A B S T R A C T   

The present work aims to evaluate if sediments from the Spanish fort Fuerte San José (1779–1810 CE) located in 
Península Valdés, Province of Chubut, Argentina, show signs that could be attributed to the documented fire 
caused by native populations in 1810 CE. Three different magnetic signatures indicative of thermoalteration 
were assessed in raw and experimental heated samples: the presence of superparamagnetic minerals, the exis
tence of reversibility on thermomagnetic curves and further relative changes concerning ferri-, anti-ferro- and 
paramagnetic minerals. Results show that only samples corresponding to an adobe-wall foundation recorded 
magnetic changes caused by thermoalteration processes, below 400 ◦C, likely related to the historical fire. 
Relatively higher organic matter values contained in the adobe-walls, thatched roofs and/or any combustible 
content placed inside the structure could have been the factors which promoted such magnetic thermoalterations 
circumscribed to only one sector of the site. A low-magnitude fire may also explain the lack of a magnetic-soil 
thermoalteration in other sectors of the Fuerte San José. Thus, data do not support a massive fire, as narra
tives repeated by historians described. The methodological design presented here could be a fruitful approach to 
discuss natural or anthropogenic paleo-fires in arid/ semi-arid environments.   

1. Introduction 

The Spanish colonization of the Patagonian Atlantic coast took place 
in the late 18th century, in the context of Bourbon reforms and a 
persistent crisis with the British Empire. Particularly in Península Valdés 
(Patagonia Argentina; Fig. 1), the Spanish settled two enclaves in 1779: 
the Fuerte San José, a fortification located in the southeast corner of the 
homonymous gulf, and the Puesto de la Fuente, a complementary pro
ductive settlement near Salina Grande (Fig. 1). Both settlements lasted 
31 years, under conditions of extreme isolation, shortage, precarious
ness and inter-ethnic conflicts. In 1810, they were supposedly destroyed 
by an indigenous attack (Buscaglia and Bianchi Villelli, 2016; Bianchi 
Villelli, 2017; Buscaglia, 2017). 

For decades historians stressed that the Fuerte San José was 
destroyed by a massive fire caused by native populations, arguing their 
“irrational and violent” character in nature. However, data from docu
mentary and archaeological has questioned this version. In this context, 
the aim of this work is to evaluate the existence and magnitude of the 
documented fire at the Fuerte San José by the study of soil magnetic 
properties. At this regard, some preservational expectations for an open- 
air fire at the Fuerte San José are presented, in order to identify places to 
find three different magnetic signatures of thermoalteration: the pres
ence of superparamagnetic (SP) minerals, the existence of reversibility 
of thermomagnetic curves and other relative changes concerning ferri-, 
anti-ferro and paramagnetic minerals. 
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1.1. Regional setting 

The Fuerte San José site is located in an island-like peninsula (Baldi 
et al., 2017) of the southeastern extra-andean Patagonian region (Fig. 1). 
The geomorphologic setting of the study area corresponds to the Coastal 
Piedmont Pediment Unit. It comprises old fluvial terraces and stabilized 
and superimposed active dunefields dissected by Holocene stream 
(Bouza et al., 2017a; Fig. 2A, B). The archaeological site under study is 
on aeolian deposits from those active and vegetated dunefields mostly 
composed by quartz, plagioclase, K-feldespar, plutonic and volcanic 
rock fragments and minor proportions of opaque minerals, carbonates, 
pyroxene, amphibole, glauconite and chlorite (Bouza et al., 2017a). 

Cold and arid-semiarid conditions characterized the area, with a 
mean annual temperature of ~13 ◦C, an annual average precipitation of 
~230 mm and relatively intense southwestern winds (Coronato et al., 
2017 and references therein). Though wildfires in the region are 
frequent, the location of the Fuerte San José is in a “very low risk” area 
(Blanco et al., 2017), with no record of fire in the last decades. These 
climatic conditions define shrub-perennial grass steppes, classified 
within the Patagonian Phytogeographical Province (León et al., 1998). 
The sparse vegetation that leaves large patches of bare soils sets favor
able conditions for wind erosion, raindrop impact, laminar runoff, flow 
erosion and the formation of deep gullies (Haller et al., 2001; Bouza 
et al., 2017b; Coronato et al., 2017). This highly dynamic geo
morphology coupled with arid conditions, define very poor-developed 
alkaline soils (pH 7.6–9.9) (Bouza et al., 2017a, 2017b). 

1.2. The Fuerte San José: The historical and archaeological setting 

The Fuerte San José comprises a complex case study regarding its 
spatial organization, functionality and architecture, due to scarce and 
fragmentary documentary and archaeological data caused by the 
perishable and precarious building materials used during the thirty-one 

years of colonial occupation, successive re-occupation episodes after its 
abandonment and subsequent vandalism. Only a single report describes 
the population core of the settlement, which was located between two 
hills and comprised a closed “plaza” with a food store, barracks, two 
rooms and a chapel (Soler and García, 1779). Though the specific 
location of the latter is not provided, settlers vaguely mentioned in 1782 
the use of reed (Saccharum sp.) for its construction (Martínez, 1782). 
However, leather roofs are reported as well for 1789 (Pérez, 1796b). 
Documents indicate that the chapel roof is destroyed by a hurricane in 
1796, but is subsequently re-built with original materials and wood in 
another place sheltered from the winds (Pérez, 1796b). 

Outside the population core, two hospitals, kitchens and a small fort 
over a hill surrounded by a ditch are mentioned, together with a gun
powder warehouse and a cemetery lacking in spatial references 
(Viedma, 1779). In addition, the presence of a wooden palisade around 
the population core (Bordas, 1793) and the building of new warehouses 
and a bakery with an oven is also described (Pérez, 1796a). Willow 
wood, leather, straw, and subordinate adobe (i.e., sun-dried mud brick 
containing straw as stabilizer; Vega et al., 2011), bricks and tiles are the 
main reported construction materials, supplied from the Fuerte Nuestra 
Señora del Carmen –about 300 km to the north- to build palisades, walls 
and roofs of the Fuerte San José (Fig. 3A). 

