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ABSTRACT

Essential oils are a mixture of volatile compounds, products of the secondary metabolism of 

plants. Once extracted, they can be deteriorated losing their organoleptic and therapeutic 

properties due to various environmental factors, being light exposure in aerobic conditions the 

main cause. In this work the oregano essential oil extraction and characterization from Origanum 

vulgare plants grown in the experimental field of the FTU-UNSL and its photodegradation in 

MeOH:H2O 60:40 v/v solvent were studied. Characterization by EIMS and NIST Mass 

Spectrometry indicates the main compounds of oregano essential oil, quantified in the extracted oil 

by GC-MS, are carvacrol (7.14%) and thymol (47.37%). Degradation of essential oil and its two 

major components can be caused by reactive oxygen species photogenerated from endogenous 

sensitizers as riboflavin. Our results suggest degradation occurs involving singlet molecular 

oxygen. Interaction of carvacrol and thymol with singlet oxygen is mainly a physical process, 

while essential oil has an important reactive component, which indicates there might be other 

constituents which could contribute to reactive photoprotection.The effect of simultaneous 

presence of oregano essential oil and tryptophan aminoacid used as a photooxidizable model 

under riboflavin- photosensitizing conditions was studied in order to evaluate the possible 

photoprotection exerted by the essential oil.
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INTRODUCTION

Essential oils (EO) are a mixture of aromatic volatile compounds present in specialized cells of 

certain plants which use them to attract pollinators as well as to protect themselves from predators 

and pests.(1) Many EO extracted from the Lamiaceae family plants such as lavender(2), lemon 

balm(3) and oregano(4, 5), among others, have demonstrated antioxidant properties. In particular, 

antioxidant capacity of oregano essential oil (OEO) has been studied in various extracts obtained 

from several species of oregano cultivated in a wide variety of locations around the world such as 

Greece(6), Turkey(7), Colombia(8), China(9), Lithuania(5), Mexico(10), among others.

To understand the antioxidant activity of OEO its chemical composition must be analyzed. Several 

studies indicate OEO composition includes: p-cymene, terpinenes, flavonoids, among others. 

However, around 50% of OEO consists of phenolic compounds, mainly carvacrol (CR) and 

thymol (TM), two positional isomers of isopropylmethylphenol(7, 9, 11, 12). The structures of 

both compounds are shown in Figure 1.

Please, insert Figure 1 here

The amount of these major components varies when OEO is extracted from different genera(7), in 

different seasons or using different cultivation methods(10). It also depends on the age and the 

development state of the plant(13) and on the part of the plant used(9). Table 1 shows CR and TM 

composition of OEO extracted from flower and leaf of plants located in different countries. 

For instance, OEO from Origanum compactum is a good scavenger of radicals as 2,2-diphenyl-1-

picrylhydra-zyl (DPPH) and 2,20-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 

property attributed to the presence of CR and TM (14). This activity is similar to the antioxidant 

activity of Vitamin C (15). Furthermore, authors explain the antioxidant activity considering a 

possible synergy between the components of OEO (15).

The use of OEO in the pharmaceutical, food and cosmetics industries has gained special interest. 

The limitation of synthetic food additives in the food industry have fostered their substitution with 

natural ones(16, 17). OEO can be used as a stabilizer of edible oils or of meat products and it even 

increases the oxidative stability of other products such as fried chips(18). In addition to their A
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antioxidant properties, the antimicrobial properties(7, 18) of OEO make it a good candidate as a 

natural preservative(6, 11). 

Nevertheless, once extracted, OEO can be degraded losing its organoleptic and therapeutic 

properties due to various environmental factors. Temperature, oxygen availability and light 

exposure under aerobic conditions are the main causes of this decomposition(19). Degradation of 

the OEO leads to the generation of allergenic compounds which are responsible for dermatitis, 

eczemas, among others(20, 21). Reactive oxygen species (ROS) photogenerated from endogenous 

sensitizers can also be the cause of OEO degradation.

In this work, OEO extracted form Origanum vulgare plants in flowering state collected in the 

experimental field of the FTU-UNSL was characterized and its ROS-mediated degradation was 

studied. A systematic study of the kinetics and mechanisms involved in the degradation of OEO 

and its major components TM and CR was performed under visible light irradiation in the 

presence of vitamin B2. The aim of the study was to establish the contribution of ROS such as 

singlet molecular oxygen (O2(1Δg)) and superoxide radical anion (O2
●-) in OEO degradation. 

Considering the possibility of using OEO as a natural preservative, the aminoacid tryptophan (Trp) 

was used as a typical oxidizable target to evaluate an eventual antioxidant/protective effect of the 

OEO.

MATERIALS AND METHODS

Materials. All experiments were made with freshly prepared solutions at room temperature. OEO 

major components carvacrol (CAS 499-75-2) and thymol (CAS 89-83-8) were provided by 

Aldrich and Biopack, respectively. Riboflavin (Aldrich, CAS 83-88-5) and Rose Bengal (Anedra, 

CAS 11121-48-5) were used as sensitizers. Furfuryl alcohol (CAS 98-00-0) and the specific 

quenchers sodium azide (CAS 26628-22-8), superoxide dismutase (CAS 9054-89-1) and catalase 

(CAS 9001-05-2) were purchased from Aldrich while L-tryptophan (CAS 73-22-3) was provided 

by Sigma Chem. All these compounds were used as received. 

Acetone (Aldrich, CAS 67-56-1) was used as solvent in the determination of OEO composition 

while  deuterated water (D2O, Aldrich, CAS 7789-20-0) and deuterated methanol (MeOD, 

Aldrich, CAS 1455-13-06) were employed to enlarge singlet molecular oxygen phosphorescence A
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lifetime in TRPD(22). In every other determination methanol HPLC quality (Merck, CAS 67-56-

1) and triply distilled H2O were used as solvents in a MeOH:H2O 60:40 v/v ratio. 

