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Abstract: In this work we advance a generalization of quantum computational logics capable
of dealing with some important examples of quantum algorithms. We outline an algebraic
axiomatization of these structures.
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1. Introduction

Quantum computers are one of the main technological goals of our time [1] and many efforts
are focused on their development. While some examples of quantum computers were actually
built [2], they are still not strong enough to overcome their classical competitors: decoherence
poses a threat to the problem of scaling up the number of qubits [1]. While difficult to implement,
the results are promising, and a lot of interest revolves around the study of quantum algorithms
both, from a theoretical standpoint and an empirical one as well. In this paper, we focus on the
following problem: the characterization of the logical and algebraic structures underlying quantum
algorithms. The characterization of these structures is of fundamental importance for understanding
the peculiarities of quantum computation.

To describe quantum computation from a logical and algebraic point of view, many formalisms
were developed (see for example [3–9]). We refer to the logics studied in these works as quantum
computational logics (QCL). The QCL approach is based on the characterization of the action of quantum
gates using probabilistic truth values (see also [6]).

In this work, we present a generalization of the QCL approach in which the truth values are
extended to include arbitrary readings of the quantum register. This move allows us to represent
quantum algorithms of practical interest in a natural way. We also generalize the QCL approach to
a huge family of propositional systems, based on orthomodular lattices. Putting the emphasis in
the propositional structure of the readouts of the quantum register allows for a better comparison
with the classical case. Our generalization reveals that quantum computing can be considered as a
non-Kolmogorovian version of classical non-deterministic computing, continuing the line of research
proposed in [10]. From this perspective, the orthomodular lattice of projection operators of the
Hilbert space is the essential algebraic structure. This lattice was termed quantum logic after the pioneer
work of Birkhoff and von Neumann [11] (for a more recent approach, c.f. [12–15]). In the quantum
case, the non-Kolmogorovian character of the probabilistic calculus involved, comes directly from
the fact that there are complementary contexts in which measurements can be performed. We think
that this is a very important point, because it opens the door to investigating the role of contextuality
in QC in a more explicit and natural way. This is in harmony with recent studies that suggest that
the essential resource allowing for the advantages of quantum computing is contextuality [16–20],
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a physical phenomenon strongly related to the non-distributive character of the lattice of quantum
propositions [21]. See also [22], for a discussion of the fundamental role played by the projective
geometry of the Hilbert space in quantum algorithms. Another advantage of our generalization is that
of knowing a canonical form of finding quantum versions of classical formalisms and algorithms.

Finally, our approach shows how to conceive alternative forms of non-classical computing.
Indeed, the general scheme presented in this manuscript could be used to compare QC with other
alternative theories. A comparison of this kind, could help us to understand better the nature of
quantum computing. Notice also that our formalism can be of guide for defining algorithms in
physical frameworks that go beyond standard quantum mechanics. Indeed, the rigorous formulation
of quantum field theory and quantum statistical mechanics require factor von Neumann algebras that
go beyond the standard Type I case [23], reflecting the fact that these are (from a technical standpoint)
non-equivalent probabilistic theories. Our approach can be of use in the study of quantum computing
in the limit of systems with infinitely many degrees of freedom.

The paper is organized as follows. In Section 2 we review some general aspects of classical
computing to motivate our further developments and present the essential aspects of the different
forms of computing in a schematic way. We present our generalization of quantum computational
logic in Section 3. Next, in Section 4 we review how concrete algorithms of interest in applications
fall into our theoretical scheme. In Section 5 we provide the outline of an axiomatic framework for
these logics, which contain classical and quantum computing as particular cases. We also discuss how
these algebraic structures can be expressed in math-fashion. Finally, some conclusions are drawn in
Section 6.

2. Classical Computing

A classical computing machine is based on bits. The bit is the elementary unit for measuring
information. A physical bit (a system with only two relevant states) can take two values 0 and 1.
In general, information will be stored and processed in classical computers by appealing to physical
bits and operations on them. In this Section we start by reviewing the notions of deterministic and
non-deterministic classical computation. Next, we describe the essential aspects of some particular
models of quantum computers.