As a result of conflicting relations with indigenous populations, the 
Spanish settlement is attacked in 1810. Testimony of survivors indicates 
that indigenous burnt the artillery, gunpowder, weapons and ammuni
tion warehouses, not identified archaeologically (Aragón, 1810). How
ever, according to historians, the settlement was massively burnt by this 
attack, particularly the chapel (e.g., Fontana, 1873; Biedma, 1905; 
Barba Ruiz, 2000; Lanöel et al., 1974). Two years after the fire, the lo
cality was re-occupied by the expeditionary Welshman Henry Libanus 
Jones, who was searching for seals and wild cattle (1812–1823). He 
describes an adobe-tile roof building near the beach, with an oven 
assigned to the bakery, together with two further constructions over and 

Fig. 1. The Fuerte San José location (Península Valdés, Province of Chubut, Argentina).  
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down a hill, with thatched-roof and adobe with thatched-roof (inter
preted as the chapel), respectively (Jones, 1891). The installation of a 
small village near the Fuerte San José at the beginning of the 20th 
century, along with subsequent vandalism, unsystematic private exca
vations and tourism, have reduced the colonial site to few visible and 
scarce remains. 

Regarding the archaeological study, analyses of the type and density 
of cultural remains, features, vegetation and topographic characteristics 
allowed identifying six functionally distinct areas at the Fuerte San José, 
named San José 1 to 6 (SJ1–SJ6) (Fig. 2A, B). The SJ1, placed at a 
relatively densely vegetated foothill bordered by a channel, may 
correspond to the area where most population was established. The SJ2, 
located over a hill facing the beach, comprises a 20 m-side quadrangular 

structure bordered by a ditch (Fig. 3B), probably related to the “small 
fort” described in historical records, which might have been surrounded 
by a palisade. The SJ3 sector, placed at the eastern foot-hill of SJ2, 
corresponds to a 3 × 1.5 m depression surrounded by an adobe-wall 
foundation. This feature of unknown functionality comprises the only 
architectural remain of the archaeological site (Fig. 3C). Human remains 
of European origin at SJ4 allow to define it as a small cemetery area 
(García Guráieb et al., 2017), which is also reported in documents 
(Viedma, 1779), whereas a sort of dumpsite could have existed at SJ5. 
Finally, SJ6 is interpreted as reworked cultural materials due to fluvial 
processes recorded by the presence of extensive gullies (Bianchi Villelli 
et al., 2019) and, therefore, sediments from this sector were not 
considered here. 

Fig. 2. A- Topographic and geomorphological map of the Fuerte San José (following Bouza et al., 2017a). Archaeological sectors can be broadly described as follow 
(Bianchi Villelli et al., 2019): S1 = central area; S2 = small fort; SJ3 = adobe-wall foundation (unknown functionality); SJ4 = small cemetery; SJ5 = dumpsite; and 
SJ6 = reworked archaeological material. Sample locations are numbered #1 to #31. B- View of the locality from the east, including archaeological sectors. 
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Fig. 3. A- Documentary record from the Fuerte San José describing the need of willow wood to repair quarters and dwellings. It also details a list of construction 
items for walls and roof. April, 25 of 1797. Relevant archaeological features: B- perimeter ditch from the small fort (SJ2). C- the adobe-wall foundation (SJ3). D- 
adobe brick exhibited at the “Centro de Interpretación Istmo Ameghino” (sample #32). Examples of thermoaltered archaeological remains: E- domestic vessel used 
for cooking (SJ1), and F- large mammal bone fragments from the dumpsite area (SJ5). 
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Archaeological evidence was found mainly on surface and up to 20 
cm depth. The highest frequency and diversity of the archaeological 
record is observed in the SJ1 sector, followed by SJ5, SJ6, SJ2 and SJ4 
sectors. The remains comprise bones and mollusk shells (N = 4743), a 
variety of ceramics mostly for domestic use (N = 748), metal fragments 
(N = 610), glasses (N = 188), and few stone artifacts (N = 28) (Bianchi 
Villelli et al., 2019). Despite the high degree of fragmentation, bone 
weathering stages are low, accounting for rapid burial conditions. 
Finally, the frequency of thermo-altered archaeological remains is low, 
comprising few ceramics (8.5%) and archaeofaunistic record (1.6%) 
(Bianchi Villelli et al., 2019). This evidence provides no conclusive in
sights, since thermo-alteration could be the result of cooking, 
manufacturing and/or discarding processes. 

On the other hand, the archaeological record of the Fuerte San José 
shows few thermoaltered ceramics (8.5%) and archaeofaunistic record 
(1.6%) (Bianchi Villelli et al., 2019). This evidence provide no conclu
sive insights, since thermoalteration could be the result of cooking, 
manufacturing and/ or discarding processes. 

1.3. The past extensive open-air fire and their archaeological expectations 
at the Fuerte San José 

Combustion features like hearths, kilns, ovens and different inten
tional or un-intentional space-circumscribed fire structures has been 
studied archaeologically to answer questions related to the hominization 
process, pyrotechnologies, intensity of human occupation, resource 
management, conflagration events, space functionality and taphonomic 
processes. A this regard, different analytical techniques were applied, 
such as clay X-ray diffraction, thermoluminensce, anthracology, soil 
micromorphology, geochemistry, FTIR spectroscopy and infrared anal
ysis, among others (e.g., Karkanas et al., 2002; Berna et al., 2007, 2012; 
Mallol et al., 2007; Goldberg et al., 2009; Brodard et al., 2012; March 
et al., 2014; Gur-Arieh et al., 2014; Morley, 2017; Villagran et al., 2017; 
Ozán et al., 2019; Shahack-Gross et al., 2018). To a lesser extent, past 
combustion features have been tackled by magnetic analyses to discuss 
paleotemperatures, the geomagnetic field evolution (i.e., archae
omagnetism) and postdepositional processes (e.g., Ellwood et al., 1998; 
Dalan, 2008; Brodard et al., 2012; Kapper et al., 2014; Morley, 2017; 
Ozán et al., 2015, 2017, 2019; Shahack-Gross et al., 2018; Urban et al., 
2019). Due to space-circumscribed combustions often took place 
repeatedly through time, they present a high archaeological visibility, 
whereas physicochemical characteristics of thermoaltered sediments 
contrast remarkably with the off-site or natural control area. 