OEO extraction. OEO was extracted by hydrodistillation with Clevenger trap from Origanum 

vulgare plants in flowering state collected in the experimental field of the FTU-UNSL. This 

technique extracts OEO placing a mixture of the vegetable material (leaf and flower milled and 

dried) and water in a hydrodistillator. The heating releases the OEO, which evaporates due to its 

high volatility and the mixture of steam and essential oil flows to a condenser. The essential oil 

can be separated from the condensed liquid by its very low miscibility in water. Further details of 

this technique can be found in the literature(23).

Photolysis. Stationary aerobic photolysis of solutions containing CR, TM or OEO 

(0.2 mM) and Rf or RB were carried out in a home-made photolyzer for nonmonochromatic 

irradiation (150 W quartz-halogen lamp) with a 400 nm cutoff filter, ensured that the light was 

only absorbed by the sensitizer. The Scheme 1 depicts the irradiation experiment.

Scheme 1. Diagram of 

irradiation experiment.

Sample preparation. Individual stock solutions of every substrate (TM, CR and OEO) of known 

concentration were prepared using MeOH as solvent. The sensitizer solution (Rf or RB) was 

prepared in a mixture of 60:40 MeOH:H2O and 2.5 mL of this solution was placed in a quartz cell. 

An appropriate volume of stock solution was added such that the concentration of the substrate in 

the cell is 0.2 mM. The cell was irradiated and the photolysis was followed by UV-Vis 

spectrometry.

Determination of OEO composition. The main components of OEO were characterized by EIMS 

and NIST Mass Spectrometry Data Center, using a Varian Saturn 2000 equipment and employing A
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a capillary column Varian C.S. The qualitative analysis using Gas Chromatography-Mass 

Spectrometry was performed with a Finnigan-Mat-GCQ-plus Gas Chromatography equipment 

with a Mass Spectrometer (ion trap) detector, equipped with a Testek 5MS capillary column of 30 

m length, 0.25 mm internal diameter and 0.25 μm film thickness. The injection mode used was in 

Split with a ratio of 1:25. The mass spectra were obtained with in a mass range (m/z) of 28-400 u, 

with an ionization voltage of 70 eV. 

In addition, CR and TM were quantified in the extracted oil by gas chromatography using a Clarus 

500 Perkin-Elmer chromatograph, equipped with a flame ionization detector (FID) using a 

Quadrex capillary column, 007 methyl 5% phenyl silicone 30 m long, 0.25 mm internal diameter 

and 0.25 μm film thickness. The temperature program of the column employed was: initial 

temperature 60 °C maintained five minutes, followed by an increase to 180 °C at a rate of 3 

°C/min gradient and then, a gradient of 20 °C/min was used until reaching 280 °C, maintaining 

this temperature for 10 min. The carrier gas was nitrogen at a flow of 1 mL/min. The FID was 

maintained at a temperature of 250 °C and the injector at 220 °C.

Spectrophotometric techniques. An Agilent 8453 diode array spectrophotometer provided with an 

Agilent 89090A temperature controller was used to record UV-Vis spectra. A 1cm pathlength 

quartz cell with hermetical Teflon cover was used.

ROS deactivation. The possible photogeneration of ROS in solutions containing riboflavin (Rf), 

and/or their possible deactivation caused by OEO, CR or TM can be qualitatively evaluated 

through oxygen consumption in the presence of specific quenchers of ROS. Three specific 

quenchers were used in this work: sodium azide (NaN3) which physically deactivates O2(1Δg), and 

the enzymes superoxide dismutase (SOD) and  catalase (CAT), which are capable of dismutate 

O2
–and decompose H2O2 respectively. (24),(25),(26)

To determinate the rates of oxygen uptake (ROU), the sample solution was poured into a 50 mL 

pyrex tube and the specific oxygen electrode Orion 810 A+ is submerged in it. The tube was 

hermetically sealed and the system was irradiated under magnetic stirring. The sample was 

irradiated employing a 150 W quartz-halogen lamp and a 400 nm cut-off filter was used in order 

to assure neither OEO nor its major components absorb any incident light.
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Quenching of Rf electronically excited states. OEO or its major components could be able to 

quench 1Rf*, first electronically excited singlet state of Rf (process (4), Scheme 2). In order to 

evaluate this deactivation, the rate constant, 1kq, was determined. A classical Stern-Volmer 

treatment was employed according to the expression I0/I=1+Ksv[Q], where I0 and I are the 

respective stationary fluorescence intensities in the absence and in the presence of different 

concentrations of quenchers: OEO or CR or TM, represented by [Q]. Ksv is the Stern-Volmer 

constant: Ksv=1kq
1τ0, where 1τ0=5 ns, the Rf fluorescence lifetime(27). Stationary Rf fluorescence 

experiments were carried out in a Fluoromax-4 Horiba Jobin Yvon spectrofluorometer at 25±1°C. 

The excitation wavelength was 445 nm while emission wavelength was measured at 515 nm.