2.1. Deterministic Classical Computing

Any function F : {0, 1}N −→ {0, 1}M can be expressed in terms of Boolean functions (see for
example [24], Chapter 2). Define a Boolean function as a function F : {0, 1}N −→ {0, 1}. A Boolean
circuit can be represented as a composition of elementary Boolean functions. In general, a basis A
of elementary functions is taken as a generating set for all other Boolean functions. One of the most
important examples is the choice A1 = {∨,∧,¬}, where

Definition 1. ∨ : {0, 1}2 −→ {0, 1} with
∨(0, 0) = 0

∨(0, 1) = 1

∨(1, 0) = 1

∨(1, 1) = 1

∧ : {0, 1}2 −→ {0, 1} with
∧(0, 0) = 0

∧(0, 1) = 0

∧(1, 0) = 0

∧(1, 1) = 1



Entropy 2019, 21, 77 3 of 13

¬ : {0, 1} −→ {0, 1} with
¬(0) = 1

¬(1) = 0

Notice that the elements of A1 have different n-arity. Any Boolean function F : {0, 1}N −→ {0, 1}
can be written as a composition of the elementary functions belonging to A1. Thus, the computation
of F can be effected via a physical circuit made up physical representations of elementary Boolean
functions (elementary classical gates). In other words, the hardware that allows us to compute the
function F can be made up by electronic components representing the elementary functions ∨, ∧ and
¬, combined in a suitable way. The generalization of Boolean functions to functions F : {0, 1}N −→
{0, 1}M (with M ≥ 2) is straightforward (we refer the reader to [24] for details).

The problem of finding a suitable notion of equivalence between circuits is of major importance.
In general, there is more than one way to represent a function F as a composition of elementary
Boolean functions (and thus, very different hardware devices may compute exactly the same function).
Given two functions F, G : {0, 1}N −→ {0, 1}M, how can we determine whether they are equal or
not? Notice that similarly, we can ask if two circuits, implementing functions F and G, are essentially
the same or not. This is equivalent to testing the proposition F = G. In the classical case, this can be
solved in a trivial way by simply considering all possible inputs x ∈ {0, 1}N and checking whether the
outputs F(x) and G(x) are equal or not. Equivalently, if we do not know the functions, but we have
the hardware representing them, we can compare them in a similar way, by running the two circuits
and comparing the outputs. Notice that this procedure is equivalent to computing truth values of the
elementary functions: if we know the truth tables of all Boolean generators, we will be able to compute
the outputs of any Boolean function.

Please note that there is still more structure involved in this comparison between F and G. {0, 1}N

is a set, and the set of all its subsets P({0, 1}N) is a Boolean algebra (with the conjunction ∧ taken as
set intersection, the disjunction ∨ as set union and the negation ¬ as the set theoretical complement).
This is of major importance for understanding the extension to classical probabilistic computing
and quantum computing. Let us discuss this with more detail. A rational agent whose function
is to manage the readout of the register can only deal with (and communicate) truth values of the
propositional structure defined by the power set P({0, 1}N). In this sense, the logic associated with a
classical computer is represented by a Boolean algebra.

2.2. Non-Deterministic Classical Computing

The introduction of probabilistic steps in a computation proves to be useful for solving many
particular problems [24]. Indeed, the exact solution of some problems displays high computational
complexity, but this complexity can be lowered if we allow for a low rate of errors in the computation.

However, if the steps of the computation are produced in a probabilistic way, the output of an
input x ∈ {0, 1}M must be described by a probabilistic function Fx : {0, 1}N −→ [0, 1] satisfying

∀ x ∈ {0, 1}M

∑y∈{0,1}N Fx(y) = 1 (1)

Here arises an important observation. In the previous Section, we showed that the propositional
structure associated with a rational agent dealing with the register was exactly the Boolean algebra
P({0, 1}N). However, Equation (1) defines in a canonical way (for each x ∈ {0, 1}M) a Kolmogorovian
probability distribution in P({0, 1}N) as follows:

µFx : P({0, 1}N)→ [0, 1]

such that:
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1. µFx (∅) = 0
2. µFx (Ac) = 1− µFx (A)

3. For any disjoint X, Y ∈ P({0, 1}N) we have

µFx (X
⋃

Y) = µFx (X) + µFx (Y)

Thus, the classical propositional structure of the register implies that there will be a classical probabilistic
distribution for the propositions communicated by a rational agent dealing with the readouts.

