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Abstract Feature selection is a pre–processing technique commonly used with high–dimensional datasets. It

is aimed at reducing the dimensionality of the input space, discarding useless or redundant variables, in order

to increase the performance and interpretability of models. For multiclass classification problems, recent works

suggested that decomposing the multiclass problem in a set of binary ones, and doing the feature selection on

the binary problems could be a sound strategy. In this work we combined the well–known Recursive Feature

Elimination (RFE) algorithm with the simple One–Vs–All (OVA) technique for multiclass problems, to produce

the new OVA–RFE selection method. We evaluated OVA–RFE using wide datasets from genomic and mass–

spectrometry analysis, and several classifiers. In particular, we compared the new method with the traditional

RFE (applied to a direct multiclass classifier) in terms of accuracy and stability. Our results show that OVA–

RFE is no better than the traditional method, which is in opposition to previous results on similar methods. The

opposite results are related to a different interpretation of the real number of variables in use by both methods.

Keywords: Feature selection, multiclass, one-vs-all, wide datasets

1 Introduction

Feature selection is a useful pre–processing technique commonly applied to high–dimensional datasets.
Its main goal is to increase the performance and interpretability of the models developed on the dataset,
by reducing the dimensionality of the input space, discarding useless or redundant variables in an efficient
way. Feature selection is a wide and active field of research. Two valuable reviews are Kohavi et al. [16]
and Guyon et al. [12].

The introduction in the last decade of the so-called “high-throughput” technologies has created a great
challenge to feature selection methods, its extension to “wide” datasets, with a high number of variables
(even thousands) measured over a few samples (usually less than a hundred) [19]. Well known examples
include gene expression measured with DNA microarrays [8], QSAR data [17] and mass-spectrometry
applications [18, 3]. In this context, feature selection becomes highly important, because it improves the
interpretability of the models, allowing the concentration of the knowledge–extraction process to a small
number of variables and reducing the “black–box” effect of new machine learning methods.

To work with wide datasets, the recently introduced Recursive Feature Elimination (RFE) algorithm
provides good performance with moderate computational efforts [13]. The original and most popular
version of this method uses a linear Support Vector Machine (SVM) [22] to select the features to be
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eliminated. This strategy is widely used in Bioinformatics [13, 20, 21] and also in Quantitative Structure
Activity Relationship (QSAR) applications [17]. An alternative method was introduced by Granitto et
al. [10, 11], which basically replaces SVM with Random Forest (RF) [5] into the core of the RFE method.

Most feature selection algorithms are focused on binary (two class) problems. Multiclass problems have
received much less attention, because of their increased difficulty and also because some classifiers (needed
for the selection) are limited to solve binary problems. Almost all available methods for feature selection
on multiclass problems are direct methods, i.e. methods that use a selection algorithm associated to a
classifier that can handle a multiclass problem directly. For example, RF is a natural multiclass algorithm
with an internal (unbiased) measure of features importance[5], thus RFE plus RF [11] is a direct method.
Although SVM was originally developed to deal only with binary problems, it was extended to solve
multiclass problems in different ways [6, 15]. Penalized Discriminant Analysis (PDA) [14] is also a
natural multiclass classifier. Combinations of RFE with these two classifiers can also be considered as
direct methods.

In the last years several methods were developed to solve a multiclass problem using an appropriate
combination of binary classifiers [1, 15]. The most used strategies are the “One–vs–One” and the “One–
vs–ALL” (OVA). In this last case a problem with c classes is replaced with c reduced problems, each one
consisting in discriminating one of the classes from all others. Associating one of these strategies with
a given feature selection method we can produce what we call a combined method for feature selection
on multiclass problems. In a very recent work, Wang et al. [23] combined OVA with some simple
feature selection methods (RELIEF, mRMR) and evaluated the combined methods on some standard
benchmark datasets. The authors found that selecting an independent subset of features for each OVA
classifier produces better results, in terms of accuracy, than selecting the features directly on the multiclass
problem. In this work we couple the OVA strategy with the efficient RFE method to produce the OVA–
RFE method, a more appropriate combined method for wide datasets. We evaluated the accuracy of the
new method using several real-world wide datasets and diverse classifiers (RF, SVM and PDA) to rank
the features. Using the same settings we also evaluated the stability [4, 9] of the new method.

The rest of this article is organized as follows: in Section 2, we describe the OVA–RFE feature
selection scheme. In Section 3 we compare the results of the new method with corresponding direct
methods. Finally, we draw some conclusions in Section 4.