In contrast, the usually low archaeological visibility of past extensive 
open-air fires resulting from singular or less redundant combustion 
episode, as in the case of this work, poses an additional methodological 
challenge. Consequently, studies are very scarce and usually related to 
Soil Sciences or lacustrine/ mire-based paleoenvironmental re
constructions (e.g., Certini, 2005; Whitlock and Larsen, 2002; De Bano 
et al., 2005; Berna et al., 2007; Friesem et al., 2014; Robin and Nelle, 
2014), whereas only a few uses magnetic properties (Gedye et al., 2000; 
Jordanova et al., 2001; Certini, 2005). The low visibility of an extensive 
open-air fire not only responds to the fact that it is often a singular 
episode, but to the soil insulating capacity which causes a heat pene
tration of only few centimeters (e.g., Certini, 2005; Berna et al., 2007). 
Therefore, mineralogical changes triggered by temperature will depend 
on the preservation of such thin soil-surface layer and the charred ma
terial and ash remained on surface. The preservation and intensity of 
thermoaltered signatures will be subject to the degree of vegetation 
cover, the presence of anthropogenic combustible materials (e.g., ar
chitecture, furniture’s, objects, commodities, etc.), pH and soil compo
sition (e.g., abundance of clays and/ or Fe-bearing minerals), climate 
and geomorphological processes (e.g., humidity, temperature, wind 
transport capacity, natural fire occurrence, topography, etc.) (Certini, 
2005; Théry-Parisot et al., 2010; Friesem et al., 2014; Shahack-Gross, 
2018). 

Taken into consideration documentary and archaeological data, 
concepts related to the fire behavior and characteristics of the regional 
setting exposed above, some expectations regarding the preservation of 
the magnetic-soil thermoalteration resulting from the supposed histor
ical fire, and its magnitude, are proposed. On one hand, a low preser
vation of a magnetic-soil thermoalteration (Section 2) is expected at the 
population core (SJ1), where the most leather and thatch-made struc
tures reported in the documents should have been placed. In a fire, open 
and highly combustible features, like leather-huts, release heat upwards, 
inhibiting a flameover reaction (i.e., when the fire convection is inhibits 
by a roof, causing heat radiation downwards). In this scenario, a weak 
soil-mineral modification –if any- is expected, affecting only few centi
meters in depth that could be easily eroded by the wind. Only if a very 
intense ignition source (e.g., multiple and/ or repeated intentional 
focus) and extra-fuel needed to keep the fire burning for a long time 
might have existed, a durable magnetic-mineral modifications could be 
expected at SJ1 (e.g., Certini, 2005). Same preservation expectancy are 
proposed to the small cemetery (SJ4) and dumpsite areas (SJ5), though 
bones remains with low weathering degrees found in the latter (Bianchi 
Villelli et al., 2019). 

On the other hand, a moderate to high preservation of 
thermoaltered-soils is expected in the small fort (SJ2) and the adobe- 
wall foundation (SJ3), since these sectors probably comprised roof- 
bearing structures and/ or places with an extra-fuel availability (e.g., 
palisade) capable of producing a prolonged fire. In turn, closed struc
tures favor the flameover reaction, responsible to increase the heat 
conduction to the floor (e.g., Harrison, 2013; March et al., 2014; 
Shahack-Gross, 2018). In addition, bones recovered at SJ2 show low 
weathering stages (Bianchi Villelli et al., 2019), suggesting a rapid burial 
which in turn could have preserved burnt sediments. A set of sediment 
samples of SJ2 were also taken from a ditch (Fig. 3B; Table 1), a natural 
trap which might have behaved against erosion (Friesem et al., 2014) 
beyond the high-wind exposition registered in SJ2 (Fig. 2). Unfortuna
tellly, the other buildings elusively mentioned in the documents (i.e., 
gunpowder storage places, kitchens, the hospital and the chapel) were 
not recognized archaeologically yet. However, due to the reason 
exposed above, their fire preservation expectative should be rather high, 
especially the case of the chapel and gunpowder storage places. 

In sum, a single fire episode of 1810 AD at the Fuerte San José could 
have been sufficient to leave a distinguishable (Section 2) and durable 
soil-magnetic signature in the small fort (SJ2) and the adobe-wall 
foundation (SJ3). However, such distinct soil-magnetic signature 
would be expected in the population core (SJ1), the small cemetery 
(SJ4) and the dumpsite area (SJ5) only if a high-magnitude fire might 
have taken place. 

2. Methodology and theoretical framework 

2.1. Materials and techniques 

A total of 31 sediment samples taken from poor-developed A and C 
soil horizons were analyzed (Fig. 2A), plus a sample of an adobe (#32, 
mudbrick) from the Fuerte San José. The latter was obtained from a local 
exhibition at the “Centro de Interpretación Istmo Ameghino” (Fig. 3D; 
Table 1). A broad macroscopic characterization comprised texture (by 
feel, USDA triangle) and color determinations (dry, Munsell Color 
Chart). Total organic (%TOC) and inorganic carbon (%TIC), as indirect 
data of organic matter and calcium carbonates percentages, respec
tively, were also quantified by loss-on-ignition (Heiri et al., 2001). Due 
to conspicuous magnetic results of samples #20 and #21, two thin 
sections of single grains were included. 

Given magnetic anomalies and location, 10 out of 32 samples were 
selected to heat at four temperatures aiming to study local magnetic 
responses (Section 2.4.). Magnetic analysis of both raw (#) and heated 
samples (E#) comprised measurements of magnetic susceptibility at 
room temperature (RT) at two frequencies (1000 Hz and 16,000 Hz), by 
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– different fields (5–700 A/m), at about 20 steps (Section 2.2.). For this 
purpose, an AGICO-Multifunction Kappabridge Instrument (model 
MFK1-FA) was used, in sediments <500 µm dried for three days over
night at 40 ◦C. Results were normalized to mass and averaged to be used 
in the frequency-dependent susceptibility parameter equation: %XFD =

100(XLF − XHF)/XLF (Dearing et al., 1996; Hrouda, 2011). 
For two samples with relatively high %XFD result, and two others 

control samples with lower %XFD, low-temperature susceptibility (RT to 
− 190.8 ◦C) and thermal variations of the susceptibility (RT to 700 ◦C) 
analyses were performed, by using liquid nitrogen and an argon atmo
sphere, respectively (Sections 2.2 and 2.3). Both measurements were run 
in an AGICO-Multifunction Kappabridge Instrument. Additionally, a set 
of 17 representative samples from the archaeological site were chosen to 

analyze hysteresis loops and the magnetization with reverse field using a 
vibrating sample magnetometer (VSM, Molspin- Ltd.). 