2.3. Quantum Computing in a Schematic Way

Before we continue, it is useful to give some definitions. States of a quantum system can be
represented by so-called density operators, which are positive and trace class self-adjoint operators
of trace one, acting on a separable Hilbert space H. We call C(H) to the set of all density operators.
A density operator ρ is said to be pure if ρ2 = ρ and mixed otherwise. An operator U acting on a
separable Hilbert space is said to be unitary iff UU† = U†U = 1 (here, U† represents the adjoint of
the operator U). Quantum gates will be represented by unitary operators. As is well known, if U is
unitary, the map E(ρ) = UρU† maps density operators into density operators.

Let us try to summarize how a quantum computer works. Suppose that our quantum hardware
has N qubits. In this case, the Hilbert space is H =

⊗N C2. A basic general description of all the
central operations needed to perform a quantum algorithm can be given as follows.

Step 1. Chose an initial state represented by a density operator ρ for the qubits (notice that ρ can
be taken to be mixed [25]). This state could be just the density operator associated with the vector
|0〉⊗ |0〉⊗ · · · ⊗ |0〉 or any other desired state. In most situations of practical interest, the computational
basis plays a key role in defining the inputs and the outputs of the algorithm. Let us denote the
computational basis by B0.
Step 2. Apply a collection of gates represented by unitary operators {Ui}i=1,...,n to reach a desired final
state σ = Un · · ·U2U1ρU†

1 U†
2 · · ·U†

n.
Step 3. Perform a measurement on the system when state σ is reached, check the result obtained, and
depending on the result, stop the process, or continue following the pertinent protocol if necessary
(which will involve a similar, or, in some cases, the same- process). Notice that the measurement
process involves the choice of a measurement basis. This process has associated a probability (dictated
by Born’s rule). The probability of success for an algorithm is related to the probability of occurrence
of a certain outcome (or collection of them). This outcome should be of interest for the successful
computation involved in the protocol that one is following. Notice that a subspace containing the
desired results always exists. The pertinent probability of success is related to the probability for the
event of interest to happen.

It is illustrative to compare now the possible readouts of a rational agent R dealing with a quantum
computer. Like in the classical probabilistic case, the possible observations are not restricted to the
computational basis B0. Notice that B0 defines a Boolean algebra of operators in a canonical way as
follows. First, consider the set P0 of all possible orthogonal projection operators corresponding to the
elements of B0. The commutant of a set C of bounded operators acting on a Hilbert space is defined
as C′ := {x ∈ B(H) | [x, y] = 0 ∀ y ∈ C}. The double commutant of C is defined as (C′)′. Now,
take the double commutant of P0 to define the set PB0 := (P0)

′′. It is easy to check that PB0 := (P0)
′′

is a Boolean algebra. The projection operators in PB0 form the propositional structure associated
with the computational basis. However, as in the classical case, the measurements of the rational
agent will not be generally restricted, to this set of propositions. Indeed, by applying rotations on
the output state, R can measure other properties associated with the final quantum state. In case
that, due to restrictions in the hardware, the readouts are only performed on the computational basis,
a measurement in a different basis can be implemented by a rotation U applied on the quantum state



Entropy 2019, 21, 77 5 of 13

(using the equivalence Tr(ρU†PU) = Tr(UρU†P)). As it is well known, the set of possible propositions
to be tested is formed by the set P(H) of all orthogonal projection operators acting inH. The collection
P(H) is a modular non-distributive lattice for finite dimensional Hilbert spaces and an orthomodular
one for infinite dimensional ones. The final quantum state—represented by the density operator
σ—defines a quantum probability distribution

Pσ : P(H) −→ [0, 1]

given by Pσ(P) = Tr(σP) for all P ∈ P(H). It possesses the following properties:

1 Pσ(0) = 0 (0 is the null operator).
2 Pσ(P⊥) = 1− Pσ(P), for all P ∈ P(H).
3 For any family (Pj)j∈J ⊂ P(H) consisting of orthogonal projections for which Pj1 Pj2 = 0 when

j1 6= j2, the following equality holds:

Pσ(
∨

Pj) = ∑
j∈J

Pσ(Pj).

