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Population regulation in large northern herbivores: 
evolution, thermodynamics, and large predators 1 

By W. T. FLUECK, Bariloche 

1 In t roduct ion  

Understanding population regulation of large northern herbivores, particularly cervids, has 
important practical and theoretical implications. Many cervid species have reached very 
high densities in modern times resulting in a variety of problems. In countless occasions, 
human intervention was ultimately the last resort to contain herbivore numbers at a cer- 
tain relationship with the vegetation. This necessity to employ methods of population 
reduction, however, is only found in man-modified environments, yet the theoretical basis 
of population regulation continues to be strongly debated (ESTES, 1996). On the one hand 
it is claimed that large northern herbivores can have a positive influence over their food 
resources including actively managing it to their benefit as well as exhibiting capacity to 
adjust their numbers to food supply through a variety of mechanisms (bottom-up regula- 
tion, Fig. 1 a). On the other hand, large herbivores are considered incapable of self-regula- 
tion and hence that they need external factors like predation to achieve effective popula- 
tion regulation (top-down regulation, Fig. 1 b). 

In analyzing population regulation of northern cervids, it is essential to distinguish 
between natural situations where the pristine framework of interspecific relationships is 
still intact, and those that are not. Moreover, others cautioned that these relationships in 
temperate zones are different from tropical environments (MoROWITZ, 1968: 136; GAlL- 
LARD et al., 1998; AUGUSTINE and MCNAUGHTON, 1998). The present analysis is based on 
ecosystems in temperate zones with plants, large herbivores like cervids, and large preda- 
tors. Firstly, I will argue that existence of density-dependent self-regulation in herbivores 
has been claimed but not been proven; secondly that thermodynamic and nutrient cycle 
considerations speak for a system of top-down regulation; and thirdly I will present evi- 
dence supporting the existence of functional top-down regulation. 

2 The acclaimed but  unproven existence of density-dependent 
self-regulation in large nor thern  herbivores: 

2.1 What is the question to be asked? 

Natural self-regulation in northern cervid populations is claimed to be an evolutionary 
strategy to cope with shortage of resources. The common usage of this concept falls into 
3 categories: a) active mechanisms such as territoriality; b) strategies such as reducing repro- 
ductive rate when sensing diminished food resources; and c) limits determined by resour- 
ce availability. The latter 2 categories, however, are often used loosely and in confusion. 

I Eingesetzt wurde ein Druckkostenzuschuss des Bayerischen Staatsministeriums f~r Ern~ihrung, Land- 
wirtschaft und Forsten, fiir dessen Gew~ihrung verbindlieh gedankt wird. - Die Schriftleitung. 
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Fig. 1. 
a) Plant capital remains stable, most annual growth is removed by herbivores. This would be expect- 
ed if herbivores exhibit self-regulation or bottom-up regulation. 
b) Plant capital remains stable, annual growth is partly removed by herbivores. This would be expect- 
ed if herbivore populations are regulated by predators. 
c) Predators are reduced/removed and herbivores undergo an irruption followed by population crash. 
Although the system stabilizes at some point, plant capital and annual growth is reduced, and herbi- 
vore populations undergo continued irruptions and crashes but at reduced amplitudes. Biodiversity 
would be lower than in Fig. 1 a). 
d) Accessible plant capital and/or annual growth is increased (e. g. through immissions, logging), her- 
bivore populations increase even with predators present and undergo irruptive cycles. Plant capital 
and annual growth may still remain high initially due to altered dynamics of mineral cycles. 
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In essence, ~natural" population regulation sensu e. g. SINGER et al., 1997, 1998 occurs 
in all mammals and represents the third category above. Physiological responses are very 
similar among different cervids. Thus, parallel to continued population growth, per capi- 
ta amount of food deprivation increases over several generations allowing for several adap- 
tions to occur, including a decrease in body size. Under more overt conditions, females 
loose offspring more often and earlier, or directly skip reproductive cycles. Although mea- 
surable effects, they have little consequence for population development and merely slow 
down intrinsic rates of population increase. However, as average body condition deterio- 
rates further, the combined decrease in recruitment rate and increase in morbidity and mor- 
tality may result in a population growth rate oscillating around zero, assuming the forage 
base stabilizes also. If further food deprivation occurs, then it leads to increased death rates 
and a reduction in population size. This scenario appears to apply to all mammals deprived 
of food and therefore, this type of ~natural regulation" is a maxim. I do not see the value 
of trying to prove that food deprivation as a result of increased population density is the 
underlying mechanism of so-called natural self-regulation in cervids. First, the extent of 
food deprivation is in itself density-dependent. Second, parallel to declining food avail- 
ability are declining biological parameters (Fig. 2) to a threshold delineated by death. Many 
studies though have evaluated the supposed density-dependent population regulation of 
cervids and have concluded that it exists because of the declining biological parameters at 
high density (CLUTTON-BROCK et al., 1982; BERGERUD et al., 1983 a; SINGER et al., 1997, 
1998; ALt~ON et al., 1998). "Natural population regulation" through food deprivation, caused 
by increasing animal density and thus density-dependent, exists without a doubt. Self-reg- 
ulation on the other hand, as opposed to ~regulation" imposed by lack of food, can be 
viewed from the perspective of herbivores which would imply that individuals detect declin- 
ing per capita food availability, then exhibit adaptive behavior to counter this tendency 
such as voluntary restriction of reproductive output, increased territoriality, etc. In this 
case the animal would have to respond ph);siotogically and behaviorally to a reduced for- 
age base such that herbivore pressure on vegetation does not exceed the upper boundary 
where vegetation communities would change basic characteristics and thereby change the 
whole ecosystem. While this view implies evolutionary processes, the commonly deduced 
existence of ~natural regulation" among northern herbivores is not an evolutionary phe- 
nomenon and is an artefact of the unnatural setting in which it was studied. As a conse- 
quence, the unnatural but stabilized system of vegetation and food-limited large herbivores 
has been referred to as carrying capacity (RINEY, 1964; CAUGHLEY, 1970; MCCULLOUGH, 
1997). For this discussion I call it maximum carrying capacity (K) which is the number of 
herbivores in a stabilized habitat determined by limiting food resources. It also is the under- 
lying concept in formulating the hypothesis that food resources regulate populations of 
large herbivores (bottom-up control). However, any definition of carrying capacity in a 
ecologically complete system must imply not only a long-term stability of herbivore and 
vegetation biomass, but also predator numbers and community species composition; that 
is, biodiversity should be optimal (SINCLAIR, 1997; SOULE and TER~ORGH, 1999). This may 
be termed evolutionary carrying capacity. 

There are no living organisms which can escape the density-dependent effects of decreas- 
ing per capita energy availability. The question is not, if evolution produced density-depen- 
dent changes on parameters affecting population growth rate, rather if the animal evolved 
a strategy of self-regulation. Considering this, we need to debate if the phenomenon of 
superabundant large herbivores like cervids represents the natural state or not. 
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Fig. 2. 
Relationships between per 
capita food availability and 
body weight, disease preva- 
lence, and reproductive rate. 

2.2 Statistical requirements to prove density-dependence 

Existence of density-dependent relationships between limited food supply and a growing 
consumer population is a basic ecological maxim. It would appear therefore, to be relati- 
vely easy to demonstrate in large herbivore populations, especially as there is only one 
independent variable, namely per capita food availability. Nonetheless, several authors have 
questioned if this phenomenon has been proven to exist in cervids. WHITE and BARTMANN 
(1997) stated that most studies were in man-modified situations and many were flawed by 
incorrect analysis and conclusions. None of the major studies concluding that density- 
dependence occurs had adequate replications to make inferences widely applicable or used 
published tests for density dependence. However, even if proven to exist, it remains to be 
demonstrated that it is relevant in natural ecosystems not yet modified by man. 

The situation is even more complicated when trying to show predation as a density- 
dependent mechanism for herbivore population control under pristine conditions. If it is 
not already extremely difficult to show density-dependence for the simplistic food-herbi- 
vore system, it is a dauating problem to show for a predator-herbivore system. The logis- 
tics are extremely unfavorable because densities of study populations are very tow; large 
systems not yet man-modified are practically absent; generation intervals of study objects 
requires long-term studies much longer than career lengths of researchers; and replications 
would be necessary, to name a few limitations. 