OEO or its major components could also deactivate 3Rf*, triplet electronically excited of Rf 

(process (5) Scheme 2). The rate constants, 3kq, for this quenching were determined using Laser 

Flash Photolysis (LFP) method. In this method Ar-saturated aqueous solutions of Rf were 

photolyzed using a Nd:YAG laser system (Spectron) and an excitation source at 355 nm, with a 

150 W Xenon lamp as the analyzing light. A PTI monochromator and a red-extended 

photomultiplier (Hamamatsu R666) were used as detection system. The signal, acquired and 

averaged by a digital oscilloscope (Hewlett-Packard 54504A), was transmitted to a PC via a HPIB 

parallel interface where it was analyzed and stored. 3Rf* was generated by a 355 nm laser pulse 

and its disappearance was monitored from the first-order decay of the absorbance at 670 nm, a 

wavelength where other possible species do not interfere. Self-quenching and triplet−triplet 

annihilation were avoided measuring the triplet decay at low concentration of Rf (0.05 mM) and at 

low laser energy. The rate constants were determined employing a Stern-Volmer treatment 

according to the expression 3τ0/3τ=1+3kq[Q], where 3τ0 and  3τ are the respective lifetimes in the 

absence and in the presence of different concentrations of quencher: OEO or CR or TM, 

represented by [Q] in the equation above. 

O2(1Δg) interaction. The rate constants for overall quenching of O2(1Δg), kt, by the OEO and its 

major components CR and TM were determined by means of time resolved phosphorescence 

detection (TRPD)(28). In this method, O2(1Δg) was generated using Rose Bengal (RB) as 

sensitizer, which was excited by irradiating the aerated solutions with 532 nm light from a 

Nd:YAG laser (Spectron), after filtering it with appropriate filters. The phosphorescence signal at 

1270 nm of O2(1Δg) emission was detected at right angle using an amplified Judson J16/8 

Germanium detector. O2(1Δg) lifetimes were evaluated in the absence, τ0, and in the presence, τ, of A
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the quencher: OEO or CR or TM. The data were plotted according to a simple Stern-Volmer 

treatment: τ0/τ=1+kt τ0 [Q], being [Q]=[OEO] or [CR] or [TM], alternatively.

The rate constant for the reaction OEO, CR or TM and O2(1Δg), kr, (process (15), Scheme 2) was 

evaluated employing an actinometrical method.(29) According to this method, kr of a sample is 

determined from slopes of the first-order plots of oxygen uptake in the presence of a sample (OEO 

or its major components) and a reference (R) upon photosensitized irradiation using the following 

expression: slope/slopeR = kr/krR. The reference used was furfuryl alcohol (FFA), with a reported 

krR value of 3×107 L mol−1 s−1 in methanolic media.(30) The ROU were determined as described in 

section 2.3.3

OEO and its major components as photo-protectors of Tryptophan. Relative rates for Rf sensitized 

photooxidation of the systems, Trp, OEO and their mixtures were evaluated through the initial 

slope of oxygen consumption as a function of photoirradiation time, employing the specific 

oxygen electrode already described. Normalized rates were obtained as the quotient between the 

respective ROUs for a given sample and for the faster oxygen-consumer sample. The experiments 

were carried out until 10-15% of oxygen consumption as a measure of the photooxidability of 

each studied system.

RESULTS AND DISCUSSION

OEO composition
The main components of OEO were characterized by employing EIMS and NIST Mass 

Spectrometry Data Center techniques. Figure 2 shows the obtained chromatogram which allowed 

the determination of several compounds in the OEO extracted. They are listed in Table 2 

including their retention times (RT).

Please, insert Figure 2 here

Considering the peak areas, the first major component in the OEO is TM while CR is the second 

major component. In order to quantify TM present in the OEO by means of gas chromatography it A
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was necessary to plot a calibration curve by an external standard quantification method, injecting 

solutions of 20, 60 and 80 mg/mL of TM using acetone as solvent. As CR and TM have a similar 

chemical structure, the same calibration curve was used to calculate CR concentration.

Final results of TM and CR quantification showed OEO was 47.37% w/v TM and 7.14% w/v CR. 

This is consistent with the previously reported analysis which indicated around 50% of OEO 

consists of phenolic compounds, mainly CR and TM.(7, 9, 11, 12)

Since OEO is a complex mixture, the concentration of the major component (TM) was used as a 

way to express OEO concentration. This will be henceforth indicated as TMOEO, and it means TM 

concentration in OEO.

Photolysis of OEO in the presence of sensitizers
 Before performing any stationary photolysis experiment, associations between sensitizers, Rf and 

RB, and OEO, CR or TM were evaluated. These evaluations were performed by recording the 

spectra of a solution of Rf and the same solutions with different concentrations of OEO, CR or 

TM. No associations were observed between these compounds and no spectral changes were 

observed in absence of light (data not shown), hence photolysis experiments were carried out. 

In order to perform photolysis experiments, it was necessary to select a wavelength where only the 

sensitizer, Rf, absorbs. Figure 3 shows absorption spectra of the individual solutions of the three 

studied compounds and absorption spectrum of riboflavin. Considering these figure a 400 nm cut 

off filter proved to be useful to prevent absorption of any compound except Rf. In consequence 

this filter was selected to perform photolysis experiments. The molar absorption coefficients of 

TM and CR were also evaluated at 274 nm, and results obtained are shown in Table 3.

Please, insert Figure 3 here

    

Sensitized photoirradiation of aerated solutions of OEO in the presence of Rf vs Rf is shown in 

Figure 4. Spectral evolution of Rf is also included (inset). Both systems experimented 

modifications in their respective absorption spectra which can be attributed to chemical changes 

involving the substrate, OEO, or the mixture substrate+Rf. The slight negative absorbance 

observed in the 450–500 nm wavelength regions corresponds to Rf degradation. Similar 

qualitative results were obtained for CR and TM (data not shown). This result means Rf A
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electronically excited states and/or ROS generated from them may be responsible for the 

photoreactions.

Please, insert Figure 4 here

In order to understand the mechanism of interaction of OEO, CR and TM with photoexcited Rf, 

Scheme 2 was employed. This scheme has been used in previous investigations carried out by our 

research group(31–35).