Observe that, since the Hilbert spaceH is supposed to be separable, the family may be taken to be finite
or countable. Notice also that the equality P∨Q + P∧Q = P + Q is true provided PQ = QP = P∧Q.
Here the operations P∨Q and P∧Q are appropriately defined within the W∗-algebra (or von Neumann
algebra) under discussion. In case that this W∗-algebra coincides with B(H), i.e., the algebra of all
bounded linear operators on the Hilbert spaceH, then the operator P ∧Q is the orthogonal projection
on the subspace PH ∩ QH, and P ∨ Q is the orthogonal projection on the closure of the subspace
PH + QH. Of course, similar equalities hold for families of commuting orthogonal projections.
We always have P⊥ = 1− P

While the properties of a quantum probability distribution may resemble the properties of a
Kolmogorovian one, there is a radical difference. The probability distribution associated with a classical
probabilistic algorithm is defined in a Boolean algebra, but the probability distribution associated with
a quantum one is defined in an orthomodular lattice [26]. The differences between these probability
theories has been extensively studied in the literature (see for example [12,23,27]). For more discussion
on this subject see [28–30], where the authors propose applications of non-Kolmogorovian probability
theory outside of the quantum domain.

3. Logics Associated with Quantum Algorithms

In this Section we introduce our proposal for generalizing quantum computational logics. We start with
the characterization of compositional gates and end up with a generalization of probabilistic truth values.

3.1. The Algebraic Structure of Quantum Logical Gates

In a real quantum computer, a general quantum gate is constructed by adequately composing
elementary ones. In theoretical quantum computing, certain sets of universal gates are used.
As examples, we can take the quantum Toffoli and the Hadamard gates [31]; another example is
given by CNOT, Hadamard, and controlled phase gates. The important point to remark is the fact
that we use, as a starting point, a set of generating gates G = {G1, ...., GN} (with finite elements).
In the above examples we have: G1 = {T, H} and G2 = {CNOT, H, Rφ}. The native gates of the
hardware presented in [2] are given by G3 = {XX, Rφ}. In this paper, we concentrate on G1, but a
similar analysis could be carried out for G2 and G3.

Given a generating set of gates G, all physically implementable gates will be given by successive
applications of the elements of G. This means that any actual gate implemented in the quantum
computer will have the form: U = Un . . . U1, where Ui ∈ G. Let us call to these compositions of gates
(in analogy with the classical case) quantum polynomial gates. Denote by P(G) the set of all possible
quantum polynomial gates. If G is formed by a universal set of gates, then P(G) will be dense in
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UN(H) (the set of unitary operators acting onH). From a theoretical perspective, this is all we need to
implement any desired quantum algorithm.

Any component of a quantum algorithm will be described as a succession of polynomials in P(G),
and eventually, a reading (measurement) described by a projection onto a subspace or a family of them,
with their associated probabilities computed using the Born rule. Notice that P(G) and its topological
closure are the quantum versions of the logic of a classical computer. In the classical version, we have
a functional calculus based on Boolean functions. The Boolean character is related to the fact that these
functions commute. In the quantum version, we have a non-commutative matrix calculus instead.

An important problem in the logical approach to classical computation is given by testing
functional equations. This problem can be solved by appealing to truth tables of elementary Boolean
functions, such as ∨, ∧ and ¬, as explained in Section 2. However, in the quantum version, the existence
of non-compatible context and indeterminate processes leads us to a different notion of truth, based on
probabilistic and contextual truth values. In the following Subsection, we explain how this works.

3.2. Probabilistic Truth Values

We start by defining equivalences between gates as follows:

Definition 2. Given two quantum gates U and V, we say that

• U is equivalent to V with respect to ρ ∈ C(H) and P ∈ P(H) (and we denote it by U ≡ρ
P V) if and only if

Tr(UρU†P) = Tr(VρV†P)

For a given quantum gate U, we call probabilistic truth value associated with U with respect to
P ∈ P(H) the real number Tr(UρU†P).

• U is equivalent to V with respect to ρ ∈ C(H) (and we denote it by U ≡ρ V) if and only if

Tr(UρU†P) = Tr(VρV†P)

for all P ∈ P(H).
• U is equivalent to V with respect to P ∈ P(H) (and we denote it by U ≡P V) if and only if

Tr(UρU†P) = Tr(VρV†P)

for all ρ ∈ C(H).
• U is equivalent to V (and we denote it by U ≡ V) if and only if

Tr(UρU†P) = Tr(VρV†P)

for all ρ ∈ C(H) and P ∈ P(H).