Predator-prey studies to date were most commonly done in man-modified environments 
(PETERSON, 1988; BOUTIN, 1992; GAILLARD ET AL., 1998). KAY (1997 a) for instance, shows 
that most of North America might have been substantially modified by aboriginal hunt- 
ing and use of fire before Columbus. Similarly, the Swiss National park and surroundings 
have received heavy resource use for at least 5000 years (ZOLLER, 1993) as was the case for 
many other areas in Europe. Thus, either habitat had been altered significantly (ANDER- 
SON et al., 1992), predator or prey communities were incomplete (PETERSON, 1988; FULLER, 
1989; BREITENMOSER and HALLER, 1993; LINDZEY et al., 1994; SINGER et al., 1997, 1998; 
GRENFELL et al., 1998; BALLARD et al., 1999), or predator and prey populations were sub- 
jected to hunting (FULLER, 1989; BOUTIN, 1992; GASAWAY et al., 1992; BALLARD et al., 1997; 
KUNKEL and PLETSCHER, 1999), or combinations of these factors. Furthermore, the effect 
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of usually one predator on one prey species was evaluated when in reality there were sev- 
eral predator and prey species present, and relationships remained unclear (FULLER, 1989; 
HUGGARD, 1993 a; SCHAEFER et al., 1999) as is to be expected (WEBER et al., 1989). Previ- 
ous studies to determine existence of functional responses by predators failed to prove it 
due to inadequate power of their study design (BoUTIN, 1992; MARSHAL and BOUTIN, 
1999). Moreover, due to high variability encountered in natural systems it is unlikely that 
traditional predator-prey studies can determine functional response and hence, regulation 
through predation, particularly because human activities have greatly affected the degree 
of these variations. Previous studies were largely inadequate to show density-dependent 
population regulation through predation and there are severe practical constraints to do so 
in the future. 

3 Thermodynamics  and nutr ient  cycles 

HAIRSTON et at. (1960) made three generally accepted observations: bound energy is fos- 
silized at an ecologically insignificant rate; most organic matter produced by terrestrial 
plants falls to the ground uneaten; and when large herbivores are subjected either to remo- 
val of predators or to being introduced into regions which their predators have not rea- 
ched, they frequently become numerous enough to deplete the vegetation. From these 
observations, they have shown that as whole groups, terrestrial &composers, producers 
and predators are limited by their own depletion of their respective resources, whereas ter- 
restrial herbivores must be limited in abundance by predation and parasitism. They furt- 
her concluded that communities with herbivore numbers being held down will be the most 
persistent. These observations have been corroborlited by theoretical considerations (see 
below). 

Pristine temperate terrestrial food chains are dominated by plant-herbivore~predator 
systems. However, bottom-up regulation considers the plant-large herbivore system as the 
principal evolutionary development that determines plant-herbivore dynamics while large 
predators are mere luxury expressions of evolutionary diversity, but with no direct influ- 
ence over trophic interaction between plants and large herbivores. The theory of top-down 
regulation on the other hand considers large predators as a primary evolutionary develop- 
ment with dominant impact on dynamics of all lower trophic levels. Evolutionary theory 
thus has the potential to shed light on these two views on regulation of large herbivores in 
temperate zones. It is the necessity to explain the functional roles which requires a change 
from mechanistic explanations to one based on the concept of patterns of informed ener- 
gy flow in open systems far from equilibrium which currently best accounts for complex- 
ity observed in temperate plant-large herbivore-large predator systems (HAIRSTON, 1964; 
ULANOWICZ and ABARCA-ARENAS, 1997). The description of such systems is inherently 
thermodynamic in nature and as such the second law of thermodynamics plays a central 
role. 

The earth accumulates insignificant amounts of energy over evolutionary time and thus 
represents a steady state system, where flux of solar radiation is balanced by loss of ener- 
gy to outer space (HAIRSTON et al., 1960; MOROWITZ, 1968). Although this has been rec- 
ognized previously, the Second Law of Thermodynamics was restated only recently to 
allow for a complete description of living processes (SCHNEIDER, t988; WEBER et al., 1989; 
ULANOWICZ, 1996, 1999; ULANOWICZ and ABARCA-ARENAS, 1997; KAY, 2000). MOROWITZ 
(1968) has shown that flow of exergy through a system will lead to cycling of both ener- 
gy and materials in that system, i. e. spontaneous formation of dissipative structures. This 
theorem of MOROWITZ also applies to complex living systems. Such cyclicity not only 
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allows systems to develop stability but to develop structure and hierarchy within them. 
Thus, earth being an open thermodynamic system experiencing a continuous gradient of 
exergy may explain self-organization to reduce this imposed gradient, which resulted in 
progressive irreversible physical, chemical autocatalytic, and biological evolution to extant 
sophisticated energy degrading chains (see also GOULD, 1989). During the development of 
an open system, it exhibits a propensity to go toward optimum order and optimum accu- 
mulation of energy (MoRoWITZ, 1968; WEBER et al., 1989; ODUM, 1991) which has been 
quantified by the concept of system ascendency (ULANOWICZ and ABaRCA-AV~NAS, 1997; 
ULANOWlCZ, 1997). This growth principle with its propensity of irreversible directionali- 
ty is a fundamental feature of thermodynamic processes, evolution, degree of biodiversity 
and ecosystem complexity (LOTKA, 1925; ODUM and PINKERTON, 1955; DEANGELI$, 1992, 
SHANAHAN, 2000). As a result, if an ecosystem is allowed to mature, it follows a repeat- 
able sequence of species composition (constrained by historical events), that is, entropy 
constrains the direction that natural processes take (SCHNEIDER, 1988). It explains evolu- 
tion of ecomorphs, which are similar phenotypes stemming from unrelated taxa, like mar- 
supial and placental ecomorphs. Sabel-toothed predators re-evolved on five separate occa- 
sions during 38 million years (placental and marsupial) and it also explains the increase in 
predator diversity since the Tertiary (MARTIN, 1989; HUN; 1996). When feeding niches 
requiring certain predatory strategies were available, different taxa could occupy them 
depending which other taxa were present at the time, indicative of systemic functional 
responses. Strategies varied from cursorial pursuit hunting occurring in the past among 
marsupial "wolves", bears, hyenas to social hunting in bears and hyenas, to stalk-and- 
ambush hunting among marsupials, hyenas (with retractable claws), canids, mustelids resem- 
bling leopards in size and skull form, as well as extinct beardogs, nimravids, and creodonts 
(MARTIN, 1989; HUNT, 1996; WERDELIN, 1996). 

So how does thermodynamic irreversibility relate to northern plant-herbivore-preda- 
tor systems? First, non-equilibrium thermodyriamics and the theorem of MoRowrrz pre- 
dict evolutionary direction of optimal order and optimal accumulation of energy and nutri- 
ents. The existence of large predators is thus the direct expression of these predictions, and 
the system as a whole, in its pristine condition, expresses optimal order and accumulation 
of energy and nutrients (species assemblage with most efficient capture and retention of 
radiant energy). The same conclusion is reached when considering nutrient cycles and food 
webs (DEANGELIS, 1992). This is no surprise because the expression of the non-equilibri- 
um thermodynamic principle by organisms requires their parallel optimization of nutrient 
incorporation. This explains why, as ecosystems become more efficient and most nutrients 
become recycled internally, the pool of nutrients stored in biomass becomes larger while 
the nutrient pool in soil becomes increasingly reduced compared to the biomass (ODUM, 
1991; DEANGELIS, t992). In fact, mineral release from weathering of rock is insignificant 
in relation to what the maximal standing biomass needs and thus, mature forest systems 
may take thousands of years to develop through increasing biogeochemical cycling effi- 
ciency (DEANGELIS, 1992). Minerals like selenium become extremely compartmentalized 
until most bioavailable forms are in biomass (FLUECK and SMITH-FLUECK, 1990). Stress- 
induced leaky ecosystems can subsequently affect mammalian species and thereby troph- 
ic dynamics (FLUECK, 1990; DEANGELIS, 1992; FLUECK, 1994 a). As most nutrients were 
tied up in north-temperate forests as standing biomass, plus little light reaching the ground, 
there was little and slow growth of forage plants which resulted in low density of cervids 
consuming only a small fraction of forest biomass. Although large herbivores can posi- 
tively influence their food supply in several ways (GORDON and LINDSAY, 1990), based on 
thermodynamics this capacity is limited and does not influence the overall relationship 
between vegetation and herbivores. However, predators can cause shorter generation inter- 
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vals and lower density in prey and rates of nutrient cycling are increased substantially, both 
in primary and secondary producers. Predators might thus maximize the efficiency of con- 
version of radiant energy into their own biomass by controlling prey turnover time and 
thereby rate of nutrient cycling, as predicted by non-equilibrium thermodynamics. With- 
out large predators (or with anthropogenic shifts in nutrient cycles), cervid populations 
increase until limited by food availability. At thesedensities, cervids reduce biodiversity, 
plant biomass, photosynthetic rates, and render the system leaky. Reduction of photosyn- 
thetic capacity not only increases atmospheric CO2, but eliminates heat dissipation through 
transpiration which may contribute to global warming by one to two orders of magnitude 
more than CO2 (SCHNEIDER and KAY, 1994). 