2.2. Superparamagnetic minerals: The %XFD parameter and susceptibility 
at low temperatures 

Fine-grain particles corresponding to SP and single-domain (SD) 
magnetites/ maghemites are produced by pedogenetic (e.g., Maher and 
Thompson, 1991; Heller and Evans, 1995) and combustion processes (e. 
g., Dearing et al., 1996; Worm, 1998; Liu et al., 2005; Dalan, 2008; 
Torrent et al., 2006; Hrouda, 2011; Shahack-Gross et al., 2018). 
Particularly, the production of SP/ SD grains due to combustion depends 
on the parent material, organic matter, porosity, duration and intensity 

Table 1 
Broad characterization of samples, detailing magnetic analyses carried out in each case. X  = Magnetic susceptibility at different fields and frequencies. H/R =
Hysteresis loops and magnetization with reverse field. T+ = Magnetic susceptibility at high temperatures. T− = Magnetic susceptibility at low temperatures. E =
Sample chosen for the experiment. %TOC = percentage of total organic carbon. %TIC = percentage of total inorganic carbon.  

Sector/context Sample 
# 

Bulk depth 
(cm) 

Color (dry) % 
TOC 

%TIC Texture Magnetic 
analyses 

SJ1 (population core), between hills. #1 5 2.5 Y 5/2 grayish brown 0,497 0,328 loam X 
#2 12 2.5 Y 5/2 grayish brown 0,937 0,540 sandy loam X 
#3 18 2.5 Y 5/2 grayish brown 0,829 0,358 loam X 
#4 9 2.5 Y 5/2 grayish brown 0,811 0,423 sandy loam X, H/R 
#5 18 2.5 Y 5/2 grayish brown 0,827 0,451 sandy loam X, H/R 
#6 22 2.5 Y 6/2 light brownish 

gray 
0,937 0,220 sandy loam X, H/R, E 

#7 5 2.5 Y 4/1 dark gray 1,611 0,117 loamy sand X, H/R, T+, T−
#8 13 2.5 Y 5/2 grayish brown 0,841 0,201 sandy loam X, H/R, T+, T− , 

E 
#9 16 2.5 Y 5/2 grayish brown 0,492 0,273 sandy loam X 
#10 45 2.5 Y 6/2 light brownish 

gray 
0,830 0,491 sandy loam X, H/R, E 

#11 18 2.5 Y 6/1 Gy 0,880 0,253 sandy loam X 
#12 36 2.5 Y 6/2 light brownish 

gray 
0,876 0,202 silt loam X 

#13 17 2.5 Y 5/2 grayish brown 0,763 0,304 sandy loam X 
#14 13 2.5 Y 6/2 light brownish 

gray 
1,018 0,302 silt loam X 

#15 11 2.5 Y 5/2 grayish brown 0,912 0,333 loam X  

SJ2 (small fort area), over a hill, facing the beach, southern ditch 
side. 

#16 54 2.5 Y 6/2 light brownish 
gray 

0,999 0,675 sandy loam X, H/R 

SJ2 (small fort area), over a hill, facing the beach. #17 20 2.5 Y 6/2 light brownish 
gray 

0,430 1,447 sandy loam X, H/R, E 

#18 36 2.5 Y 6/2 light brownish 
gray 

1,143 3,128 sandy loam X, H/R  

SJ2 (small fort area), over a hill, facing the beach, northern ditch 
side. 

#19 50 2.5 Y 6/2 light brownish 
gray 

0,687 1,284 sandy loam X  

SJ3 (adobe-wall foundation), foot-hill. #20 3 2.5 Y 6/3 0,845 9,527 silt loam X, H/R, T+, T− , 
E 

#21 30 2.5 Y 5/1 Gy 2,864 1,153 sandy loam X, H/R, T+, T− , 
E  

SJ4 (small cemetery area), over a hill. #22 45 2.5 Y 6/2 light brownish 
gray 

0,360 0,374 loam X 

#23 39 2.5 Y 6/2 light brownish 
gray 

0,744 0,234 sandy loam X, H/R, E  

SJ5 (dumpsite area), on hill slope. #24 30 2.5 Y 6/2 light brownish 
gray 

0,692 1,080 sandy loam X 

#25 46 2.5 Y 5/2 grayish brown 1,499 3,572 sandy loam X 
#26 34 2.5 Y 5/2 grayish brown 1,034 5,835 sandy loam X, H/R 
#27 47 2.5 Y 6/2 light brownish 

gray 
1,034 6,797 sandy loam X, H/R, E 

#28 30 2.5 Y 5/2 grayish brown 0,570 0,631 sandy loam X 
#29 40 2.5 Y 6/2 light brownish 

gray 
0,595 0,835 loam X 

#30 17 2.5 Y 6/2 light brownish 
gray 

0,782 1,119 loam X, H/R, E 

#31 32 2.5 Y 6/2 light brownish 
gray 

0,815 0,716 sandy loam X, H/R, E  

Adobe brick from the local exhibition at the Centro de 
Interpretación I. Ameghino, 

#32 – 2.5 Y 5/1 Gy 2,315 0,582 silt clay 
loam 

X, H/R  
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of the fire, sample depth, etc. Such complex variable system makes the 
well-known expectations (Fig. 4) only a general guide for the analysis 
and interpretation of natural soils. 

Here, the calculation of SP particles is based on the %XFD parameter, 
a proxy which relates the magnetic susceptibility of low and high fre
quencies (Dearing et al., 1996; Hrouda, 2011) (Section 2.1). According 
to Dearing et al. (1996), results around 6–12% may suggest the presence 
of significant content of SP magnetite grains. However, lower %XFD 
values do not necessarily indicate a lesser SP content, since SP grain 
interactions could cause grain aggregations with a magnetic behavior of 
coarser grains (Maher and Taylor, 1988). Moreover, a significant 
quantity of detrital pseudo-single domain (PSD) and multi-domain (MD) 
particles, as well as high amounts of paramagnetics and anti- 
ferromagnetics could also decrease the %XFD (Dearing et al., 1996; 
Pan et al., 2000; Hrouda, 2011). Therefore, different lines of evidence 
should be considered to cross-check the type and size of magnetic 
minerals in natural samples. 

Finally, since the %XFD roughly detects SP grains between ~20 and 
30 nm, four samples (#7, #8, #20 and #21) were selected to explore the 
susceptibility at low temperatures (Section 2.1). This test can account 
for the presence of SP grains < 20 nm (see theoretical framework in 
Vásquez et al., 2009, 2018). 