Notice that neither U ≡ρ V nor U ≡ρ
P V imply that U = V. On the contrary, U ≡ V implies

U = V. We have included this last (trivial) definition just to easily illustrate the fact that U ≡ρ V and
U ≡ρ

P V are relaxations of the identity relationship. Indeed, we can summarize this as follows:

U = V ⇐⇒ U ≡ V =⇒ U ≡ρ V =⇒ U ≡ρ
P V.

It is easy to find counterexamples showing that the converse implications are not valid.
The above definitions of equivalence between logical gates have associated the following

probabilistic truth values:

Definition 3. Given two gates U and V, we say that
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• For a given quantum gate U, we call probabilistic truth value associated with U in the context P and
state ρ the real number Tr(UρU†P).

• For a given quantum gate U, we call probabilistic truth values associated with U in the context P the
family of real numbers Tr(UρU†P), where ρ ∈ C.

• For a given quantum gate U, we call probabilistic truth values associated with U in the state ρ the
family of real numbers Tr(UρU†P), where P ∈ P(H).

Notice that the above definitions have associated a notion of implication between gates:

Definition 4. Given two gates U and V, we say that

• U ≤ V with respect to ρ ∈ C(H) and P ∈ P(H) (and we denote it by U ≤ρ
P V) if and only if

Tr(UρU†P) ≤ Tr(VρV†P)

• U ≤ V with respect to ρ (and we denote it by U ≤ρ V) if and only if

Tr(UρU†P) ≤ Tr(VρV†P)

for all P ∈ P(H).
• U ≤ V with respect to P (and we denote it by U ≤P V) if and only if

Tr(UρU†P) ≤ Tr(VρV†P)

for all ρ ∈ C(H).

It is also important to notice that the “≡ρ
P" relationship is coincident with the notion of probabilistic

truth values of previous publications. For example, in [5,7], the probabilistic truth value of the Toffoli
gate is defined as:

p(ρ⊗ σ) = Tr(Tρ⊗ σ⊗ |0〉〈0|T)(I ⊗ I ⊗ P1)) (2)

where P1 := |1〉〈1|.
Another important issue is at stake here. The notion of probabilistic truth value outlined in

Definition 5 contains the Boolean truth notion as a particular case as follows. We use as starting state
the elements of the computational basis. Then, implement matrix versions of the usual classical gates
(as for example, Toffoli). Use as a projection operator the projection associated with any element of the
computational basis (or more generally, one may use the Boolean lattice PB0 , defined in Section 2.3).
This procedure yields a Boolean calculus which is isomorphic to the usual one in reversible classical
computation.

With the above definitions, we can define the truth value associated to each measurement outcome
(i.e., the reading process) of any quantum protocol. The final truth value of the protocol, associated to the
probability of occurrence of the success subspace, will be related to the probability of success of the algorithm.

As in the classical case, we need to test the equivalence between different sets of gates. This can
be done in a natural way by appealing to the ≡ρ and ≡ρ

P relations. Indeed, if our aim is to compare the
action of two sets of gates regarding a definite subspace of success, we must use the ≡ρ

P relationship.
If our aim is to compare two gates regarding the unitary process before any reading (measurement),
we must use the stronger relation ≡ρ.

Notice that this last definition of equivalence (the one given by ≡ρ) is the generalization of the
truth table to the Boolean setting. Let us elaborate a little bit on this notion. In a classical setting, if we
aim to compare between logical circuits (defined as compositions of Boolean functions), all we must
do is to list truth tables on each side of the equation. A similar remark follows for non-deterministic
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classical computation: we must test the equivalence by evaluating the probability of each output on
each side of the equation. In both cases (deterministic and no-deterministic), if these numbers are
coincident, we speak about logically equivalent algorithms.