4 Evidence for top-down regulation 

4.1 Evolutionary traits in line with thermodynamic irreversibility 

Co-evolution between large predators and their prey is unlikely as they are characterized 
by asymmetrical selection precluding co-evolutionary arms races (VERMEIl, 1994; BRODtE 
and BRODIE, 1999). Interactions are complex because most predators prey on several species, 
while most herbivores are facing several predator species. Herbivores experience more selec- 
tion pressure than predators which are able to avoid selection imposed by herbivores 
(BRODIE and BRODIE, 1999). Furthermore, adaptations and co-adaptations cannot evolve 
to infinitely greater values since there are many biological and morphological constraints 
that limit evolutionary responses; this explains why re-evolved traits are so convergent in 
design even among distant phylogenetic line (i. e. placental versus marsupial). Predators 
thus tend to be generalists adapted to prey switching, thereby alleviating selection pressure 
from any single prey. Stalking predators for instance, appear to be non-selective and kill 
the unwary (JOBIN et al., 1999). VERMEIJ (1994) argues that predators experience selection 
pressure through their own predators or competitors. Evolutionary change in predators 
therefore, is not driven by their prey. 

Almost all modern Carnivora result from radiations having taken place during the last 
seven million years with a clear overall increase in carnivore diversity since the Tertiary 
(MARTIN, 1989). Several top-level predators are or were features of every temperate ecosys- 
tem (McLAREN and PETERSON, 1994; ESTES, 1996). Single predator systems only exist now 
because other large predator species were hunted to extinction (GAsAWAY et al., 1992). 
Wolves (Canis lupus) were the most widespread predator (PETERSON, 1988) before being 
extirpated from much of their historic range (PLETSCHER et al., 1997). Northern large her- 
bivores, therefore, are adapted to the presence of predators and evolution has shaped their 
anatomy, behavior and senses to avoid such predators (WILcox and MACCLUER, 1979; 
EDWARDS, 1983; FRYXELL, 1991; FRID, 1997). To account for predator-avoidance features, 
presence of predators must have been a predominant factor in the evolutionary ecology of 
northern herbivores. The ~natural state" thus implies continued presence of predators. A 
well-studied sequence of a predator guild over a 12 million year span showed a steady rich- 
ness of predator species and their patterns of resource division remained stable, probably 
reflecting interspecific competition (MARTIN, 1989; VAN VALKENBURGH, 1995). Temporary 
absence of a predator may occur (e. g. disease), but a local vacuum would readily be replaced 
by immigrant predators (LINDZEY et al., 1992, 1994). In multi-predator systems, tempo- 
rary disappearance of one predator could partially be compensated for by other species 
such as through meso-predator release phenomena (THURBER and PETERSON, 1991; ESTES, 
1996). Predators exhibit strategies like territoriality, prey switching, and intra- and inter- 
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specific aggression, and thereby regulate their own and prey populations. In contrast, her- 
bivores can only be self-regulating by exhibiting territoriality, both intra- and interspecif- 
ically (GORDON and LINDSAY, 1990). Nonetheless, there is no evidence that this behavior 
has evolved in temperate herbivores like cervids. 

4.2 Ecological traits of large northern predators 

Cervids provide a relatively stable food source for numerous predator species. Wolves are 
primary predators of cervids and occurred throughout the northern hemisphere together 
with brown bear (Ursus amos), lynx, bobcats (Lynx rufus) and wolverine (Gulo gulo). Oth- 
er predators like the other ursids, puma (Puma concolor), and coyote (Canis tartans) were 
limited to particular continents. Effects of different predator species are additive on herbi- 
vores due to different hunting strategies (PETERSON, 1988; KUNKEL and PLETSCHER, 1999). 
Large predators can regulate herbivores if they intrinsically regulated themselves, and 
if there is alternative prey (ERLINGE et al., 1984). Social systems consist of territoriality 
(KEITH, 1974; GORMAN and TROWBRIDGE, 1989; SANDELL, 1989) separating either indi- 
viduals or social group units in time and space: wolves (FULLER, 1989; LEWIS and MURRAY, 
1993), brown bear (WIELGUS and BUNNELL, 1994), black bear (Ursus americanus) (KEITH, 
1974), lynx (KEITH, 1974; BELTRAN et al., 1992; BREITENMOSER and HALLER, 1993), bob- 
cats (BAILEY, 1974), wolverine (BJARVALL et al., 1996), puma (SEIDENSTICKER et at., 1973; 
HORNOCKER and BAILEY, 1986; SPREADBURY et al., 1996), foxes (KErrH, 1974) and Coyote 
(HARRISON and HA~XlSON, 1984; PVRAH, 1984; SACKS et al., 1999). Territory pattern for- 
mation in wolves has been shown to be a stable phenomenon which also provides buffer 
zones for prey (FULLER, 1989; TAYLOR and PEKINS, 1991; LEWIS and MURRAY, 1993). 

Table 1. Home range sizes (km z) encountered for various large predators. 
Home ranges of males and females often overlap. 

male female both sexes citation 

Puma 

lynx 

221-938 
179-826 

453 
151 

10 

98-574 
59-685 

173-306 
55 

10 

ANDERSON et all, 1992 
12 studies cited in 
ANDERSON et aL, 1992 
SEIDENSTICKER et al., 1973 
SPREADBURY et al., 1996 

BELTRAN et at., 1992 
CHAbIBERLAIN et al., 1999 I0 

Wolverine 150-400 150-400 BJARVALL et al., 1996 
422 100 HORNOCKER and HASH, 198I 
535 105 WHITMAN et al., 1986 

Brown bear 768 125 MACE and WALLER, 1997 

Home range size and density are largely determined by food supply, although with pos- 
sible time lags as shown for lynx (BRErrENMOSER and HALLER, 1993; POOLE, 1994; OKAR- 
MA et al., 1997), wolf (FULLER, 1989; DANILOV, 1990; GASAWAY et al., 1992) and bear 
(SCHWARTZ and FaXNZMANN, 1991; ADAMS et al., 1995). Variations of home range size and 
population density indicate great flexibility of predators to adjust to food supply (Table 1 
and 2). GASAWAY et al. (1992) found that wolf and brown bear remained effective when 
moose (Alces alces) density was very low, and they did not go extinct even when there was 
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no alternative prey. However, there is an intrinsic upper limit of density determined by 
social mechanisms and further increased herbivore densities do not illicit a higher preda- 
tor densities (LINDZEY et al,, 1994; PLETSCHER et al., 1997). Daily movements also vary 
with prey density, and puma have been shown to travel 43 linear km in 9 hours (ANDER- 
SON et aL, 1992). 

Table 2. Density of large predators per 100 km2: 
different species cited in the same paper often occurred together. 

density citation comments 

Puma 7 

Wolf 

Brown bear 

Black bear 

Lynx 

3.7 
3-4 
3 
1.4 
1.1±0.15 

1.6-11.6 
8 
4 
3.3-4.5. 
3.5 
3 
2.3 
1.7 
1.5 
t 

0.6-1.5 
0.5 

0.2-0.8 
0.15 

1-55 
6.4 

4-6 
4 
3 

2.8 
2-3 
0.2 

39 
38 
9-29 
20 

44.9 
30 
20 

KUNKEL et al., 1999; 
KUNKEL and PLETSCHER, I999 
SPREADBURY et al., 1996 
ANDERSON et al., 1992 
HORNOCKER, 1970 
LINDZEY et al., 1994 
ANDERSON et at., t992 

REIG et al., 1992 
STEPANOV and POLE, 1996 
KEITH, 1974 
FULLER, 1989 
PLETSCHER et al., I997 
PECHACEK, 1994 
BALLARD, 1992 
CARBYN, 1983 
PECHACEK, 1994 
KUNKEL et al., 1999; 
KUNKEL and PLETSCHER, 1999 
BALLARD et al., 1997 
GASAWAY et al., 1992; 
ADAMS et al., 1995 
DANILOV, 1990 
ZHELEZNOV, 1992 

MILLER et al., 1997 
KUNKEL et al., 1999; 
KUNKEL and PLETSCHER, 1999 
DANILOV, 1990 
SCHMIDT and GILBERT, 1978 
ADAMS et al., I995; 
ZHELEZNOV, I996 
BALLARD, 1992 
MACE and WALLER, 1997 
GASAWAY et al., 1992 

KEITH, 1974 
SCHMIDT and GILBERT, 1978 
MILLER et al., 1997 
KUNKEL et aL, 1999; 
KUNKEL and Pletscher, 1999 

SLOUGH and MOWAT,. 1996 
POOLE, 1994 
PARKER et al., 1983 

hunted population 

unhunted population 

hunted population 

maximal density 

legal and illegal harvests 
unhunted population 

hunted population 

recently recolonizing 
heavily hunted population 

hunted population 

hunted population 

hunted population 

hunted population 

high of cycle 
high of cycle 
low of cycle 
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Coyote 

Wolverine 

7.8 
3 
2.7 

47 
39 
14 
14 

BERGERUD, 1971 
BUFKA and CERVENY, 1996 
SLOUGH and MOWAT, 1996 

KEITH, 1974 
PYRAH, 1984 
KEITH, 1974 
HENKE and BgYANT, 1999 

HORNOCKER and HASH, 1981 

after reintroduction 
low of cycle 

high of cycle 
hunted population 
low of cycle 

Table 3 indicates the specialization of large northern predators for preying on cervids 
(also see CARBYN, 1983; HUGGARD, 1993 a, b; BOYD et al., 1994). Brown bear with young 
were found to kill 6.3 calves per day during calving season (YOUNG and MCCABE, 1997). 
Other adaptive behavior was shown for wolf switching to other prey when density of their 
main prey fell below a threshold of 0.2 moose/km 2 (BALLARD et al., 1997). However, prey 
switching also occurs simply because new food sources become easier to obtain, for instance 
when calving seasons among different prey are staggered (ADAMS et al., 1995). The entire 
native carnivore assemblage of Patagonia has switches nearly completely to consuming 
introduced prey species which now comprise about 95 % of the prey biomass (NOvARO 
et al., 2000). All carnivores appeared to be opportunistic predators selecting prey accord- 
ing to catchability. 