2.3. Magnetic susceptibility at high temperatures and VSM measurements 

High-temperature measurements of magnetic susceptibility were 
carried out in four samples (#7, #8, #20 and #21) to test past ther
moalteration processes (e.g., Jordanova et al., 2001; Kapper et al., 2014; 
Shahack-Gross et al., 2018). Broadly, in non-heated materials, the 
magnetic susceptibility during heating and cooling is different, due to 

Fe-bearing minerals (e.g., magnetite, hematite, clays) show composi
tional changes after heating (e.g., Hrouda et al., 2003; Liu et al., 2005). 
Since these compositional changes are non-reversible, re-heating cannot 
modify the magnetic mineralogy again, so thermomagnetic curves are 
similar. 

In order to broadly characterize the mineralogy, concentration and 
size of magnetic minerals, hysteresis loops and the magnetization with 
reverse field were also measured (Section 2.1.). The VSM yields accurate 
and fast information about the paramagnetic susceptibility (Xpara), 
saturation remnant magnetization (Mrs), saturated magnetization (Ms), 
coercivity of remanence (Hcr) and coercivity (Hc). While extensive pa
rameters (Xpara, Mrs and Ms) give information about the ferrimagnetic 
fraction (i.e., magnetite, titanomagnetite, maghemite), Hcr and Hc pa
rameters provide insights into the anti-ferromagnetic minerals (e.g., 
hematite, goethite). 

In general, the formation of ferrimagnetic minerals is expected to 
occur with combustion (from 200 ◦C, but mainly over 500 ◦C) under 
certain REDOX conditions and the presence of organic matter (e.g., 
Schwertmann and Taylor, 1989; Ketterings et al., 2000; Certini, 2005; 
Oldfield and Crowther, 2007; Churchman et al., 2006) (Fig. 4A, B). 
Concerning the anti-ferromagnetic fraction, dehydroxilation processes 
may also occur in goethite or ferrihydrite at low temperatures (~150/ 
300 ◦C), causing either the formation of hematite (Rooksby, 1961), 
ultra-fine maghemite or magnetite, depending on Eh, pH and organic 
matter conditions (e.g., Ketterings et al., 2000; Liu et al., 2005; Certini 
and Scalenghe, 2006; Churchman et al., 2006; Torrent et al., 2006). The 
magnetic signature of paramagnetic minerals (i.e., Fe-rich clays or Fe- 
carbonates) with temperature is unclear and may vary substantially 
depending on the initial mineralogy. For instance, magnetite was pro
duced out of siderite at 400 ◦C (e.g., Pan et al. 2000), whereas in the case 

Fig. 4. A) Summarized scheme of main ferri- and anti-ferromagnetic changes in soils, including combustion processes (natural or anthropogenic). “o.m.” = organic 
matter. 1 e.g., Maher and Taylor, 1988; Dunlop and Özdemir, 1997; Maher, 2008; Orgeira et al., 2011; Maher and Possolo, 2013. 2 e.g., Tite and Mullins, 1971; Taylor 
and Schwertmann, 1974; Maher, 1986; Dearing et al., 1996; Liu et al., 2005; Gialanella et al., 2010. 3 e.g., Lovley et al., 1987; Fassbinder and Stanjek, 1994 4 e.g., 
Ketterings et al., 2000; Certini and Scalenghe, 2006; Orgeira and Compagnucci, 2006. 5 e.g., Barrón and Torrent, 2002; Torrent et al., 2006. B) Thresholds for main 
magnetic changes under oxidizing (Ox.) and reducing (Re.) conditions. These magnetic mineralogy changes dependen on the amount and type of organic matter, 
temperature duration and intensity, type of original Fe-bearing minerals, granulometry, pH and Eh conditions, among others (e.g., Dankers, 1978; Maher and Taylor, 
1988; De Boer, 1999; Ketterings et al., 2000; Liu et al., 2005; Torrent et al., 2006; Orgeira and Compagnucci, 2006). 
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of Fe-rich clays, changes are expected to occur at about 400 ◦C (i.e., 
dehydroxilation), but mostly after 600 ◦C, when the complete destruc
tion of the mineral structure occurred (e.g., Ulery et al., 1996; Certini, 
2005 and references therein) (Fig. 4B). 

2.4. The experiment 

Ten samples from the assemblage were selected and heated under 
oxidizing conditions at different temperatures (Supplementary material, 
Table 1) to explore thresholds in which local sediments show changes in 
their magnetic mineralogy. Reducing conditions could be produced by 
the burning of organic matter (e.g., Maher and Taylor, 1988), however, 
the case under study shows low %TOC values, so the oxidizing atmo
sphere used in the experiment comprises a good analogue to the pre
sumed local fire. Each sample was divided into four sub-samples (total of 
40), one of which was heated at 220 ◦C, 400 ◦C, 600 ◦C and 850 ◦C for 
one hour. To analyze SP formation, the %XFD parameter was calculated 
in all samples (Section 2.2.). Hysteresis loops and the isothermal 
remanent magnetization with back field were also carried out for a set of 
samples (E#7, E#8 and E#21 at four temperatures). Additionally, to 
corroborate reversible behavior thresholds, the magnetic susceptibility 
at high temperature was performed in sample #21 (Section 2.3). 

3. Results 

3.1. Magnetic mineralogy characterization of raw samples 

With minor variations, sediments under study correspond to light 
brownish grey well-sorted fine sands. Contributions of finer materials 
define textural variations among sandy loams, loamy sands and silt clay 
loams. Along with a well sorting, they indicate aeolian deposition, in 
agreement with geomorphologic and climatic descriptions (Bouza et al., 
2017a; Coronato et al., 2017). On the whole, %TOC values are very low 
(0.95%), with relatively high concentrations (1.5–2.99%) in samples 
#7, #21, #25, and #32. The average %TIC is also low (<1.37%), though 
with few moderate contributions (3.13–6.8%) in samples #18, #25, #26 
and #27; and a peak (9.53%) in #20. Full data of magnetic analyses 

presented below are included in the Supplementary material, Tables 1-5. 
The mean X at low frequencies is about 3.8⋅10− 8 m2/kg, whereas 

samples #5, #17, #27 and #30 show values significantly higher, and 
samples #20, #21 and #32 are considerable below this value (Fig. 5). 
Such differences in the magnetic fraction are related to the mineralogy, 
concentration and/ or particle size, and may indicate different sediment 
sources and/ or distinctive post-depositional processes. By considering 
the spatial distribution of the X along the archaeological site, the small 
fort (SJ2) and the adobe-wall foundation (SJ3) comprise X anomalies. 