However, now, as remarked above, we have infinitely many contexts in the quantum case (indeed,
the wholeP(H) is available). This forces us to test the equivalence (equality in a logical circuit equation)
in several different contexts. Let us illustrate this statement with a concrete example. Suppose that we
have two gates U and V, and that we want to check their equivalence with respect to a reference state ρ.
Thus, we must compare Tr(UρU†P) = Tr(VρV†P) for a suitably chosen set of projection operators (in
principle, there are infinitely many of them, but in practice, only a reduced family of them is needed,
depending on the dimensionality of the Hilbert space. This is a well-studied question). Notice that
Tr(UρU†P) = Tr(VρV†P) is equivalent to Tr(ρU†PU) = Tr(ρV†PV). To test this equation (and to give
the problem a form similar to the classical one) we can choose a suitable family of orthonormal bases,
each defining a different measurement context. Each one of these bases defines its own “computational
basis”. Thus, instead of checking the probabilities in one single Boolean context (a set of outputs) as
in the non-deterministic classical case, what we are doing here is to perform the same procedure for
all possible quantal contexts defined by the chosen set of bases (or at least, for all possible contexts
of interest for the problem we want to solve). All these properties reveal that quantum computing is
the non-commutative version of classical non-deterministic computation (as expected!), and that the
relationship defined by ≡ρ is nothing but the generalization of the truth tables to the non-commutative
setting.

The above definitions introduce different equivalence notions of gates. In addition, we can
compute a kind of quotient of P(G) with regards to this equivalence relationships (i.e., we can compute
the quotient spaces P(G)/ ≡ρ

P and P(G)/ ≡ρ). Notice that P(G)/ ≡ is meaningless, because P(G)/ ≡
equals P(G). Each class of P(G)/ ≡ρ

P and P(G)/ ≡ρ contains equivalent gates for the different
purposes defined by the different equivalence relations.

4. Examples of Quantum Algorithms

Now we show how our approach can accommodate some of the most important quantum algorithms.

4.1. Deutsch-Jozsa Algorithm

Let us examine first the Deutsch-Jozsa algorithm [1]. In this case, the task is to determine if a
function f is constant or balanced. There are four functions from {0, 1} −→ {0, 1}, namely:

f1(0) = 0 f1(1) = 1
f2(0) = 1 f2(1) = 0
f3(0) = 0 f3(1) = 0
f4(0) = 1 f4(1) = 1

(3)

Thus, we have two classes: C = { f1, f2} and B = { f3, f4}, and we must determine if the unknown function
f belongs to B or to C. Let us see now how this can be reduced to the steps outlined in Section 2.3.

Step 1. In the first step, prepare the quantum state |0〉|1〉.
Step 2. Next, the Hadamard operator is applied to both qubits yielding the state:

1
2
(|0〉+ |1〉)(|0〉 − |1〉).

The quantum implementation of the function f (which establishes the connection between the classical
problem and the quantum computation) will be given by a quantum operator such that it maps |x〉|y〉
to |x〉| f (x)⊕ y〉. Applying this function to the state gives

(−1) f (0) 1
2
(|0〉+ (−1) f (0)⊕ f (1)|1〉)(|0〉 − |1〉).
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Now, applying the Hadamard transformation again to the first qubit we get:

|ψ〉 = (−1) f (0) 1
2
((1+ (−1) f (0)⊕ f (1))|0〉+ (1− (−1) f (0)⊕ f (1))|1〉)(|0〉 − |1〉).

Step 3. The next step consists in determining the projection of the above state to the subspaces
represented by projection operators |0〉〈0| ⊗ 1 and |1〉〈1| ⊗ 1.

4.2. Determination of a Function’s Period

The determination of the period of a periodic function f lies at the heart of the Shor and Simon
quantum computation algorithms [1]. The objective now is to determine the period of a function
f : ZN −→ Z , such that f (x + r) = f (x) for all x. It is assumed that the function does not take the
same value twice in the same period.

Step 1. Start the computer by generating -using the usual procedure- the state:

| f 〉 = 1√
N

N−1

∑
x=0
|x〉| f (x)〉. (4)

It is not possible to extract the period yet. Even if we measure the value of the second register and
obtain the value y0, we will end up with the following state in the first register (with x0 the smallest x
such that f (x) = y0 and N = Kr):

|ψ〉 = 1√
K

K−1

∑
k=0
|x0 + kr〉. (5)

However, |ψ〉 does not give us information about r yet.

Step 2. To obtain the period, it is necessary to apply the quantum Fourier transform (QFT), which is a
unitary matrix with entries

Fab =
1√
N

exp2πi ab
N . (6)

By applying the QFT to |ψ〉 we obtain

F|ψ〉 = 1√
r

r−1

∑
j=0

exp2πi x0 j
r |j N

r
〉. (7)

Step 3. Finally, a measurement is performed in the basis {|j N
r 〉}, and using the result it is possible to

determine the period of the function as follows. The obtained value c will be such that c = j N
r , for some

0 ≤ j ≤ r− 1. Then, c
j =

N
r , and if j is coprime with r, it will be possible to determine r. The success of

the algorithm depends on the fact that j and r will be coprimes with a large enough probability.