Table3. Specialization of large predators on northern large herbivores. 
a) Percent ungulates in diet 

spring- fall- annual prey citation 
summer winter 

Lynx 95 90 roe and red deer OKARMA et al., 1997 
100 ungulates BUFKA and 

CERVENY, 1996 

Bobcat 28-32 cervids POLLACK, 1951 

Wolf 100 
100 
93 
90 + 
92-99 
79-98 

red deer 
cervids 
moose, caribou 4:5 
cervids 
ungulates 
cervids 

BOBEK et al., 1992 
KUNKEL et aL, 1999 
BALLARD et al., 1997 
MUSZYNSKA, 1996 
HUGGARD, 1993 a 
FULLER, 1989 

Coyote 50-69 43 cervids HARRISON and 
HARRISON, 1984 

Puma 100 cervids KUNKEL et al., 1999 
70 cervids HORNOCKER, 1970 

Black bear 26 caribou incl. killing VEITCH and 
KRIZAN, I996 

Wolverine ? reindeer incl. killing BJARVALL et al., 1996 
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b) Percent mortality of cervids caused by predators 

149 

Brown bear and wolf 
Brown bear and wolf 
Brown bear and wolf 
Brown bear and wolf 
Brown bear and wolf 
Lynx 
Coyote 
Coyote 

Brown/black bear, 
wolf, puma 

% 

53 and 7 
58 and 25 
50 and 26 
5-25 and 15-50 
66 and 17 
74 
82 
79 

>90 

prey 

moose calves 
moose calves 
moose adult + calves 
moose 
moose calves 
caribou calves 
deer fawns 
deer fawns 

cervids 

citation 

BALLARD et al., 1992 
LARSEN et al., 1989 
LARSEN et al., 1989 
DANILOV, 1990 
BALLARD et al., 1991 
BERGERUD, 1971 
KEITH, 1974 
WHITTAKER and 

LINDZEY, 1999 
KUNKEL and 

PLETSCHER, t999 

Wolverine 21-52 % of all predator losses in reindeer FILONOV, 1980 
4-8 % of all predator losses in moose FILONOV, 1980 

Predator population regulation: Large predator population regulation revolves around 
territorial, dispersal and social behavior (WASER, 1996). Aggressive behavior increases when 
food supplies diminish. Intraspecific killing has been documented numerous times includ- 
ing within family units for wolves (PETERSON, 1988; FULLER, 1989), puma (LINDZEY et al., 
1988; ANDERSON et al., 1992), lynx (POOLE, 1994), brown bear (SCHMIDT and GILBERT, 
1978), black bear (KEITH, 1974) and wolverine (BJARVALL et al., 1996). Replacement of a 
home range by a new individual is preceded with heavy fighting (BELTRAN et al., 1992).Com- 
paring puma density with and without hunting LINZEY et al. (1994) found no change and 
concluded that puma remained at carrying capacity through increased immigration. Exper- 
imental removal of adult male black bear resulted in a 50 % increase of bear density by 
eliminating adult male predation on subadutts (KEITH, 1974). Interspecific aggression may 
be underestimated in importance due to difficulty of documentation. KOEHLER and 
HORNOCKER (1991) showed puma may kill a significant portion of medium sized preda- 
tor species like bobcats and coyotes (63 % and 43 % of mortality, respectively) during times 
of greater habitat use overlap. Wolves kill and even eliminate coyotes, as on Isle Royal 
(PETERSON, 1988; PAQUET, 1992). This interference competition not only affects popula- 
tion density of other predators, but determines their geographical distribution and hence, 
distribution in time and space of prey. Interference competition is also inferred through- 
out evolutionary history of Carnivora (WERDELIN, 1996). 

Predator recruitment rate is affected by food supply. Following intense prey population 
crash, lynx rapidly declined 10-fold, due principally to an up to 100 % loss of kittens, high- 
er mortality rates for adults and dispersal (POOLE, 1994).Wolves entering new areas with 
plenty prey increased their reproductive rate by 3-fold (PECHACEK, 1994) and similarly, 
density of brown and black bear increased when more prey became available (ADAMS et 
al., 1995). That large predators can be very prolific is shown by sustained hunting harvest 
rates of generally over 28 % and up to 60 % for wolves (KEITH, 1974; FULLER, 1989). How- 
ever, inability of large predators to effectively reduce irruptive herbivore populations in 
man-modified habitats reflect constraints on functional and numerical responses (KErrH, 
1974; FLUECK and SMITH-FLUECK, 1996). 

What keeps large predators from reaching densities where they could deplete their prey? 
At the scale of their distribution, predators of cervids are not food limited to the point of 
compromising their own existence. Other mechanisms like dispersal (Mech, 1987), prey 
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switching (ADAMS et al., 1995; BALLARD et al., 1997), intra- and interspecific killing of preda- 
tors (HORNOCKER, 1970; SCHMIDT and GILBERT, 1978; SLOUGH and MOWAT, 1996; SPREAD- 
BURY et al., 1996; MACE and WALLER, 1997; KUNKEL et al., I999), reduced fecundity and 
territoriality prevail. These mechanisms are predicted by relatively stable food sources con- 
sisting of long-lived large herbivores. In complex systems, large bodied multi-prey and 
multi-predators have coexisted for over 12 million years (MARTIN, 1989; VAN VALKEN- 
BURGH, 1995). 

Effect on herbivore populations: Large predators regulate large herbivores especially at 
low densities (MECH and KARNS, 1977; CARBYN, 1983; BERGERUD et al., 1983 b; MESSIER 
and CRETE, 1985; BERGERUD and SNIDER, 1988; BIBIKOW, 1988; MESSIER, I991; GASAWAY 
et al., 1992; BREITENMOSER and HALLER, 1993; OKARMA et al., 1997), through a numerical 
and functional response (MESSIER, 1991). Huemul (Hippocamelus bisulcus) of a temperate 
mixed broad leaved ecosystem coexists with an intact predator community at densities of 
0.5-2/km 2 when there are no anthropogenic influences like hunting, livestock, or logging 
(DIAZ and SMITH-FLUECK, 2000). Wolf and bear kept an unhunted moose population below 
food limitation (MESSIER and CRETE, 1984). Other studies found predation to limit cervid 
populations (CARBYN, 1983; KUNKEL and PLETSCHER, 1999), while still others concluded 
that regulation through predators exists at low prey density which in absence of predation 
would reach another density domain determined by food abundance (BERGERUD et al., 
1983 a, b; BERGERUD and SNIDER, 1988; MCLAREN and PETERSON, 1994). 

With absence of predation, roe deer (Capreolus capreolus) density was 3 times higher than 
in presence of lynx (G~oss, 1979, cited in OKARMA et al., 1997), similar to results with red 
deer (Cem;us elaphus) when wolf disappeared (PEcHACEK, 1994). Reintroduced lynx on the 
other hand diminished prey density by 38 % within 6 years (BP, ErrENMOSER and HALLER, 
1993). Extinction of wolf and removal of most lynx resulted in a 24-fold increase in caribou 
density (Rangifer tarandus) whereas other predator-free caribou herds grew up to 40-fold 
over densities encountered in presence of wolves. In these cases the lack of timely intrinsic 
density-dependent limitations resulted in population crashes (BERGERUD et aI., 1983 a). 
B ERGERUD and SNIDER (1988) concluded that density of moose in absence of wolf are approx- 
imately 10-fold higher than in their presence. Similarly, MESSIER (1991) and MESSIER and 
CRETE (1985) found that the wolf regulatory effect was due to their numerical and func- 
tional responses at lower cervid density, however, at high density cervid population sizes 
became unstable. KE1TH (1974) reported on a wolf reduction program due to rabies in Alber- 
ta where over 5400 wolves were killed; in subsequent years the sate of moose hunting per- 
mits increased from 6500 to 50,000. Reducing bear by 60 % increased recruitment rate of 
moose and significantly affected their population dynamics and density (BALLARD and 
MILLER, 1992). Interestingly, only recently have bear been recognized as significant factors 
affecting survival of young cervids; but even black bear are known to kill adult male wapi- 
ti (Cervus elaphus) in good condition (BARMORE and STRADLEY, 1971). Moreover, combi- 
nations of several major predators reduced prey species substantially: when only one preda- 
tor was present, prey density was higher (GAsAWAY et al., 1992; KUNKEL et al., 1999). As 
presented in table 3, predation can substantially reduce herbivore recruitment and has 
accounted for 50 % or more of juvenile mortality (ADAMS et al., 1995; BALLARD et al., 1999). 