Rf + hν → 1Rf* →  3Rf* (1)

1Rf* + Q→ Rf + Q o P(2) (2)

3Rf*+ O2(3Σg
-) → Rf•+  + O2

•– (3)

3Rf* + Q  → Rf•– + Q•+ (4)

Rf•– +H+ → RfH• (5) 

2RfH•  →  Rf + RfH2 (6)  

RfH2+ O2(3Σg
-) → RfH2

•+ + O2
•– (7)

RfH2
•+ + O2

•––→ Rf + H2O2 (8) 

O2•– + Q  → P(9) (9) 

3Rf* + O2(3Σg
-) → Rf + O2(1Δg) (10)                   

O2(1Δg)  → O2(3Σg) (11)

O2(1Δg)  + Q → O2(3Σg
-) + Q (12)                    

 O2(1Δg)  + Q → P(13) (13)

Being:kt = kr + kq

kq(3)

kET

kd

kq

kr

kq(1)
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Scheme 2. Kinetic mechanism of Rf as a sensitizer in the presence of an electron donor (Q) and 

oxygen donor (O2).

According to this scheme the absorption of incident light by the sensitizer Rf, leads it to 

electronically excited singlet and triplet states according to process (1). Both electronically excited 

states of Rf can be deactivated in presence of a quencher (Q), an electron donor wich des not 

absorb in the wavelength range used. through processes (2) and (4). 3Rf* can also interact with the 

ground state triplet molecular oxygen (O2(3Σg
-)) through process (3) . By means of an electron 

transfer reaction, process (4), the semireduced Rf and semioxidized Q forms are produced. Process 

(7) generates the reactive species O2
– which can react with Q, process (9). P(2)–P(9) represent 

eventual photoproducts. An energy transfer reaction from the triplet state of Rf to O2(3Σg
-), which 

is dissolved in the medium, can take place yielding O2(1Δg), process (10). O2(1Δg) can decay by 

collision with surrounding solvent molecules, process (11), or by interaction with Q and/or Rf 

through an exclusive physical, process (12), or chemical way, process (13). An overall rate 

constant for O2(1Δg) quenching (kt) is defined as the sum of the rate constants for processes (12) 

and (13).

Interaction with photogenerated ROS
The participation of ROS was evaluated, as described previously through oxygen consumption 

experiments in the presence of specific quenchers. The quenchers used were: sodium azide, a 

physical quencher of O2(1Δg), SOD, which dismutates O2
•–, and CAT, an enzyme responsible for 

the decomposition of H2O2. These selective quenchers in concentrations similar to those employed 

in this work have been used to confirm or discard the participation of any of those species in a 

given reaction mechanism(36, 37).

The study was first performed using the isomers CR and TM as substrates. Figure 5 shows the 

oxygen uptake results obtained upon photoirradiation of Rf (0.04 mM), the mixture Rf (0.04 mM) 

+ CR or TM (0.2 mM) and the mixtures Rf (0.04 mM) + CR or TM (0.2 mM) + every individual 

quencher. 

Please, insert Figure 5 here
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The use of specific ROS scavengers indicates that the photodegradation of both isomers is mainly 

caused by the presence of O2(1Δg) since a decrease in the ROU of the mixtures is produced in the 

presence of 5 mM NaN3. Participation of the species H2O2 is suggested in the reaction mechanism 

of TM since a decrease in the ROU of the mixture is produced in the presence of 1 μg/mL CAT. 

This quencher is capable of decomposing H2O2 according to the following reaction:

2 H2O2  2 H2O + O2(3Σg
-)CAT (15)

An increase of the ROU of the mixture is produced in the presence of 1μg/mL SOD. SOD is a 

specific quencher responsible for the dismutation of O2
– according to the following reaction: 

2 O2
– + 2 H+  O2(3Σg

-) + H2O2SOD (16)

It has been reported that SOD can favor or inhibit the rate of an oxidative process mediated by 

O2
•– on different substrates in which H2O2 participates as an oxidative species.(38) The peroxide, 

product of dismutation of O2
•– by SOD, oxidizes the substrate and contributes to the global 

consumption of oxygen. 

CR reaction mechanism seems to be different since no effect is observed in the presence of 1 

μg/mL SOD, suggesting that the species O2
•– is not involved, while the presence of 1 μg/mL CAT 

increases the rate of oxygen uptake. There is no conclusive explanation to justify the increase in 

oxygen consumption due to the presence of CAT, which eliminates H2O2 and generates molecular 

oxygen (reaction (15)). One possible explanation is that the latter is incorporated into the O2(1Δg) 

generation cycle (step (11) Scheme 2) and this species oxidizes CR in a more efficient reaction 

than the reaction against H2O2.

To increase the knowledge about the reaction mechanism involved in the interaction of OEO and 

ROS photogenerated from Rf, a similar experiment was carried out replacing the isomers by OEO.

Figure 6, Left shows that O2(1Δg) is the only ROS involved in the oxidation mechanism of the 

OEO. This can be inferred from the decrease in the ROU of the mixtures in the presence of 5 mM 

NaN3. Participation of the species O2
•– and H2O2 can be discarded since no change was observed 

in the oxygen uptake profiles in the presence of their respective quenchers. The absence of 

changes in the ROU in the presence of CAT could be explained considering the opposite effect of 

CR and TM individually. In order to prove this hypothesis, the same experiment was repeated A
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replacing OEO with a mixture of CR and TM in the same proportions found in the OEO (Figure 

6, Right). Results show no changes in the ROU of the mixture in presence of CAT, evidencing 

that the effect of this inhibitor is compensated by the combined actions of CR and TM 

individually. The presence of SOD produces an increase of the ROU of the mixture, the same 

effect observed for TM (Figure 5, Left), suggesting other components might be interacting to 

eliminate this effect in the OEO.   