5. Axiomatization of the Quantum Computational Logic

In the classical case, we know that the functions are given by a commutative calculus generated by
the elementary Boolean functions ∨, ∧ and ¬. Thus, the axiomatization of a classical computational logic
can be given in terms of the axioms defining a Boolean algebra. Is it possible to proceed in an analogous
way for our notion of quantum computational logics? We outline an answer to this question below.

Notice first that the classical connectives ∨, ∧ and ¬ have the natural interpretation given by:

• ∨ is the operation of disjunction in our natural language.
• ∧ is the operation of conjunction in our natural language.
• ¬ is the operation of negation in our natural language.
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However, quantum computers operate in a very different way. If we consider as elementary gates the
set G3, we have the following semantical/physical interpretation:

• Hi: generates a superposition in qubit i.
• CNOT: flips the value of the second qubit if the control qubit is 1; do nothing otherwise.
• Rφ adds a phase of φ in one of the terms of the superposition.

Notice the following: all truth values of a classical probabilistic calculus are computed regarding classical
propositions. However, these propositions are nothing but the elements of a Boolean algebra. As an
example, consider a computer with N bits. Thus, all possible inputs are given by elements of the set
{0, 1}N (and also the outputs). Thus, all possible readings (measurements) in the output of a computation
are given by elements of {0, 1}N , and all possible propositions are nothing but conjunctions, disjunctions,
and negations of this outcome set. In other words, all elementary propositions are given by the elements
of the Boolean algebraP({0, 1}N). The nature of the classical (deterministic) computing process assigns a
valuation to the set {0, 1} to each element of the set P({0, 1}N). Non-deterministic classical computation
instead, assigns probability values in the interval [0, 1].

The quantum setting, despite of its formidable appearance, is completely analogous. We have
stressed above that the quantum calculus contains the classical one as a special case. This is totally
reasonable: quantum mechanics defines a probabilistic classical theory for each context. In other words,
a quantum state can be seen as a collection of classical probability distributions pasted in a harmonic
way using the density operator associated with that state [12]. What is thus the analogous of a reading
of a quantum register? The answer was given by von Neumann in the first axiomatization of the
formalism: each elementary reading (i.e., any possible empirically testable proposition) is represented
by a projection operator P ∈ P(H). Thus, we have a very clear operational interpretation of the
equivalence relations and truth values defined in Definition 5: what we are doing here is to compute
the truth value of a quantum state regarding a particular proposition. This notion of truth in quantum
computation is all that we need to compare different sets of gates and the success probability of each
quantum algorithm.

Another important thing to remark is that the calculus defined by the matrices involved in a
quantum case is not commutative. Thus, we can anticipate that the axiomatization will not involve a
Boolean algebra.

Thus, to define a suitable algebraic axiomatics for quantum computation, all we must do is to
consider: (i) a set L of empirically testable propositions (which are intended to represent all possible
readings of the quantum register). It is natural to demand that L should be an orthomodular lattice
(as we show below, this covers the classical and quantum cases as well); (ii) a set of states C assigning
definite probabilities to each element of L (these can be defined in the usual way as σ-additive
probabilities) [12]; (iii) an elementary set G of operations acting by automorphisms in L. Remember
that an automorphism of a logic is defined as a bijective map U : L −→ L satisfying (a) U(0) = 0
and U(1) = 1, (b) for any denumerable sequence X1, X2, . . . we have U(

∨
n Xn) =

∨
n U(Xn) and

U(
∧

n Xn) =
∧

n U(Xn) and (c) for all X ∈ L, U(X⊥) = (U(X))⊥. The set G generates the collection
P(G) of logical polynomials (by composition). The set Ξ = 〈L; C; G〉 will be called a generalized
computational scheme. In the rest of this section, we make extensive use of the following notation: given
an automorphism U acting on L, define the action U(ν) of U on the state ν as U(ν)(X) := ν(U(X)),
for all X ∈ L. Using Ξ we can define P(G) (that determines the set of all possible logical gates) and the
notions of probabilistic truth value relative to a context and equivalence of logical gates as follows:

Definition 5. Given two gates U, V ∈ P(G), we say that

• U is equivalent to V with respect to ν ∈ C and X ∈ L (and we denote it by U ≡ν
X V) if and only if

µ(X) = µ′(X)
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where µ(−) = U(ν)(−) and µ′(−) = V(ν)(−).
• U is equivalent to V with respect to ν (and we denote it by U ≡ν V) if and only if

µ(X) = µ′(X)

for all X ∈ L.
• U is equivalent to V (and we denote it by U ≡ V) if and only if µ(X) = µ′(X) for all ν ∈ C and X ∈ L.

We can also define the notion of generalized protocol using the following steps:

Step 1. Chose an initial reference state ν ∈ C (this state is intended to be the same for all possible
algorithms, and is interpreted as the initial state of the devise).
Step 2. Apply a collection of gates {Ui}i=1,...,n to reach a desired final state µ(−) = (Un · · ·U2U1)(ν)(−),
possessing the properties needed to perform the desired computation (answer the question that we
need to answer).
Step 3. Perform a measurement on the system when the state µ is reached, check the result obtained,
and depending on the result, stop the process, or continue the protocol if necessary (which will involve
a similar -in some cases, the same- process).

The intended interpretations of the above notions are similar to those of classical and quantum
algorithms. We recover classical computation by setting L = B (where B is a Boolean algebra) and
quantum computation when L = P(H) (using the concomitant definitions of initial reference state,
probabilities, etc.).

As in the quantum case, we can give definitions of probabilistic truth values:

Definition 6. Given two gates U and V, we say that

• For a given generalized gate U, we call probabilistic truth value associated with U in the event X ∈ L
and initial state ν the real number U(ν)(X).

• For a given generalized gate U, we call probabilistic truth values associated with U in the event
X ∈ L the family of real numbers U(ν)(X), where ν ∈ C.

• For a given generalized gate U, we call probabilistic truth values associated with U in the state ν the
family of real numbers U(ν)(X), where X ∈ L.

Notice that the above definitions have associated a notion of implication between gates:

Definition 7. Given two gates U and V, we say that

• U ≤ V with respect to ν ∈ C and X ∈ L (and we denote it by U ≤ν
X V) if and only if

U(ν)(X) ≤ V(ν)(X)

• U ≤ V with respect to ν (and we denote it by U ≤ν V) if and only if

U(ν)(X) ≤ V(ν)(X)

for all X ∈ L.
• U ≤ V with respect to X ∈ L (and w denote it by U ≤X V) if and only if

U(ν)(X) ≤ V(ν)(X)

for all ν ∈ C.
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The effect of the Hadamard gate in the computational basis is to generate a superposition out of
the input qubit. Thus, it is relevant for our construction to describe how superpositions are defined in
arbitrary orthomodular lattices (we follow [32], Chapter III, Section 4). Given an orthomodular lattice
L, let D be a collection of states in L. Then, a state ν is a superposition of the states in D, if and only if,
for all X ∈ L we have

∀ µ ∈ D (µ(X) = 0) =⇒ ν(X) = 0 (8)

The above definition coincides with the usual one for the case of the lattice of projection operators
acting on a Hilbert space and pure states. In Boolean algebras, no pure state can be a superposition
of other pure states. As automorphisms of a logic are angle-preserving (i.e., they are straightforward
generalizations of the rotations acting on the projective geometry associated with a Hilbert space),
their effect on a given set of propositions will be, in general, to generate superpositions. This fact
guarantees that we will be able to recover a quantum-like computation rich enough so as to display
contextuality and entanglement (as is the case for example, with factor von Neumann algebras,
for which a version of the Kochen-Speker theorem can be proved [21]; for the study of correlations in
the algebraic approach see [33]).

6. Conclusions

In this work we have presented a generalization of quantum computational logics capable of
dealing with some important examples of quantum algorithms. We show that our constructions
generalize previous studies on the subject. In Section 5 we have outlined an axiomatization for
quantum computational logics. Our developments lead to new problems related to the algebraic
characterization of computational gates in a non-commutative setting. They also open the door for
further generalization of the notion of algorithm, beyond the classical and standard quantum mechanical
formalisms.
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