Many authors agree that extrapolating from single predator- single prey studies to mul- 
tiple prey- multiple predator systems makes interpretation difficult (SCHAEFER et al., 1999). 
Unfortunately, most predator studies are based on single predator species (LIMA, 1992). 
Another complicating factor on determining actual effect of large predators on prey is 
intraspecific variation on killing rate. For instance, increased prey per wolf decreases con- 
sumption rates of carcasses (CARBYN, 1983) and effectively, kill rate per wolf increases. 
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Although reintroduced lynx initially made multiple kills and reduced consumption per kill, 
this stopped as the prey density decreased (BREITENMOSER and HALLER, 1993). Further- 
more, during a numerical response of predators, reproductive rates are high and females 
with young increase kill rate by 2-3 times (OKARMA et al., 1997). Large predators also 
exhibit cultural inheritance and learning capacity and behavior is flexible and dynamic. 
Therefore, average kill rate per predator is misleading, as it varies according to actual ratios 
of predators/prey (even seasonally), sex and age distribution of predators, presence and 
dynamics of other prey and predator species. Meanwhile, as captures per unit time increase 
with higher prey density, there is a "satiation ~ threshold, at which point captures per unit 
time become constant (saturation) (SOLOMON, 1949; ABRAMS, 1993). 

Impact of large predators on prey goes beyond kills. Attack success rates are low, like 
20 % for lynx (Lynx spp.) (BuFKA and CERVENY, 1996) or 5 % for wolves (HUGGARD, 
1993 b), resulting in many opportunities for prey adaption. Consequently, distribution and 
habitat use by herbivores and its sequels on vegetation is closely linked to presence and 
distribution of predators (TERBORGH, 1988; BOWYER et al., 1997). Moreover, predators may 
drive niche differentiation among herbivores, be it intraspecific differentiation by sex or 
age, or interspecific differentiation in herbivore communities (EDWARDS, 1983; SKOGLAND, 
1991). Predators therefore act as powerful selective force on herbivores' morphology, phys- 
iology and behavior, they mediate interspecific competition and thereby enhance commu- 
nity diversity and resilience, and they affect abundance and distribution of herbivores and 
ultimately composition and dynamics of vegetation (KEITH, 1974; PETERSON, 1988). 

Top-level predators act as keystone species influencing community structure profoundly 
(EsTES, 1996; KUNKEL et al., 1999; SOULE and TERBORGH, 1999; HENKE and BRYANT, 1999). 
Local extinction of large predators releases meso-predators which were limited before, and 
their release bears major effects through ecosystems (HENKE and BRYANT, 1999). Reintro- 
ductions of large predators results in decreased cervid density. High densities of cervids 
can eliminate plant and animal species from pristine ecosystems (PUTMAN et al., 1989; 
DECALESTA, 1994; BMNES et al., 1994) and ~hreshold densities for cervids can be estab- 
lished above which plant species go extinct (wHITE et al., 1998). For instance, extermina- 
tion of large predators in Scotland resulted in high density deer population preventing 
native woodland regeneration for over 200 years, and as trees have reached their limit of 
seed bearing age, there is the possibility of losing these forests (MAGNUSSON, 1993). There- 
fore, the presence of large predators is essential in preventing losses of community com- 
ponents which occur in pristine areas. 

4.3 Ecological traits of herbivores 

Lack of behavioral adaptations for self-regulation: Theory and empirical information 
support the conclusion that most density-dependent change occurs at high population lev- 
els (close to K) for species with life history strategies typical of large mammals, such as 
cervids (FOWLrR, 1981). In artificial environments, white-tailed deer (Odocoileus virgini- 
anus) can occur at very high densities (exceeding 75/km2), yet still be very healthy with no 
evidence of stress often associated with high density populations (HANSEN et al., 1997). 
During an irruption which increased density 24-fold, Bergerud et al. (1983 a) found the 
population passing through the entire range of densities where intraspecific competition 
for food was predicted to result in logistic growth. Instead, population crashes occurred 
with little change in reproductive parameters as expected prior to the decline. When den- 
sity-dependent changes become effective, significant damage to vegetation has already 
occurred. Moose at different densities showed that a stable high-density equilibrium 
between moose and their food resources as expected from the maximum carrying capaci- 
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ty hypothesis is unlikely. Predator reduction resulted in an irruption of moose with a four- 
fold increase in density (GASAWAY et al., 1992) and in absence of large predators it will lead 
to large fluctuations in moose population size leading to overt impact on vegetation 
(SAETHER and ANDERSEN, 1996). Moreover, overcrowding resulted in high frequency of 
bone fractures even in juveniles due to osteoporosis resulting from inadequate nutrition 
(YTREHUS et al., 1999). 

Several cervid species lack dispersal behavior as a means of population regulation. Thus, 
neither high density red deer (CLU'rrON-BRoCK et al., 1982), wapiti (SMITH and RO~Blns, 
1994), nor mule deer (Odocoileus hemionus) (FLUECK, 1989) exhibited density-dependent 
dispersal. 

Northern cervids exhibit seasonal reproduction and behavioral and physiological adap- 
tations resulting in lipid deposition in autumn and lipid mobilization in winter (FLUECK, 
1994 b). However, in man-modified ecosystems female mule deer were found with autumn 
fat reserves decreasing progressively over a 4 year period when they reached levels nor- 
mally encountered only in winter-starved deer (FLUECK and SMITH-FLUECK, 1996). Dur- 
ing that last summer 41% of adult females died due to starvation and average age dropped 
from 8.3 to 4.5. years. Historical accounts on habitat and deer density were in contrast to 
the actual situation which was a result of modern land use practices. Flueck and SMITH- 
FLUECK (1996) hypothesized that changes in the nutrient dynamics and forage availabili- 
ty allowed the deer population to become limited by food resources even in the presence 
of several predator species. However, mass dieoffs occur more frequently when predators 
have been exterminated (MITCHELL and STAINE$, 1976; MUNRO, 1989; The Red Deer Com- 
mission, 1989; GREEN, 1993). 

Density-dependent effects only near K, system instability when near K, irruptive behav- 
ior, and lack of density-dependent dispersal all result in population regulation through food 
limitation. The corollaries of this type of population regulation are therefore expressed in 
phenomena like population crashes after irruptions, mass starvation dieoffs in summer and 
winter, osteoporosis in calves, which are all generally considered by many authors as ~nat- 
ural" regulation (MITCHELL and STAINES, 1976; CLUTTON-BROCK et al., 1982; The Red 
Deer Commission, 1989; MUNRO, 1989; GREEN, 1993; McCuLLOUGH, 1997; SINGER et al., 
1998). However, these cause-effect relationships are indicative of absence of self-regulat- 
ing mechanisms among northern cervids and is good evidence that pristine populations 
were exposed to effective predation, which kept numbers below levels where intraspecific 
competition would lead to a selection for behavior, like territoriality, to regulate densities. 

Irruptions: Wolves and puma were exterminated in most of the USA (MCCULLOUGH, 
1997) followed by deer irruptions (BERGERUD et al., 1983 a; Gasaway et al, 1992; MCCUL- 
LOUGH, 1997) (Fig. 1 c). A combination of habitat change and loss of predators also result- 
ed in irruptions (MARTIN and KREFTING, 1953; ELLENBERG, 1986; MAGNUSSON, 1993; 
LINDZEY et aI., 1994) (Fig. I d). Irruptions lead to peak numbers unsupportable by vege- 
tation and result in population crashes. Repeated occurrences of population growth to max- 
imum carrying capacity are accompanied by nutritional stress and declining herd health 
(DAvIDSON and DOSTER, 1997). Many red deer died from undernutrition and heavy para- 
sitism due to very high density as a result of extermination Of all large predators (KLIN- 
GLER, 1966). Cervids introduced to islands withou t predators reach food-limited densities 
(HOWARD, 1964; FREELAND, 1990). Reindeer (Rangifer tarandus) brought to St. Matthew 
Island grew from 29 deer to some 6000 within 19 years (JEFFERIES et al., 1994). During one 
winter they crashed down to 50, and since no males survived, they went extinct. 