Please, insert Figure 6 here

To gain insight in the reaction mechanisms of OEO, CR and TM interaction with Rf 

photogenerated ROS, kinetic constants of quenching of 1Rf*, 3Rf* and total and reactive quenching 

of O2(1Δg) were investigated.

Quenching of Rf electronically excited states
OEO quench the first excited state of Rf, 1Rf*, as Figure 7, stationary fluorescence measurements 

indicates. The same behavior was observed for its major components TM and CR (Figures S1 and 

S2 of Supporting Information). The 1kq values were obtained by a Stern Volmer treatment (Figure 

7, Inset) and are close to the diffusion limit and the three of them are listed in Table 3. These 

values are high enough to state that the use of quencher concentration ~ 10-4 M, concentrations 

employed in this work, does not appreciably deactivate the first excited state of Rf (process (2) 

Scheme 2).

Please, insert Figure 7 here

Quenching of triplet excited state of Rf, 3Rf*, by OEO and its major components TM and CR was 

studied by LFP. Figure 7 shows the Stern-Volmer plots for every studied system while 3kq values 

are listed in Table 3. 

Cardoso et al. evaluated 1kq for CR and TM in methanol and 3kq in 1:1 acetonitrile:citrate buffer 

(pH 4.6, 10 mM) at 298 K.(39) The authors informed rate constant values of the same order than 

the values determined in the present work, despite the fact that the reaction media is different in 

both cases.A
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The rate constant for the quenching of 1Rf* by OEO exceeds three times the value obtained for CR 

and TM individually, indicating other components must be responsible for this deactivation in the 

OEO.

Interaction with O2(1Δg)
The rate constant of total singlet molecular oxygen deactivation, kt, by OEO, TM and CR were 

determined by means of TRPD. Results are shown in Figure 8 and kt values are informed in Table 

3. The rate constants of reactive singlet molecular oxygen deactivation, kr, by OEO, TM and CR 

were evaluated employing the actinometrical method previously described. Results are shown in 

Figure 8, Inset while Table 3 lists the obtained kr values.

The values of kr and kt  are similar for both isomers and they are of the same order that OEO kr 

value. The kr/kt ratio was also evaluated and informed in Table 3. This ratio indicates the fraction 

of overall quenching of O2(1Δg) by every substrate that effectively leads to a chemical 

transformation. Results suggest that TM and CR are responsible for the deactivation of this 

oxidative species predominantly via a physical mechanism, a characteristic of interest for a 

protector against this oxidative species. The individual inhibitory capacity of both major 

components of OEO is not reflected in the same magnitude in the OEO kr/kt ratio, since half of the 

interactions between it and O2(1Δg) lead to a chemical transformation. The probable reason of this 

behaviour is the occurrence of other reactive routes.

Please, insert Figure 8 here

Photooxidation of tryptophan in the presence of OEO
The rate of oxygen consumption in systems where OEO and a model amino acid are present 

provides information to understand if any photoprotection of the protein residues is exerted by 

OEO. Trp interacts with O2(1Δg) and the kt and kr values are known: 7.2107 M-1s-1 and 4.7107 

M-1s-1 respectively.(40)

To evaluate the photoprotection effect, the ROUs of mixtures of Rf + Trp, Rf + OEO and Rf + Trp 

+ OEO were performed (Figure 9). The ROU of Trp in the presence of the OEO is lower than the 

rate of both individual substrates, which would indicate that the OEO protects the amino acid in A
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the tested conditions. OEO could be considered a sacrificial scavenger due to the high reactive 

component of its deactivation process.

Please, insert Figure 9 here

CONCLUSION

The ROS photogenerated by sensitization react with the OEO and its major components. OEO 

degradation proceed involving mainly O2(1∆g) and, according to the kr/kt ratio value the process of 

deactivation of this species occurs simultaneously through a chemical and a physical pathway 

resulting in a not negligible degradation of the OEO. CR and TM deactivate O2(1∆g) mainly in a 

physical fashion. The mechanism of the sensitized degradation of TM involves H2O2, ROS 

generated as a process intermediary. CR showed a more complex interaction with H2O2. This 

interaction regenerates molecular oxygen which may be incorporated in the O2(1∆g)  generation 

cycle, leading to a more efficient oxidation of the substrate. Finally, it is also possible to infer that 

the OEO might act as a sacrificial scavenger and exert a protective effect of the amino acid model 

used in the present study.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at 

the end of the article:

Figure S1. Fluorescence emission spectra of Rf in the presence of increasing concentration of TM. 

Solvent: MeOH:H2O 60:40 v/v; λexcitation= 445 nm.

Figure S2. Fluorescence emission spectra of Rf in the presence of increasing concentration of CR. 

Solvent: MeOH:H2O 60:40 v/v; λexcitation= 445 nm.

ACKNOWLEDGEMENTS

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Financial support from CONICET (PIP 11220170100208CO) and SCyT of the Universidad 

Nacional de San Luis (PROICO 2-3218- 22Q/809) and Universidad Nacional de Río Cuarto, all 

from Argentine, are grateful acknowledged.

We appreciate language revision by staff from Instituto de Lenguas, UNSL.

REFERENCES

1. Butnario, M. and Sarac, I. (2018) Essential Oils from Plants. J. Biotechnol. Biomed. Sci. 1, 35–

43. https://doi.org/10.14302/issn.2576.

2. Nurzyńska-Wierdak, R. and Zawiślak, G. (2016) Chemical composition and antioxidant activity 

of lavender (Lavandula angustifolia Mill .) aboveground parts. Acta Sci. Pol. Hortorum Cultus 15, 

225–241.