The contribution of %Xpara measured in 17 samples shows values <
3%, where #17, #20, #21 and #32 present the highest values, most 
likely due to major Fe-rich clays content (Fig. 5). This result is also 
observed in the high-field upper slope branch of hysteresis loops 
(Fig. 6B–D). The Ms and Mrs parameters show values above the mean for 
samples #18, #26, #27 and #30, likely related to a relative high con
centration and/ or coarse fraction of ferrimagnetics. 

The Hcr shows small variations across the assemblage (15–36 mT), 
broadly indicating low concentrations of anti-ferromagnetic minerals, 
particularly in samples #17, #26, #27 and #30. The Hc does not show 
significant variations either, though moderate higher values are 
observed in samples #5, #21 and #32, related to anti-ferromagnetic 
minerals. Two mineral populations with distinct coercivities (e.g., he
matite plus magnetite) and/ or the combination of SD and SP minerals 
(e.g., Roberts et al., 1995; Tauxe et al., 1996) are suggested for hysteresis 
loops with a slightly wasp-waisted shape (#8, #10, #16, #23, #26, 
#30, #32) (Fig. 6). 

The calculation of the %XFD which indicates SP minerals (25–30 nm) 
yields ranges between 3.2 and 5.1% (Fig. 7), thus a low content of SP 
particles and/ or a high proportion of PSD/ MD ferrimagnetics (Dearing 
et al., 1996) can be inferred. Exceptionally, the #21 shows a value 
slightly above the 6% threshold (6.21%), suggesting a significant pres
ence of SP particles. Notably, %XFD values are not correlated with the 
total X (Fig. 7), then post-depositional processes might have transformed 
the original detrital ferrimagnetic minerals into SP particles in #21, and 
likely in #20, whose %XFD is just below the 6% threshold (5.1%). 

Measurements of X at low temperatures also show that sample #21 
present SP particles (<25/30 nm) (Fig. 8A), as it is observed in the 

Fig. 5. Magnetic (black primary axis) and paramagnetic (orange secondary axis) susceptibilities of raw samples.  

I.L. Ozán et al.                                                                                                                                                                                                                                  



Journal of Archaeological Science: Reports 34 (2020) 102577

9

Fig. 6. Representative hysteresis loops of: A- a slightly wasp-waisted shape. B, C and D- undetermined shapes with presence of paramagnetic susceptibility.  

Fig. 7. %XFD against X.  
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positive linear correlation between temperature and X (Liu et al., 2005; 
Vásquez et al., 2009). Along with the presence of detrital MD magnetite, 
the wide Verwey transition of sample #21 (at − 150 ◦C) may also suggest 
the presence of maghemite (Dunlop, 2002; Hrouda et al., 2003). Like
wise, the X at low temperature in samples #7 (Fig. 8B), #8 and #20 
would point out the presence of MD magnetite and maghemite, though 
these curves are not necessarily indicative of SP particles. 

Finally, the X at high temperatures measured in four samples (#7, 
#8, #20, #21) shows non-reversible behaviors, thus a lack of previous 
thermoalteration can be inferred (Fig. 8C, D). However, the #21 shows a 
slightly different behavior, indicating reversibility up to ~350 ◦C 
(Fig. 8C). The wide Curie temperature of all analyzed samples (at 
~580 ◦C), could be related to mineral mixtures and/ or the presence of 
Ti-poor titanomagnetites. 

3.2. Magnetic mineral alteration in experimental samples 

Except for the E#20, experimental samples heated at different tem
peratures show a clear change in color, towards reddish tonalities. This 
evidence that oxidation processes and hematite formation took place 
inside the furnace, as expected. Broadly, the X shows an increase up to 
400 ◦C, and then a substantial decrease from 600 ◦C to 850 ◦C (Fig. 9A). 
This trend could be explained by the formation of fine-grain magnetite 
and/ or maghemite up to 400 ◦C. Then, hematite is formed under 

oxidizing conditions after 580/ 640 ◦C (i.e., magnetite/ maghemite 
Curie temperature), triggering a X decrease (Fig. 4). 

Interestingly, the E#20 behaves differently, since the X decreases 
until 600 ◦C, showing a maximum at 850 ◦C. This fact could be explained 
by exceptional reducing conditions within the furnace (inside the 
melting pot) favored by CO2 loss due to the CaCO3 destruction (note that 
the #20 presents a significantly higher %TIC value and the E#20 at 
850 ◦C does not present a reddish color). Reducing conditions prevent 
hematite formation and promote fine-grain magnetite/ maghemite 
minerals (Fig. 4), which explains the X increase at 850 ◦C. One could 
thus suggest that the presence of carbonates, similarly to organic matter, 
can cause reducing conditions within soil micro-environments. 

An increase of the %Xpara of E#8, E#21 and E#27 with temperature 
is registered (Fig. 9B), along with an inverse relationship with extensive 
parameters (X, Ms and Mrs). Higher %Xpara with temperature are also 
registered in the upper slope branch of hysteresis loops (Fig. 10). One 
possible explanation of this trend is that Fe released from Fe-rich clays 
after 600 ◦C (e.g., Ulery et al., 1996; Certini, 2005) may form Fe- 
carbonates with stronger paramagnetic susceptibilities. 

The Hcr increases with temperature in all the three cases, indicating 
a concentration of high-coercivity minerals (Fig. 11). The Hc also in
creases with temperature until 600 ◦C and then drops at 850 ◦C, prob
ably due to textural changes. The mixture of ferri- and anti- 
ferromagnetic minerals is revealed in the hysteresis loops by clear 

Fig. 8. Representative examples of thermomagnetic curves of magnetic susceptibility at low (A-B) and high (C-D) temperatures.  
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wasp-waisted shapes in samples heated at 850 ◦C (Fig. 10). 
Experimental samples indicate an increase of the %XFD with tem

perature (Fig. 12A), in a non-linear trend. A conspicuous drop of the % 
XFD at 600 ◦C is also observed, likely attributed to textural changes. 
Again, in #27, the significant decrease of this parameter at 850 ◦C could 

be attributed to grain-size changes (Maher and Taylor, 1988; Dearing 
et al., 1996). Even if this increase on the %XFD suggest a relative increase 
on SP, the absolute content of SP grains in heated samples remain rather 
low due to the poor-ferrimagnetic mineralogy of raw samples. This fact 
along with the increasing contribution of anti-ferro- and paramagnetic 

Fig. 9. A- magnetic and B- paramagnetic susceptibility of the experimental samples (grey columns correspond to the raw samples).  