Initial irruptions were suggested to lower K for subsequent population responses 
(LEOPOLD, 1943), and to be more extreme than those produced by removal of competitors 
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(CAUGHLEY, 1970). MCCULLOUGH (1997) refutes these views based on analysis of 3 cases 
of repeated irruptions because he could not detect diminution of subsequent population 
peaks. This however, was likely the result of not having any data on or manipulating the 
initial irruptions. McCULLOUGH also concluded that the root cause of irruptions in north- 
ern herbivores are relationships between climate, vegetation, and herbivores; and as vari- 
ous mixtures of "natural" (e. g. starvation) and anthropogenic (e. g. cessation of hunting) 
factors cause irruptions and crashes, there is supposedly no single cause for irruptive behav- 
ior (McCuLLOUGH, 1997). This view confuses cause-effect relationships resulting in irrup- 
tions. It is the lack of self-regulation among large herbivores which results in irruptions. 

As there are many ways to regulate herbivore populations nowadays, there are conse- 
quently many different situations resulting in irruptions. This includes removal of large 
predators from pristine settings; habitat change through logging or increased nutrient input 
(ELLENBERG, 1986; ELLENBERG, 1988); introductions, etc. which can all lead to irruptions 
if there is no hunting. Undoubtedly, the most notable and consistent factors leading to 
overabundance of cervids are man-caused changes in vegetation structure, in communities 
of large predator, and in nutrient cycles (MARTIN and KREFTING, 1953; LAUDENSLAYER and 
DARR, 1990; FLUECK, 1990, 1994 a; MAGNUSSON, 1993; FLUECK and SMITH-FLUECK, 1996; 
CLEMENTS and YOUNG, 1997). There are no reports of repeated deer irruptions in unmod- 
ified continental environments containing complete large predator and prey communities. 

Effect on vegetation: In most natural systems, herbivores consume 10 % or less of plant 
productivity, however, it is not day-to-day consumption that alters plant communities, but 
irruption of herbivores (McSHEA and RAPPOLE, 1997). Cervids at high density in temper- 
ate forests have detrimental effect on conifer regeneration (AUGUSTINE and MCNAUGHTON, 
1998) and can force systems into another stable vegetation complex, but different from pris- 
tine situations (STROMAYER and WARREN, 1997). For instancd, at densities of 50/kin 2, sika 
deer increased unpalatable species and some palatable ones went extinct (KAJI and YAJIMA, 
1992). Forest stands follow the expected sequence of development and regenerate with deer 
density kept at 3-6/km2; in unhunted areas with density above 10/km 2, oak forest could not 
be maintained (HEALY, 1997). Historically, available forage and predation in northeastern 
USA resulted in densities of about 4 deer/km 2 (DECALESTA, 1997). These forests were large- 
ly clearcut and large predators exterminated. Consequently, species richness, abundance and 
height of saplings of second growth forests declined significantly when deer density exceed- 
ed 8/kin2; also formation of pre-settlement forests is now prevented, and several plant species 
have been eliminated (DECALESTA, 1997). The range of aspen (Populus tremuloides) has 
declined by 60-90 % since European settlement in N. America and may be related to high 
densities of ungulates (KAY, 1997 b). However, if cervids and vegetation supposedly have 
co-evolved and occupy ecologically complete habitats, cervids should not cause retrogres- 
sion of plant succession or range damage and associated changes in faunal elements (CHADDE, 
1991; KAY, 1995 b; KAY and WALKER, 1997). In general, large herbivores at low density are 
not able to prevent closing of gaps in forest. However, high density results in impact on for- 
est plant composition with extinction of preferred species (reviewed in VAN WIEREN, 1989). 
Analyzing deer density with respect to ecosystem qualities shows that to obtain optimal 
biodiversity, density was at less than 20 % of K; for natural forest rejuvenation to continue 
it was 20-40 % of/(,' highest deer yield was achieved at 40-60 % of K; above 60 % of Kbody 
condition of animals was severely affected, vegetation suffered; and at K there was zero 
recruitment (DECALESTA and STOUT, 1997). Moose are considered a keystone herbivore that 
likely mediate rates of nutrient cycling in northern ecosystems through positive feedback 
loops at low population density; however, at high density as through lack of predation, they 
initiate negative feedback loops (MoLVAR et al., 1993). 
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Adaptions to predation: Female moose with calves typically choose areas with less qual- 
ity food in order to avoid wolves (EDWARDS, 1983). Similar antipredator behavior has been 
shown for huemul and mountain sheep (FRID, 1994; BLEICH et al., 1997; FRID, 1999). On 
the other hand, cervids even in very good body condition due to low density were not able 
to escape predation (GASAWAY et al., 1992; SMITH-FLUECK and FLUECK, 1996; DIAZ and 
SMITH-FLUECK, 2000). As predator pressure increases, antipredator behavior intensifies 
resulting in decreased prey death rate (ABRAMS, 1993). Gregariousness is another antipreda- 
tor behavior rather than to enhance food yield (HOBBS and SWIFT, 1988; BOXVrER et al., 
1997). These and other adaptions illustrate how predation greatly modifies plant-herbivore 
interactions and is an important source of natural selection processes. 

4.4 Ecological traits of pristine habitat 

Pre-agricultural temperate zones consisted Principally of large tracks of mature forests. 
Before intense habitat modification by man, temperate forests were characterized by large 
areas of mature timber and only small openings of 1-2 % created by natural disturbances 
(ZOLLER, 1993; DECALESTA, 1997; HEALY, 1997). Cervid densities were very low in the 
USA in pristine times, based on first travelers reports, early photographs and modern decline 
in berry production (KAY, 1998). Historically, temperate forests rarely experienced large 
scale fires (NORRIS, 2000), whereas wind and disease were major agents of disturbance, with 
loss of individual trees or small groups of trees being the most common pattern of distur- 
bance (RUNKLE, 1990; HANLEY, 1998; JAX, 1999). Eurasia had extensive old growth forests 
based on pollen studies (ZOLLER and HAAS, 1995) and all evidence indicates that under 
pristine conditions of dominating forests, large herbivores are not able to prevent closing 
of gaps in temperate forests; they are mere followers of succession (VAN WEREN, 1989). 
When disturbance in a foresf is of a larger scale, cervids can quickly respond numerically 
and reach densities temporarily and locally to the point where they are food limited 
(SCHWARTZ and FRANZMANN, 1991; MCLAREN and PETERSON, 1994). For instance, cervid 
density dropped 70 % after a forest fire in Alaska. At the optimal stage of plant succession, 
cervids had again increased 10-fold, but dropped 60 % as the succession continued. Large 
predators at the same time had 13 % intraspecific predation and 6 % starvation at low cervid 
density which ceased completely at higher cervid density to which predators responded 
numerically (SCHWARTZ and FV~NZMANN, 1991). 

A major obstacle to study trophic relationships between temperate plant communities, 
large herbivores and their predators is lack of adequate study areas. For instance, outside 
Alaska, most wilderness areas in USA are deficient in large carnivores; most have none at 
all save black bear, and to a lesser extent, puma. All Long Term Ecological Research sites 
and virtually all biosphere reserves lack large top carnivores (PETEgSON, 1988). Large preda- 
tors were exterminated between 1700-1800 over large areas of North America and Europe, 
as were the original forests (BuETTNER, 1988; HEALY, 1997; DECALESTA, 1997). Remnant 
tracks of pristine forests in Europe are typified by low density of large herbivores, pres- 
ence of large predators, and high biodiversity (ToMIALOJC, 1991). In such areas, wolves 
and bear were responsible for 81% of adult moose mortality (YEVTIKOV, 1991). An unhunt- 
ed Alaskan area with multiple herbivores and large predators showed 43 % of caribou calves 
were killed by predators, considered to be a low estimate (ADAMS et al., 1995). Similarly, 
large predators were found to keep moose at low density as they killed 31% of the pop- 
ulation annually; predation rate on calves and adults reached 70 % and 90 %, respectively, 
and this mortality was shown to be additive (GASAWAY et al., 1992; KUNKEL and PLETSCH- 
EILj 1999). South American temperate forests still exhibit large tracks of old growth forests 
with small scaled gaps and low densities of native large herbivores, ranging between less 
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than I to 5/km 2 (SMtTH-FLUECK and FLUECK, 1997; DtAZ and SMITH-FLUECK, 2000). 
Remains found of both sexes of huemul of all ages showed that 60 % died due to preda- 
tion (SMITH-FLUECK and FLUECK, 1996). 

5 Conclusion 

The divergent views on bottom-up versus top-down regulation of temperate large herbi- 
vores result in part from selecting component responses that can be determined in isola- 
tion, but which do likely not include those most relevant when the unit is imbedded in the 
complete system (ULANOWICZ, 1999). An additional fallacy is to draw conclusions for 
whole ecosystem behavior based on single prey - single predator studies when in reality 
there are multiple prey and multiple predator species. Moreover, logistic constraints and 
inappropriate methodology are main causes for erroneous conclusions. Lastly, many stud- 
ies focus only on interactions between vegetation and herbivores without considering any 
modifying effect by predators (BARTMANN et al., 1992; KROSI et al., 1995; HOBBS, 1996; 
SINGER et al., 1998; GRENFELL et al., 1998). 