3. Gayoso, L., Roxo, M., Cavero, R. Y., Calvo, M. I., Ansorena, D., Astiasarán, I. and Wink, M. 

(2018) Bioaccessibility and biological activity of Melissa officinalis, Lavandula latifolia and 

Origanum vulgare extracts: Influence of an in vitro gastrointestinal digestion. J. Funct. Foods 44, 

146–154. https://doi.org/10.1016/j.jff.2018.03.003.

4. Schwarz, M., Zeller, S., Janke, S., Honermeier, B., Yan, F. and Azizi, A. (2016) Antioxidant 

capacity variation in the oregano ( Origanum vulgare L.) collection of the German National 

Genebank. Ind. Crops Prod. 92, 19–25. https://doi.org/10.1016/j.indcrop.2016.07.038.

5. Baranauskaite, J., Kubiliene, A., Marksa, M., Petrikaite, V., Vitkevičius, K., Baranauskas, A. 

and Bernatoniene, J. (2017) The influence of different oregano species on the antioxidant activity 

determined using HPLC postcolumn DPPH method and anticancer activity of carvacrol and 

rosmarinic acid. Biomed Res. Int. 2017. https://doi.org/10.1155/2017/1681392.

6. Tsimogiannis, D., Stavrakaki, M. and Oreopoulou, V. (2006) Isolation and characterisation of 

antioxidant components from oregano (Origanum heracleoticum). Int. J. Food Sci. Technol. 41, 

39–48. https://doi.org/10.1111/j.1365-2621.2006.01259.x.

7. Sarikurkcu, C., Zengin, G., Oskay, M., Uysal, S., Ceylan, R. and Aktumsek, A. (2015) 

Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare 

subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind. Crops Prod. 70, 178–184. 

https://doi.org/10.1016/j.indcrop.2015.03.030.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

8. Vásquez Carreño, D. R. (2012)El orégano de monte (Lippia origanoides) del Alto Patía: Efecto 

del método de obtención de sus extractos sobre la composición y la actividad antioxidante de los 

mismos. Universidad Nacional de Colombia – Sede Bogotá.

9. Xiong, W., Yan, L., Xu, H., Shu, J., Han, F., Yang, M., Ma, G. and Zhao, Z. (2017) Chemical 

composition and antioxidant activities of essential oils from different parts of the oregano. J. 

Zhejiang Univ. B 18, 79–84. https://doi.org/10.1631/jzus.b1600377.

10. Rodríguez Salinas, P. A. (2014)Evaluación estacional de la producción y calidad del aceite 

esencial en plantas de orégano (Poliomintha longiflora Gray) en dos sistemas de cultivo. 

Universidad Autónoma de Nuevo León.

11. Milos, M., Mastelic, J. and Jerkovic, I. (2000) Chemical composition and antioxidant effect of 

glycosidically bound volatile compounds from oregano (Origanum vulgare L. ssp. hirtum). Food 

Chem. 71, 79–83. https://doi.org/10.1016/S0308-8146(00)00144-8.

12. Al-Kalaldeh, J. Z., Abu-Dahab, R. and Afifi, F. U. (2010) Volatile oil composition and 

antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia 

triloba against human breast adenocarcinoma cells. Nutr. Res. 30, 271–278. 

https://doi.org/10.1016/j.nutres.2010.04.001.

13. Novak, J., Johnson, C. B., Mitteregger, U., Skoula, M. and Kazantzis, A. (2004) Seasonal, 

populational and ontogenic variation in the volatile oil content and composition of individuals of 

Origanum vulgare subsp. Hirtum, assessed by GC headspace analysis and by SPME sampling of 

individual oil glands. Phytochem. Anal. 15, 286–292. https://doi.org/10.1002/pca.780.

14. Babili, F. El, Bouajila, J., Souchard, J. P., Bertrand, C., Bellvert, F., Fouraste, I., Moulis, C. 

and Valentin, A. (2011) Oregano: Chemical analysis and evaluation of its antimalarial, 

antioxidant, and cytotoxic activities. J. Food Sci. 76, 512–518. https://doi.org/10.1111/j.1750-

3841.2011.02109.x.

15. Leyva-López, N., Gutiérrez-Grijalva, E. P., Vazquez-Olivo, G. and Heredia, J. B. (2017) 

Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 22. 

https://doi.org/10.3390/molecules22060989.

16. Si, W., Gong, J., Tsao, R., Zhou, T., Yu, H., Poppe, C., Johnson, R. and Du, Z. (2006) 

Antimicrobial activity of essential oils and structurally related synthetic food additives towards 

selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 100, 296–305. 

https://doi.org/10.1111/j.1365-2672.2005.02789.x.

17. Taghvaei, M. and Jafari, S. M. (2015) Application and stability of natural antioxidants in A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

edible oils in order to substitute synthetic additives. J. Food Sci. Technol. 52, 1272–1282. 

https://doi.org/10.1007/s13197-013-1080-1.

18. Kintzios, S. E. (2012) Oregano. In Handbook of Herbs and Spices: Second Edition Vol. Vol. 2 

(Edited by Peter, K. V.), pp. 417–436. Woodhead Publishing, Cambridge. 

https://doi.org/10.1533/9780857095688.417.

19. Turek, C. and Stintzing, F. C. (2013) Stability of Essential Oils: A Review. 12, 40–53. 

https://doi.org/10.1111/1541-4337.12006.

20. Sköld, M., Börje, A., Harambasic, E. and Karlberg, A.-T. (2004) Contact Allergens Formed on 

Air Exposure of Linalool. Identification and Quantification of Primary and Secondary Oxidation 

Products and the Effect on Skin Sensitization. Chem. Res. Toxicol. 17, 1697–1705.