I.L. Ozán et al.                                                                                                                                                                                                                                  



Journal of Archaeological Science: Reports 34 (2020) 102577

12

minerals to the total X as temperature rise could explain the lack of 
correlation between X and %XFD (Fig. 12B). 

Finally, thermomagnetic curves of the E#21 heated at four temper
atures indicate that the reversibility related to the thermoalteration of 
magnetic minerals is outlined around 400 ◦C (Fig. 13). At 850 ◦C, the 
curve shows a paramagnetic behavior, so a substantial decrease of 
ferrimagnetic minerals attributed to oxidation processes is inferred. 

4. Discussion 

4.1. Magnetic signals of thermoalteration processes 

Magnetic analyses in raw samples indicate that sediments across the 
Fuerte San José present low X, a contribution of Xpara below 3% (Fig. 5) 
and also low content of anti-ferromagnetic minerals. However, taking all 

Fig. 10. Representative hysteresis loops of experimental samples. A to D- progression with temperature in E#21. Note the increasingly defined wasp-waited shapes 
with temperature and the more pronounced upper slope branch indicating the presence of paramagnetic susceptibility. E and F- strong wasp-waited shapes in samples 
burnt at 850 ◦C. 

Fig. 11. Hcr against temperature in three selected samples.  
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the analyses into consideration, some samples depict a distinctive 
magnetic/ mineralogical behavior. For instance, the #17 (the small fort) 
presents a relative high content of ferrimagnetics (magnetite, titano
magnetite, maghemite) and paramagnetics (e.g., Fe-rich clays), whereas 
the #20 (the adobe-wall foundation, upper sample) shows a weak X (but 
a quantity of SP grains above the average) and a relatively high content 
of Fe-rich clays (Figs. 5 and 7). The #21 (the adobe-wall foundation, 
lower sample) is the most anomalous case, also with a weak X, but with a 

significant amount of SP grains. This sample also shows relatively high 
Fe-rich clay content and a relatively higher concentration of high- 
coercivity minerals (e.g., hematite, goethite) (Figs. 5, 7, and 8A). 
Finally, except for the presence of SP, the #32 (the adobe) has a similar 
behavior to #21 (Figs. 5 and 7). 

The presence of SP grains in soils is associated to combustion and/ or 
pedogenetic processes, if iron-bearing minerals are available (Fig. 4). 
Since arid and cold conditions of the study area do not favor soil 

Fig. 12. A- the %XFD parameter from the ten experimental samples heated at four temperatures, including raw samples. B- the %XFD against the total X.  
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development (Bouza et al., 2017a) as it is below the 300 mm precipi
tation threshold (Maher and Thompson, 1991; Maher and Possolo, 
2013), the concentration of SP grains associated with pedogenesis can 
be ruled out here (e.g., Mullins, 1971; Maher and Taylor, 1988; Fass
binder and Stanjek, 1994; Orgeira et al., 2011). Moreover, the presence 
of volcanic glass was not registered in the locality thereby SP grains 
cannot be associated with titanomagnetites contained in the glass either 
(Ozán et al., 2019). Considering this scenario, SP grains in raw samples 
are most likely to thermoalteration processes. 

The %XFD calculated for experimental samples showed SP grains 
formation under oxidizing conditions already at low temperatures of 
220 ◦C during only one hour, thus indicating that fine-grain ferrimag
netics can be easily produced by heating in the sediments under study. 
These experimental results account for raw samples interpretation, 
where a significant presence of SP grains is only registered in #21 and 
suggested in #20 (Figs. 2, 3B, 7). These results fit well with the expec
tations proposed above (Section 1.3.), where the sector SJ3 should 
preserve signal of thermoalteration. 

Consistently, small fragments of burnt bones and charcoal are 
observed in the #21 thin section (Fig. 14A–C). Note that available his
torical information does not report the inclusion of ash or charcoal as 
adobe temper (Tello and Sanz Sanz, 1994), so their presence can be 
interpreted as postdepositional. The sample #20, located just above the 

#21, registers “calcitic-ash” (Fig. 14D), CaCO3 associated with burning 
and subsequent post-depositional processes occurring in the calcium of 
some plant cellular minerals, (e.g., Iglesias et al., 1997; Canti, 2003; 
Friesem et al., 2014) (note that high %TIC values in #20 were recorded). 
This ashy deposit could be the result of woody plan remains associated 
to a thatch roof of such adobe structure (Kreimerman and Shahack- 
Gross, 2019), whose preservation could have been favored by the 
regional aridity and alkaline soils (Friesem et al., 2014). In fact, the 
willow wood reported in documents (Fig. 3A) could have produced such 
ashy deposit as it contains calcium crystals and calcium oxalates (Arihan 
and Güvenç, 2011; Petrochenko et al., 2019). 

The existence of SP grains < 20 nm in #21 was also corroborated by 
the X at low temperature, nonetheless it does not show the expected 
reversibility in thermo-magnetic curves (Fig. 8A, D). Experimental 
samples indicate that the reversible behavior takes place after 400 ◦C 
(Fig. 13B). If combustion processes occurred in #21, therefore temper
ature should have been below 400 ◦C. In fact, fire temperatures in sur
face and shallow (<10 cm) soils in areas with scarce fuel beds, seldom 
reaches temperatures above 300 ◦C (e.g., Gedye et al., 2000; Certini, 
2005; De Bano et al., 2005; Certini and Scalenghe, 2006). Burn experi
ments carried out on adobe structures with vegetal roofs also indicate an 
indoor temperature of about 400 ◦C and floor-sediments under 500 ◦C 
(Forget et al., 2015; Kreimerman and Shahack-Gross, 2019). In this 

Fig. 13. Susceptibility at high temperatures of samples E#21 burnt at four temperatures.  
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sense, greyish sediments observed at SJ3 (Fig. 3B) could correspond to 
low-temperature combustion and/ or short-duration heating processes 
(March et al., 2014; Kreimerman and Shahack-Gross, 2019). 