Large predators play an important rote in structuring communities. According to EISEN- 
BERG (1989), removal of top carnivores from ecosystems can have an impact on relative 
abundance of herbivore species within a guild. In the absence of predation, usually one or 
two species come to dominate the community resulting in direct alteration of the vegeta- 
tion. Studies in pristine northern areas containing a complete assembly of large predators 
and herbivores clearly demonstrate the significant impact predators have on population 
dynamics of cervids which can be taken as prima facie evidence against the existence of 
self-regulation by cervids under pristine conditions. Therefore, modern man-caused changes 
to ecosystems, either by manipulating vegetation structure and composition, the predator 
community, or nutrient cycles must be significantly different from disturbance regimes 
which caused the genotypic and phenotypic patterns among northern large herbivores and 
predators. 

To understand the reasons for existing discrepancies in interpreting population regula- 
tion of northern cervids, it is necessary to focus on data obtained from large herbivores in 
temperate systems due to basic differences in tropical systems or in relation with other 
types of prey species. Furthermore, as conclusive studies of such complex multi-species 
assemblages in pristine settings have not been done and likely will not be performed in the 
near future, it is warranted to rely on insight from other scientific fields to shed light on 
this issue. Foremost is the realization that the biosphere is a steady state system and there- 
fore is governed by non-equilibrium thermodynamics. Furthermore, observed patterns in 
paleontological records and detailed analysis of nutrient cycles and food webs underlines 
the generality of irreversible increase in complexity as systems mature. The existence of 
intricately interacting multi-species assemblies of large northern herbivores and predators 
including social hunting types are an expression of these principles. The lack of top preda- 
tors thus is not only an impoverishment-of biodiversity, but represents a loss of system 
functioning. The behavior of large herbivore when introduced or when the pristine com- 
munity is altered, drastically attests that this group of animals lacks intrinsic mechanisms 
of self regulation; these organisms continue to reproduce as available per capita food intake 
decreases until death occurs due to exhaustion. It seems to be a scientific realism that pop- 
ulation regulation of cervids is through predation although our ability to know and mea- 
sure it may be limited. Considering the evolutionary history of temperate herbivores, it is 
a counterproductive enterprise to let man-modified systems regulate populations of large 
herbivores. It is just another human experiment with predictable outcome since food depri- 
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vation leads to well known results. I concur with philosopher J. B. CALLICOTT who said: 
.... to hunt and kill deer in certain districts may not only be ethically permissible, it might 
actually be a moral requirement, necessary to protect the environment, taken as a whole, 
from the disintegrating effects of a cervid population explosion. ~ (CALLICOTr, 1980). It is 
unethical to let large northern herbivore populations be regulated by food shortage. 

Management Implications: Conclusions presented in this paper have several practical 
implications. Preeminent is the fact that northern cervids do not possess an intrinsic mech- 
anism of self-regulation. Northern communities have evolved to and are functioning with 
a complex community of predators which regulated large herbivores under pristine con- 
ditions. Therefore, relationships between large herbivores and vegetation were predomi- 
nantly modulated by the predator community and based on pristine nutrient cycles. 

These relationships have been fundamentally altered by man through bringing about 
changes in the vegetation structure, the predator community, and the nutrient cycles. Under 
these modern conditions, large herbivore populations can respond numerically until becom- 
ing food limited, even with predators present. There a two important conclusions to be 
drawn: 
1. Herbivore population densities above a critical level will inevitably cause shifts in com- 

munity functioning by altering plant and animal species composition, and nutrient and 
energy flow patterns: the system will effectively be forced to a less complex and hence, 
less productive level, an evolutionary step backwards. 

2. By having modified ecological parameters necessary for the welfare of herbivores, we 
need to take on the responsibility to guarantee their future welfare by actively replacing 
missing factors. For northern large herbivores it means implementing harvesting such 
that the population density permits natural plant rejuvenation and optimal biodiversity. 

Considering the welfare of large herbivores in man-modified situations and the benefits of 
higher system productivity and resilience, it is essential to restrain population growth of 
herbivore populations. The only practical means available is through harvesting programs 
based on hunting. These should be promoted at all levels and implemented on a regular 
basis. Where the predator community is still intact, it should be protected by all means, 
and where still possible, the predator community should be restored. A basic toot is to dis- 
seminate the best available information, namely that northern cervids do not exhibit self 
regulation. "Natural" regulation as is occurring in many situations is another expression 
for forced starvation. 
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Summary  

Understanding population regulation of large northern herbivores like cervids has important practi- 
cal and theoretical implications. Corrective measures for high densities of cervids must be based on 
theory and thus necessitate analysis of contradicting views of top-down and bottom-up population 
control. The former considers cervids incapable of self-regulation and hence that they need external 
factors like predation to achieve effective population regulation. The latter claims that cervids exhib- 
it the capacity to adjust their numbers to the food supply as shown by physiological responses. How- 
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ever, these phenomena are not an expression of evolutionary adaption, they are a predictable physio- 
logical reaction to reduced food. tn addition, studies were often done in man-modified environments 
or without considerations of modulating effects through predators. It is unlikely to study pristine rela- 
tionships between large herbivores and predators in the future through field work, and insights from 
other fields need to be heeded. Considerations from evolution, thermodynamics, food webs and nutri- 
ent cycling indicate that the development of biological systems is unidirectional due to irreversible 
processes and leads toward optimal order and optimal accumulation of energy and nutrients. Large 
predators are thus not just a luxury development of evolution, but a necessary sequel to natural laws 
and they increase efficiency of the system to capture solar energy. It explains why analogous eco- 
morphs, like saber-tooth "cats" (placental and marsupial) have re-evolved independently at least 5 times. 
As a group, large predators developed traits allowing self-regulation including territoriality, intra- and 
interspecific killing, prey-switching, and dispersal. However, in man-modified environments, herbi- 
vore densities can reach such high levels that even an intact predator community will no longer exert 
regulation as there is an upper limit of predator density determined by social mechanisms. As kill suc- 
cess rates are very low, predators also affect herbivores by largely determining spacial distribution and 
behavioral adaptions, all of which modify herbivore-plant interactions. Cervids on the other hand 
exhibit traits all indicative of absence of a capacity to self-regulate. Predictable physiological respons- 
es to reduced food intake thus operate so late that the typical population response is an irruption with 
subsequent major dieoff and leads to a reduction in system performance including loss of biodiversi- 
ty. Therefore, the claim that there exists ~natural" regulation in such situations is an erroneous term 
for what is better called forced starvation. Two conclusions can be drawn: 
1. Herbivore densities above a critical level will inevitably cause shifts in community functioning by 

altering plant and animal species composition, nutrient and energy flow patterns: the system will 
effectively be forced to a less complex and hence, less productive level, an evolutionary step back- 
wards. 

2. By having modified ecological parameters necessary for the welfare of herbivores, we need to take 
on the responsibility to guarantee their future welfare by actively replacing missing factors. For 
cervids it may mean implementing harvesting such that population densities permit natural plant 
rejuvenation and optimal biodiversity. Where the predator community is still intact, it should be 
protected by all means, and where still possible, predator communities should be restored. A basic 
tool is to disseminate the best available information, namely that large northern herbivores do not 
exhibit self regulation. 

Z u s a m m e n f a s s u n g  

Bestandesregulierung yon n6rdlichen Groflherbivoren: 
Evolution, Thermodynamik und Groflraubtiere 