2 The OVA–RFE method

The RFE selection method [13] is a recursive process that ranks variables according to a given measure of
their importance. At each iteration the importance of a set of variables is measured and the less relevant
one is removed. Another possibility, which is the most commonly used, is to remove a group of features
each time, in order to speed up the process. Usually, 10% of the variables are removed at each step until
the number of variables reaches a lower limit, and from that point the variables are removed one at a time
[7]. The recursion is needed because for some measures the relative importance of each feature can change
substantially when evaluated over a different subset of features during the stepwise elimination process
(in particular for highly correlated features). The (inverse) order in which features are eliminated is used
to construct a final ranking. The feature selection process itself consists only in taking the first n features
from this ranking. RFE can be used with any classifier, given that a measure of variable importance can
be obtained from the model. In this work we rank the features using 4 different measures: i) importance
extracted from SVM [13, 11], ii) from PDA [14], iii) from RF measured by shuffling the dataset [5, 11]
and iv) from RF averages of the GINI index [5].

As we stated in the introduction, the OVA method is a well-known strategy to construct multiclass
classifiers starting from binary discriminant functions. In this case, a problem with c classes is decomposed
into c binary problems, each one discriminating between one of the classes and all the remaining c − 1
classes. From this c decision functions we can estimate the posterior class probabilities and classify new
examples using the Maximum-a-posteriori rule [6, 15].

The OVA–RFE method is a simple combination of RFE selection and OVA classification. In a first
step, using OVA, the c–class problem is decomposed into c binary problems. Then, in the second step,
we apply RFE independently to each one of the c problems, producing a potentially different rank of
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Figure 1: Error rates as a function of the apparent (left panel) and real (right panel) number of variables
selected by the direct (labeled multiclass, in red) and combined RF–RFE method, for the Brain Tumor
I dataset.
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variables for each one. In the final step, we select a given number of variables and use the c classifiers
(each one fitted on its corresponding subset of features of the same length) to predict unknown samples.

3 Experiments

3.1 Experimental setup

A feature selection method that uses (in any way) information about the targets may lead to overfitting,
in particular with wide datasets. Thus, in order to obtain unbiased estimates of the prediction error,
feature ranking and selection should be included in the modeling, and not treated as a pre-processing
step; moreover, we need to appropriately decouple selection from error estimation [2].

We use a computational setup consisting of two nested processes. The outer loop performs n = 100
times a random split of the dataset in a training set (used to develop the models – including the feature
selection step), and in a test set, used to estimate the accuracy of the models. The inner process supports
the selection of nested subsets of features and the selection of appropriate parameters and development
of classifiers over these subsets (using only the learning subset provided by the outer loop). The results of
the n = 100 replicated experiments are then aggregated to obtain the accuracy estimation and stability
evaluations.

3.2 Datasets

We use 6 different wide multiclass datasets in this work. The first two correspond to gene expression
evaluated with DNA microchips. The other four are concentration of volatiles from agro-industrial
products, evaluated with PTR-MS mass-spectrometry. In Table 1 we show some details on the datasets
and the original reference for each one.

Table 1: Details on the six datasets used in this work.
Dataset Variables Samples Classes Reference

Brain tumor I 5921 90 5 Statnikov et al. [21]
Brain tumor II 10367 50 4 Statnikov et al. [21]

Fragola 232 233 9 Granitto et al. [9]
Lampone 232 92 5 Granitto et al. [9]

Grana 235 60 4 Granitto et al. [9]
Nostrani 240 60 6 Granitto et al. [9]
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Figure 2: Error rates as a function of the apparent (left panel) and real (right panel) number of variables
selected by the direct (labeled multiclass, in red) and combined RF–PDA method, for the Fragola dataset.
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3.3 Classification Errors

The common practice in feature selection is to evaluate the performance of different methods using
error curves that shows the resulting average classification error as a function of the number of variables
selected. Analyzing results for some fixed number of variables is arbitrary and gives less information,
and looking for the minimum error requires an additional validation set. Thus, for example in Figure
1, left panel (corresponding to RF rankings on the Brain Tumors I dataset) we show the evaluation
of OVA–RFE for a complete selection process, starting with all variables and ending with subsets of 2
variables. In OVA–RFE we use the same number of variables for each one of the c binary classifiers1. For
example, the error rates corresponding to 10 selected variables were obtained using the best 10 variables
for each of the c independent binary classifiers. In the same figure we included the results of using the
direct RFE method, using RF as a multiclass classifier (in all cases we show mean classification errors
± one standard deviation). The results of the new combined method seem to be clearly better than the
direct method, in agreement with the results in Wang et al. [23]. The same behavior can be observed, for
example, in Figure 2, left panel, corresponding to the Fragola dataset and rankings produced with PDA.