21. Hagvall, L., Carina, B., Norrby, P.-O., Karlberg, A.-T. and Anna, B. (2011) Experimental and 

Theoretical Investigations of the Autoxidation of Geranial : A Dioxolane Hydroperoxide Identified 

as a Skin Sensitizer. Chem. Res. Toxicol. 24, 1507–1515.

22. Wilkinson, F., Helman, W. P. and Ross, A. B. (1995) Rate Constants for the Decay and 

Reactions of the Lowest Electronically Excited Singlet State of Mol,ecular Oxygen in Solution. 

An Expanded and Revised CompUation. J. Phys. Chem. Ref. Data 24, 663–677.

23. Cerpa Chávez, M. G. (2007)Hidrodestilacion de aceites esenciales. Universidad de Valladolid.

24. Escalada, J. P., Pajares, A., Gianotti, J., Massad, W. A., Bertolotti, S., Amat-Guerri, F. and 

García, N. A. (2006) Dye-sensitized photodegradation of the fungicide carbendazim and related 

benzimidazoles. Chemosphere 65, 237–244. https://doi.org/10.1016/j.chemosphere.2006.02.057.

25. Silva, E., Herrera, L., Edwards, A. M., De La Fuente, J. and Lissi, E. (2005) Enhancement of 

riboflavin mediated photooxidation of glucose-6-phosphate-dehydrogenase by urocanic acid. 

Photochem. Photobiol. 81, 206–211. https://doi.org/10.1562/2004-07-14-RA-233.1.

26. Silva, E., Edwards, A. M. and Pacheco, D. (1999) Visible light-induced photooxidation of 

glucose sensitized by riboflavin. J. Nutr. Biochem. 10, 181–185. https://doi.org/10.1016/S0955-

2863(98)00093-X.

27. Criado, S. and Garcı́a, N. A. (2004) Vitamin B2- sensitized photooxidation of the ophthalmic 

drugs Timolol and Pindolol: kinetics and mechanism. Redox Rep. 9, 291–297. 

https://doi.org/10.1179/135100004225006047.

28. Neumann, M. and Garcia, N. A. (1992) Kinetics and Mechanism of the Light-Induced 

Deterioration of Lemon Oil. J. Agric. Food Chem. 40, 957–960. 

https://doi.org/10.1021/jf00018a008.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

29. Scully, F. E. and Hoigne, J. (1987) Rate constants for reactions of singlet oxygen with phenols 

and other compounds in water. Chemosphere 16, 681–694.

30. Massad, W. A., Bertolotti, S. G., Romero, M. and García, N. A. (2005) A kinetic study on the 

inhibitory action of sympathomimetic drugs towards photogenerated oxygen active species . The 

case of phenylephrine. J. Photochem. Photobiol. B 80, 130–138. 

https://doi.org/10.1016/j.jphotobiol.2005.03.010.

31. Ferrari, G. V., Natera, J., Paulina Montaña, M., Muñoz, V., Gutiérrez, E. L., Massad, W., 

Miskoski, S. and García, N. A. (2015) Scavenging of photogenerated ROS by Oxicams. Possible 

biological and environmental implications. J. Photochem. Photobiol. B Biol. 153, 233–239. 

https://doi.org/10.1016/j.jphotobiol.2015.09.024.

32. Muñoz, V. A., Ferrari, G. V., Montaña, M. P., Miskoski, S. and García, N. A. (2016) Effect of 

Cu2+-complexation on the scavenging ability of chrysin towards photogenerated singlet molecular 

oxygen (O2(1Δg)). Possible biological implications. J. Photochem. Photobiol. B Biol. 162, 597–

603. https://doi.org/10.1016/j.jphotobiol.2016.07.027.

33. Purpora, R., Massad, W., Ferrari, G., Reynoso, E., Criado, S., Miskoski, S., Pajares, A. and 

García, N. a (2013) The NSAIDs indomethacin and diflunisal as scavengers of photogenerated 

reactive oxygen species. Photochem. Photobiol. 89, 1463–70. https://doi.org/10.1111/php.12114.

34. Haggi, E., Blasich, N., Gutiérrez, L., Vázquez, G., Criado, S., Miskoski, S., Ferrari, G., 

Paulina Montaña, M. and García, N. a (2012) On the generation and quenching of reactive-

oxygen-species by aqueous vitamin B2 and serotonin under visible-light irradiation. J. Photochem. 

Photobiol. B. 113, 22–8. https://doi.org/10.1016/j.jphotobiol.2012.04.010.

35. González, M., Tereschuk, M. L., Criado, S., Reynoso, E., Challier, C., Agüero, M. B., Luna, 

L., Ferrrari, G., Montaña, M. P. and García, N. A. (2015) The activity of propolis in the 

scavenging of vitamin B2-photogenerated ROS. Redox Rep. 20, 246–253. 

https://doi.org/10.1179/1351000215Y.0000000033.

36. Zang, L. Y. and Misra, H. P. (1992) Superoxide radical production during the autoxidation of 

1-methyl-4- phenyl-2,3-dihydropyridinium perchlorate. J. Biol. Chem. 267, 17547–17552.

37. Baxter, R. M. and Carey, J. H. (1983) Evidence for photochemical generation of superoxide 

ion in humic waters. Nature 306, 575–576. https://doi.org/10.1038/306575a0.

38. Afanas´ev, I. B. (1989) Superoxide ion: Chemistry and biological implications, volume I. 1st 

ed. CRC Press, USA.

39. Cardoso, D. R., Olsen, K., Møller, J. K. S. and Skibsted, L. H. (2006) Phenol and terpene A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor 

formation in beer. J. Agric. Food Chem. 54, 5630–5636. https://doi.org/10.1021/jf060750d.