The X of experimental samples decreases with temperature due to 
oxidation processes (Figs. 9A, 11), while raw samples #21, #20 and #32 
shows relative low X values (Fig. 5). This fact suggest that: 1) samples 
#21, #20 and #32 suffered a thermoalteration processes and 2) such 
combustion occurred under oxidizing conditions, given their low 
organic matter content. The relatively high Hc of those samples support 
the latter interpretation. 

The %Xpara along with the high-field upper slope branch of hysteresis 
loops of experimental samples broadly suggests an increase of para
magnetism with temperature (Fig. 9B). Notably, raw samples #17, #20, 
#21 and #32 indicate a relatively high signal of paramagnetics (Figs. 5 
and 6). Such paramagnetic enhancement could partially respond to 
some degree of past thermoalteration processes. Nevertheless, since 
#20, #21 and #32 are related to adobe, with high clay contents, the % 
Xpara cannot be stand as a decisive indicator of thermoalteration. 
Alternatively, similarities between #20, #21 and #32, and #17 may 
rather suggest that adobe could be employed to build the small fort 
(#17). 

By considering all data, fire evidences are circumscribed to the 
adobe-wall foundation (SJ3), as expected (Section 1.3.). Indeed, adobe- 
structural features with relatively high organic matter content (Forget 
et al., 2015), could have been more likely to be magnetically modified. 
Moreover, historical sources describe that the 1810 AD fire particularly 
affected armory sectors (Aragón, 1810), storage for gunpowder and 

ammunition. In this regard, the higher thermoalteration signal of the 
adobe structure (#20, #21) could hint that this area corresponded to the 
gunpowder storage of the Fuerte San José. 

Certain degree of magnetic-mineral modification related to combustion 
at the small fort (SJ2) were also expected (Section 1.3.) as this sector 
probably contained a palisade (i.e., abundant fuel) and a perimeter ditch 
which could have behaved as a natural trap for sediments (Fig. 3B). How
ever, present results do not follow such expectations. This fact could either 
signify that wind deflation favored by the topographic position of the small 
fort (i.e., high-exposition) rapidly removed burnt sediments and/ or there 
were not exist the extra-fuel availability in this sector (i.e., palisade), 
considering the precariousness architecture of the Fuerte San José. On the 
other hand, the lack of thermoaltered signals in the rest of the locality could 
rather respond to a low-magnitude fire unable to leave a durable soil signal, 
in agreement with the proposed expectation (Section 1.3). 

In sum, whereas more analyses are required to further discuss the 
adobe sample (#32) results, sediments from the adobe-wall foundation 
(SJ3) present several magnetic signals of thermoalteration, suggesting 
temperatures under 400 ◦C, likely related to the documented fire. The 
fact that other sectors of the Fuerte San José (SJ1, SJ2, SJ4, SJ5) did not 
show signals of thermoalteration may suggest that the ignition source of 
the fire and/ or the available surface fuel were insufficient to cause a 
durable magnetic signature. Thus, the massive fire of the Fuerte San José 
described by historians (e.g., Fontana, 1873; Biedma, 1905; Barba Ruiz, 
2000; Lanöel et al. 1974) is not consistent with neither the archaeo
logical record (Bianchi Villelli et al., 2019), nor the thermoalteration 
signatures registered by magnetic analyses. 

Fig. 14. Photomicrographs. A- Burnt bone fragment (sample #21, plane polarized light). B- Same as A, with higher magnification. C- Subangular fragment of 
charcoal (sample #21, plane polarize light). D- Microcrystalline calcium carbonate aggregates, whose preservation is favored under arid conditions (Canti, 2003; 
Gur-Arieh et al., 2014), between sand grains of quartz, plagioclase, K-feldspars and lithics (sample #20, cross polarized light). 
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5. Conclusion 

The magnetic analysis of 32 sediment samples from the Fuerte San 
José, plus 40 experimental local samples heated at different tempera
tures was carried out in order to assessing past thermoalteration pro
cesses. The presence of superparamagnetic grains, thermo-magnetic 
susceptibility, the relative amount of total and paramagnetic suscepti
bility and the coercivity and coercivity of remanence magnetic proved to 
be sensible approaches to discuss the occurrence of a historical fire, 
particularly in a context where archaeological evidences are absent or 
ambiguous. Results indicate a low-magnitude fire, only registered in 
sediments from an adobe-wall foundation, maybe amplified by the 
relatively more organic matter content contained in the adobe-walls, or 
in the wood and thatch roofs, and/ or possibly, gunpowder. This 
research thus indicates that neither magnetic nor archaeological evi
dence supports historical narratives which describe a massive fire of the 
Fuerte San José in 1810 CE. 

Since magnetic properties are often the outcome of several envi
ronmental processes, only the combination of many lines of evidence 
can improve interpretations. At this regard, the experimental design was 
particularly fruitful for the research process, since basic conceptual as
sumptions are often insufficient to explain magnetic behaviors of natural 
contexts. For instance, the fact that SP grains formation under oxidizing 
conditions already occur at 220 ◦C in only one hour and reversibility of 
thermo-magnetic curves is outlined about 400 ◦C, were key insights 
from the experiment. The methodology proposed here also allowed the 
formulation of stimulating questions for future agendas, such as the role 
of carbonates -instead of organic matter- to generate reducing condi
tions when heated, and how paramagnetic changes with temperature 
can be related to Fe-carbonate formation. Anthropogenic or natural 
paleo-fires analyses in arid/ semi-arid environments could be 
approached by the proposed methodology. 
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Fontana, J.L., 1873. Despoblación de San José. Revista del Río de la Plata, Tomo VII:330- 
336. 

Forget, M.C., Regev, L., Friesem, D.E., Shahack-Gross, R., 2015. Physical and 
mineralogical properties of experimentally heated chaff-tempered mud bricks: 
Implications for reconstruction of environmental factors influencing the appearance 
of mud bricks in archaeological conflagration events. J. Archaeolog. Sci. Rep. 2, 
80–93. 

Friesem, D.E., Zaidner, Y., Shahack-Gross, R., 2014. Formation processes and combustion 
features at the lower layers of the Middle Palaeolithic open-air site of Nesher Ramla, 
Israel. Quat. Int. 331, 128–138. 
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