Unfortunately, that simple analysis (the same as Wang et al. [23]) is not correct. As we use an
individual model for each class and we select the variables independently for each one, we can end with
completely different sets of variables for each classifier. At the end, when selecting na variables we can
get as much as c × na different variables used by the combined OVA classifier. We call na, the number
of features selected at each OVA classifier, the apparent number of variables in the problem. The real
number of variables can be obtained by counting how many different variables were selected by OVA–RFE
for each na value. In the right panels of Figures 1 and 2 we compare the direct and combined methods
but this time using the real number of variables for each algorithm. For the Brain Tumors I dataset
the combined method is still better than the direct multiclass strategy, but the difference between them
is considerably reduced. For the Fragola dataset the real analysis shows that the combined OVA–RFE
method is no better than the direct strategy.

In Figure 3 we show a comparison of the direct multiclass method and the combined OVA–RFE for
the six datasets, using the real number of variables as explained in the previous paragraph. In this case
we used RF with shuffling to rank the variables. Only for the two gene expression datasets there is
some gain in using the combined method. The difference between the new and traditional methods is
maximized when using all the variables and becomes considerably smaller when the number of variables
is reduced. This result suggests that the real difference is in the OVA strategy for classification and not
in a better selection by the OVA–RFE combined method.

The qualitative result showed in Figure 3 are almost independent of the measure used in RFE to rank
the variables. For example, in Figure 4 we show comparative results for the Fragola datasets using the
four different measures we evaluated in this work, RF with shuffling, RF with Gini Index, SVM and PDA.
It is clear from the figure that the four measures produce very different results when compared with each

1As we are analyzing full error curves, we limit ourselves to use the same number of features for each binary classifier.
Of course, if one is looking only for the best performance, it is always possible to select a different number of features for
each sub-problem.
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Figure 3: Error rates as a function of the real number of variables selected by the direct (red) and
combined (black) RF–RFE method, for the six dataset analyzed.
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(c) Fragola (d) Lampone
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(e) Grana (f) Nostrani
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other, but in all cases the relation between the direct multiclass and combined methods are the same.
The same property was observed for the other five datasets (figures not shown).

3.4 Stability

Feature selection methods are naturally unstable[4, 9] and, in consequence, each replicate of the selection
process can give a different ranking. This means that the error levels showed in all previous figures
are only indications of the expected behavior of the methods, but those values cannot be associated
with a particular subset of variables. Of course, a higher stability of the selection method helps in the
identification of the most relevant features, because rankings are more similar in that case.

To compare the stability of the direct and combined methods we assigned a relative ranking position
to each feature, using a linear scale between 1 for the first position and 0 for the last one. An ideal
(totally stable) selection method should return the same value for each feature in all replicates. On the
opposite, a completely unstable method should return a random value in [0 : 1]. Thus, the dispersion
of the distribution of this relative ranking (measured over the 100 replications) is correlated with the
instability of the selection method.

In Figures 5 and 6 we show two examples of the analysis of the stability of the selection for both
methods, direct and combined. In the figures we ordered the variables from left to right according to the
mean relative ranking position, and plotted at each position a vertical line, centered at the mean value,
with height equal to the corresponding standard deviation. In this kind of figure a totally stable method
should produce a very thin diagonal plot from top-left to bottom-right, and the most unstable method (a
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Figure 4: Error rates as a function of the real number of variables selected by the direct (red) and
combined (black) method, for the Fragola dataset, using four different measures to rank the features with
RFE.
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(c) SVM (d) PDA
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random ranking) should produce a horizontal, wide plot. In both examples (and in other cases not shown
here) the direct method is clearly more stable than the combined one. This result is easy to understand,
as the combined method is the result of the selection over c independent problems, and has more freedom
to choice how to rank the variables.

4 Conclusions

In this paper we have introduced the OVA–RFE, a combined method for feature selection on wide mul-
ticlass datasets. Using an appropriate experimental setup, six wide datasets and four different measures
of importance to rank the features we evaluated the new method and compared it with the traditional
RFE version (using a direct multiclass classifier).

Wang et al. [23] showed that a combined method should work better than a direct multiclass imple-
mentation. We find the same qualitative results when evaluating OVA–RFE using Wang et al. setup.
Unfortunately, those results are misleading because they are based on an incorrect way of counting the
variables selected. When using the real number of variables the combined method is no better than the
use of a direct multiclass classifier, considering both error levels and stability of the selections. This
can be explained considering that the selections made by each OVA classifier are only “localy” optimal,
focused on one class only.

Of course, the variables selected by OVA–RFE are surely better and more informative for each in-
dividual binary problem, but the objective in constructing a multiclass feature selection algorithm is to
find an optimal set for the full multiclass problem. If one wants information about a given class it is easy
to analyze it alone with the traditional, efficient methods.
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Figure 5: Stability analysis for the direct (left panel) and combined (right panel) methods, using RFE
plus PDA on the lampone dataset.
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Figure 6: Stability analysis for the direct (left panel) and combined (right panel) methods, using RFE
plus SVM on the fragola dataset.
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