40. Criado, S., Bertolotti, S. G. and Garcfa, N. A. (1996) Kinetic aspects of the rose bengal-

sensitized photo-oxygenation of tryptophan alkyl esters. Ground state and photopromoted dye-

tryptophan derivative interactions. J. Photochem. Photobiol. , B  Biol. 34, 79–86.

TABLES

Table 1. CR and TM content of OEO extracted from flower and leaf of oregano plants in different 

locations around the world.

Location Species CR TM Ref

Greece Origanum heracleoticum 42.53 1.24 (6)

Origanum vulgare subsp. vulgare 16.11 58.31Turkey

Origanum vulgare subsp. hirtum 0.33 (a)

(7)

Colombia Lippia origanoides 1.10 60.80 (8)

China Origanum vulgare L. 30.73 18.81 (9)

Jordan Origanum syriacum 41.10 0.43 (12)
a linalool was identified as a major component while TM was not detected

Table 2. Identification of OEO components by GC: retention times (RT) and classification as 

major or minor component.

Component RT (min) Classification

o-cymene 9.30 Minor component

Trans-Sabinene Hydrate 12.21 Minor component

4-Terpineol 15.70 Minor component

α-Terpineol 16.11 Minor component
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Thymol 20.68-20.79 First major component

Carvacrol 21.06 Second major component

Table 3. Rate constants for the overall and reactive quenching of O2(1∆g)(kt and kr), kr /kt ratio, rate 

constant for the quenching of singlet excited state of Rf (1kq), rate constant for the quenching of 

triplet excited state of Rf (3kq) in 60:40 MeOH:H2O solvent, quantification of CR and TM in the 

OEO (% w/v) and molar absorption coefficients of TM and CR 

System
1kq×10-10

M-1s-1

3kq×10-9

M-1s-1

kt×10-6

M-1s-1

kr×10-6

M-1s-1
kr/kt % w/v

ε274nm

M-1cm-1

TM 0.57 1.50 5.6 1.7 0.3 47.5 2160.5

CR 0.48 2.23 4.7 1.1 0.2 7.1 2220.7

OEO 1.74 1.45 4.6 2.4 0.5 - -

FIGURE CAPTIONS

Figure 1. Structures of carvacrol (CR) and thymol (TM).

Figure 2. Chromatogram of Origanum Vulgare essential oil. 

Figure 3. Absorption spectra of A) TM; B) CR; C) OEO and D) Rf in 60:40 MeOH:H2O solvent.    

Figure 4. Spectral evolution of OEO (TMOEO=0.2 mM) + Rf (0.05mM) vs. Rf (0.05 mM) 

irradiated using 400 nm cut-off filter and MeOH:H2O 60:40 v/v as solvent. Inset: Spectral 

evolution of Rf (0.05 mM) irradiated using 400 nm cut-off filter and MeOH:H2O 60:40 v/v as 

solvent.  
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Figure 5. Left: Profiles of oxygen uptake vs. irradiation time of the mixtures: a) Rf+TM+NaN3; 

b) Rf+TM+CAT; c) Rf+TM; d) Rf+TM+SOD. Right: Profiles of oxygen uptake vs. irradiation 

time of the mixtures:  a) Rf+CR+NaN3; b) Rf+CR; c) Rf+CR+SOD; d) Rf+CR+CAT. [Rf]=0.04 

mM; [TM]=[CR]=0.2mM; [NaN3]= 5mM; [SOD]=[CAT]=1μg/mL. Solvent: 60:40 MeOH:H2O. 

λirr> 400 nm.

Figure 6. Left: Oxygen consumption profiles vs irradiation time of the mixtures: a) 

Rf+OEO+NaN3; b) Rf+OEO; c) Rf+OEO+CAT; d) Rf+OEO+SOD. [Rf]=0.04 mM; 

[OEO]=TMOEO=0.2 mM; [NaN3]=5 mM; [SOD]=[CAT]=1μg/mL. Solvent: 60:40 MeOH:H2O. 

λirr> 400 nm. Right: Oxygen consumption profiles vs irradiation time of the mixtures: a) 

Rf+TM+CR+NaN3; b) Rf+TM+CR+CAT; c) Rf+TM+CR; d) Rf+TM+CR+SOD. [Rf]=0.04 mM; 

[TM]=0.2 mM; [CR]=0.03 mM; [NaN3]=5mM; [SOD]=[CAT]=1μg/mL. Solvent: 60:40 

MeOH:H2O. λirr> 400 nm. 

Figure 7. Left: Stern-Volmer plots for the deactivation rate of 3Rf*, 3kq, by A) CR; B) OEO and 

C) TM. . Right: Fluorescence spectra of Rf quenching by OEO Inset:Stern-Volmer plots for the 

determination 1kq by A) CR; B) OEO and C) TM.

Figure 8. Stern – Volmer plots for the determination of the rate constant of total deactivation of 

O2(1Δg) photogenerated from RB by A) TM, B) OEO and C) CR. Inset: Oxygen consumption 

profiles vs irradiation time of the mixtures: A) RB + CR; B) RB+TM; C) RB+OEO; D) RB+FFA. 

[Rf]=0.04 mM; [OEO]=TMOEO=[CR]=[TM]=[FFA]=0.2 mM. Solvent: 60:40 MeOH:H2O. λirr> 

400 nm cut off filter.

Figure 9. Rate of oxygen uptake (ROU) of: a) Rf+Trp; b) Rf+OEO; c) Rf+Trp+OEO. [Rf]=0.04 

mM; [OEO]=TMOEO=[CR]=[TM]=[FFA]=0.2 mM. Solvent: 60:40 MeOH:H2O. λirr> 400 nm cut 

off filter. 
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