Das Verst~indnis fiber Bestandesregulierung yon n6rdlichen Groflherbivoren wie Cerviden hat wich- 
tige praktische und theoretische Bedeutung. L6sungen fiir hohe Dichten yon Cerviden miissen auf 
einer Theorie basieren und verlangen deshalb eine Analyse der sich widersprechenden Ansichten yon 
top-down und bottom-up Regulierung. Die Erstere erkennt, dass Selbst-Regulierung unter Cerviden 
nicht besteht und dass Pr~idation fur Bestandesregulierung notwendig ist. Die Letztere r~iumt den Cer- 
viden ein, dass sic die Kapazit~it besitzen, ihren Bestand der Nahrungsquelle anzupassen. Dabei wird 
fibersehen, dass dies keiner evotution/iren Strategic, sondern vorhersagbaren physiologischen Reak- 
tionen auf Nahrungsmangel entspricht. Zudem sind Studien oft in anthropogen modifizierter Umwelt 
oder ohne Berficksichtigung der modulierenden Effekte der Pr~idatoren gemacht worden. Durch die 
gegebene Schwierigkeit, zukfinftig die urspriingliche Beziehung zwischen n6rdlichen Groflherbivo- 
ren und -raubfieren durch Feldstudien zu kFiren, ist es angebracht, sich auf andere relevante Wis- 
sensgebiete zu beziehen. Evolution, Thermodynamik, AnaIysen yon Nahrungsketten und -zyklen 
deuten aUe darauf hin, dass organische Entwicklung dutch irreversible Prozesse richtungsspezifisch 
ist, sodass Okosysteme optimale Ordnung und Anh~iufung yon Energie und N~ihrstoffen erreichen. 
Groflraubtiere sind nicht nur luxuri/Sse Erscheinungen der Evolution, sondel"n sind Folge der genann- 
ten Gesetze und erh6hen somit die Wirksamkeit des Systems im Abfangen solarer Energie. So wird 
verst~.ndtich, dass Evolution in analoger Weise Raubtiertypen mehrere Male und innerhalb verschie- 
dener Taxa hervorbrachte (z. B. 4 real als S~ibel-S/iuger, aber auch als S//bel-Beuteltier). Zudem sind 
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unter den Groflranbtieren mehrere, fiir Selbst-Regulierung wichtige Charakteristika weitverbreitet: 
Territorialit~it, intra- und interspezifisches T6ten, Prey-Switching und Dispersion. Im modifizierten 
C)kosystem k6nnen Dichten der Cerviden jedoch so hoch werden, dass auch eine intakte R~iuberge- 
meinschaft keine Regulierung mehr erreicht, well die obere Grenze der Pr~idatorendichte durch Sozi- 
alverhalten bestimmt wird. Da die Wirksamkeit beim Beutefang sehr gering ist, beeinftussen Raubtie- 
re zudem die Verbreitung und Verhaltensweise der Herbivoren, welche die Herbivore-Pflanzen Bezie- 
hung beeinflussen. Cerviden reagieren physiologisch auf Nahrungsmanget, prinzipieU unter extremen 
Bedingungen und so sp~it, dass die Pflanzengesellschaft schon schwer beschiidigt ist und der Bestand 
ein Massensterben erleidet. Die Behauptung, dass in solchen Situationen ,natiirliches Selbst-Regulie- 
ren ~ existiert, ist ein irrtfimliches Konzept,.das besser als forciertes Verhungern bezeichnet werden 
sollte. Die Integration der Herbivoren im Okosystem entstand unter st~indiger Bestandeskontrolle 
durch die Groflraubtiergemeinschaft, d. h. die Beziehung zwischen Pflanzengemeinschaft und Herbi- 
voren wurde prinzipiell durch Raubtiere moduliert. Nur in der Kulturlandschaft finden rich Best~in- 
de yon Herbivoren, die ausschliefllich durch das Nahrungsangebot reguliert werden. Daraus lassen 
sich zwei Schliisse ziehen: 
1. Die Dichte yon Herbivoren fiber ein Limit hinaus f/ihrt unweigerlich zu Verschiebungen in der 

Pflanzen- und Tierartenzusammensetzung, und des Musters der Stoff- und Energieflfisse: das 
System wird effektiv auf einen weniger komplexen Stand und zu abnehmender Produktivit~it 
gebracht, ein evolution/irer Rfickschritt. 

2. Die anthropogene Modifizierung der fiir das Wohlergehen der Herbivoren n6tigen 6kologischen 
Parameter verlangt, dass wir mit entsprechender Verantwortung dieselben ersetzen, sodass das 
zuklinftige Wohlergehen der Herbivoren garantiert wird. F/.ir Cerviden bedeutet das die Durch- 
fiihrung der Jagd, sodass die Bestandesdichte optimale Biodiversit~it und natiirliche Verjfingung 
erlaubt. Wo die Ranbwildgemeinschaft immer noch intakt ist, sollte sie mit allen Mitteln geschfitzt 
werden, und wo immer noch m6glich, soil die Gemeinschaft wieder instand gesetzt werden. 

R6sum~ 

Rdgulation de population chez les grands herbivores de l'hdmisph~re Nord : dvolution, 
thermodynamique et grands prddateurs 

La comprehension de la r~gulation de populations des grands herbivores de l'h~misph~re Nord tels 
que les Cervid~s comporte des implications pratiques et th~oriques importantes, Des mesures visant 

corriger de fortes densit~s en Cervid~s doivent ~tre bas~es sur la th~orie et n~cessitent donc une ana- 
lyse d'approches contradictoires du contr61e de population du sommet vers le has et de la base vers le 
haut de la pyramide ~cologique. La premiere consid~re les Cervid~s incapables d'auto-r~gulation, n~ces- 
sitant d~s lots, pour assurer une r~gulatlon de population effective, t'intervention de facteurs externes 
tel que la predation. La seconde pretend que les Cervid~s poss~dent la capacit~ d'ajuster leur hombre 
anx ressources alimentaires par des r~ponses physiologiques. Cependant, on perd de vue que ces ph& 
nom~nes ne sont pas une expression d'une strat~gle ~volutive, mais qu'ils correspondent plut6t ~ une 
r~action physiologique pr~wisible vis-a-vis d'une r~duction des ressources alimentaires. En outre, les 
recherches ont souvent ~t~ r~alis¢'es dans des milieux altar,s par I'homme ou sans tenir compte des 
effets modulateurs causes par les pr~dateurs. Compte tenu de cette difficuk~ d'expliquer dans le futur, 
par des ~tudes de terrain, la relation originelle entre les grands herbivores et les grands pr~dateurs de 
l'h~misph~re Nord, il s'impose de s'en r~f~rer ~ d'autres sources pertinentes de connaissances. Evolu- 
tion, thermodynamique, analyses des chaines et des cycles alimentaires concluent toutes an fait que le 
d~veloppement de syst~mes biologiques proc~de par des processus irr~versibles et darts une direction 
bien d~termin~e, pour aboutir ~. une allocation optimale de l'~nergie et des composants alimentaires. 
Les grands pr~dateurs ne sont donc pas comme une sorte de luxe de l'~volution mais une consequen- 
ce n~cessaire des lois naturelles en question, angmentant de la sorte l'efficacit~ du syst~me en ce qui 
concerne la mobilisation de l'~nergie solaire. Ceci explique pourquoi l'bcolution a, ~ diff~rentes reprises 
et de fa~ion analogue, d~velopp~ des ~comorphes an sein de cliff, rents taxons ; ainsi les ~ chats ,, ~ dents 
de sabre (ptacentaire et marsupial) ont-ils r&~volu~ ind~pendamment an moins 5 fois. Comme grou- 
pe, les grands pr~dateurs ont d~velopp~ des caract~res autorisant l'anto-r~gulation, tels que la territo- 
rialitY, la predation intra- et intersp~cifique, l'alternance de proies et la dispersion. Cependant, dans 
les milieux modifies par l'homme, les densit~s d'herbivores atteignent de teLles proportions que m~me 
une zooc~nose intacte de pr~dateurs ne serait plus en mesure d'exercer une r~gulation du fait que des 
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m6canismes sociaux d~finissent une limite sup&ieure ~t la densit6 des prddateurs. Comme les taux de 
mortalit~ par pr6dation sont tr~s faibles, les pr~dateurs agissent ~galement sur la dispersion et le com- 
portement des herbivores, lesquels influencent ~ leur tour les rapports herbivores - v~g~tation. La 
r~ponse physiologique des Cervid~s ~l un manque de nourriture n'intervient en principe que lorsque 
les conditions sont extremes et fort tardivement, c'est-~l-dire lorsque le tapis v~g&al est d~j~t fortement 
endommag6 et lorsque la population subit des mortalit~s massives. Uaffirmation selon taquelle inter- 
vient, dans de telles situations, une ~ auto-r~gulation naturelle ~ est un concept erron6 qui devrait plu- 
t6t ~tre d6sign6 sous le nom d'~puisement suite ~t une famine forc~e. Uint~gration des herbivores dans 
l'~cosyst~me trouve son origine dans un contrSle permanent du niveau de population par la commu- 
naut6 des grands carnivores, c'est-~l-dire que la relation entre ta v6g~tation et les herbivores est en prin- 
cipe modut6 par les pr~dateurs. Ce n'est que dans le paysage cultiv~ que l'on trouve des herbivores 
qui sont exclusivement r6gul~s par les ressources alimentaires. De tout ceci on peut tirer deux conclu- 
sions .~ 
1. une densit6 d6passant un certain niveau conduit inexorablement ~ des glissements vers des compo- 

sitions floristique et faunistique ainsi que vers des flux de l'6nergie et de la mati/~re : le syst~me est 
effectivement ramen~ ~ un niveau moins complexe et ~ une productivit~ moindre, ce qui corres- 
pond/l une r6gression dvolutive; 

2. la modification anthropog~ne des param&res 6cologiques, ndcessaires ~l l'6panouissement des her- 
bivores, exige que nous proc6dions au remplacement des mt:mes de faqon responsable, de retie sor- 
te que le bien-~tre futur des herbivores soit assurd. Pour les Cervidds, cela signifie la poursuite de 
la chasse de mani~re ~ ce que la denslt6 de population permette une biodiversit6 optimale et une 
r6g6n6ration naturelle. L/l oh la communaut6 des pr6dateurs est toujours intacte, il convient de la 
prot6ger par tons les moyens et, 1~ oh la chose est toujours possible, cette communaut6 de pr6da- 
teurs dolt ~. nouveau ~tre restaur6e. Trad. : S. A. DE CROMBRUGGHE 
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