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Abstract

Till present, models that determined batch plants configurations in the chemical process industry
resorted to models with binary variables to represent the different admissible options. This approach
allowed representing the problem in a simple way while considering a significant number of alternatives.
Nevertheless, the non-convexity that arises when dealing with detailed models for representing the involved
units operation prevents its correct resolution or has a low performance. This work presents a representa-
tion of the problem through a superstructure that takes explicitly into account all the alternatives without
resorting to binary variables. By using extremely simple modeling, it is possible to manage an appropriate
number of options for this type of problems by means of a non-linear programming (NLP) model. More-
over, it is possible to consider duplication in series of production stages, which is an alternative that has not
been used till now. This approach is posed for the case of a fermentors network. The solution is reached
with very low requirements as regards employed computer time and without the aforementioned difficulties.
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Nomenclature

Subscripts
a alternative, a = 1, . . . ,Ap

f material used in the feeding
j stage, j = 1, . . . ,Cp

last last stage or last operation (jlast or plast, respectively)
p operation, p = 1, . . . ,P

Continuous variables
Be

paj entering batch volume [m3]

Bs
paj leaving batch volume [m3]

Epaj ethanol concentration [kg m�3]

Feedpaj set of feeding materials
Gj number of in-phase duplicated stages in the MINLP model used for comparison
Mj number of out-of-phase duplicated stages in the MINLP model used for comparison
PR plant production rate [kg h�1]
PRpaj production rate of alternative a [kg h�1]
Spaj substrate concentration [kg m�3]
Se

paj entering substrate concentration of unit j of alternative a [kg m�3]

Ss
paj output substrate concentration of unit j of alternative a [kg m�3]

SFpajf feed substrate concentration of material f [kg m�3]
Tpaj stage operating time [h]
TAC total annual cost [$ year�1]
TL Plant cycle time [h]
Vpaj unit size [m3]

VFpajf feed volume of material f [m3]
Xpaj biomass concentration [kg m�3]

X dead
paj non-active biomass concentration [kg m�3]

Yxpaj biomass yield coefficient
lpaj specific growth rate of biomass [h�1]

Parameters
Ap number of alternatives of each operation
Cp upper bound on the number of stages
Gpaj number of in-phase duplicated stages in the NLP superstructure model
H horizon time [h year�1]
kspaj substrate saturation constant [kg m�3]
Mpaj number of out-of-phase duplicated stages in the NLP superstructure model
OC operating costs [$]
Q demand [kg]

G. Corsano et al. / Applied Mathematical Modelling 30 (2006) 974–992 975



Yepaj product yield coefficient
ap cost coefficient
bp cost exponent
cf cost of sugar substrate [$ m�3]
lmax,paj maximum specific growth rate of biomass [h�1]
tpaj biomass rate death [h�1]
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1. Introduction

The design problem of a batch process plant implies determining the plant structure, the num-
ber of units to be used at each stage and its size. Previously published works on this area resorted
to mixed integer non-linear models (MINLP). Binary variables allowed for contemplating the dif-
ferent alternatives to organize units at each stage. The various models were characterized by a cer-
tain number of stages, which are the necessary steps to elaborate the product according to the
previously settled recipe. This problem was initially modeled with this format by Grossmann
and Sargent [1].

The aforementioned work and those that followed started from relating the sizes of the batches
to be processed to the equipment size through linear factors called size factors. Different alterna-
tives have been used for the case of operating time of process stages. The most frequently used
models are those with fixed times and variable times depending on the batch size to be processed
with a predetermined expression. These assumptions allowed for notably simplifying the model,
since a posinomial structure was achieved, which assured the existence of a unique optimum of
the problem [1]. Anyway, the different parameters that characterized the model were calculated
on some determined operative conditions. In this way, the possibility of adjusting these values
according to variations in the process operation was lost. However, this kind of models was
widely used in subsequent works [2–6].

Taking into account the very strong limitation as regards the level of detail employed in repre-
senting the production process, some other approaches followed. Salomone and Irribarren [7]
proposed performance models in which posinomial representation constants were calculated from
models that considered other process decision variables. In this way, information on the process
operation could be incorporated into design. In the first works [7,8], this approach was used for
small plants and then it began to be considered for bigger processes [9,10]. In this way, it was
possible to pose models with a greater level of detail as regards the process description. This
led to both an increased complexity in resolution and a loss of the properties of the original pos-
inomial model. The attained models presented a structure that strongly depended on the equa-
tions corresponding to performance models. For this reason, a non-convex model was
generally obtained.

MINLP problems are usually solved through methodologies that successively solve mixed inte-
ger linear (MILP) approximations to the model, and NLP problems for fixed configurations, i.e.
certain decisions as regards the value of binary variables [11]. For the case of a non-convex prob-
lem, this mechanism presents the drawback that successive linearizations usually cut part of the
feasible region. In this way, some solutions to the problem are lost [12]. In addition, many
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solutions of plant configurations, which are found through MILP, correspond to non-feasible
structures, with which it is not possible to meet production requirements.

Another important aspect to be taken into account is that all works on this area start from a
process in which the number of stages is settled by a decision made in a previous step. Thus, the
only structural decision that remains is the one related to unit duplication at each previously
determined stage. It is important to highlight that there are many operations that pose alternatives
as regards the number of stages to be used. For example, in the case of fermentation depending on
reaction velocity, equipment cost, or raw material availability, the number of units to be used and
the way in which they should operate (in series or in parallel) may vary. It is interesting to consider
these options in relation to the other previously described decisions. By means of this example, it
is noted that there is a strong relationship among the number of stages, the way in which each
stage is configured and the operative characteristics of stages, which has not been posed yet. This
is due to the difficulties in solving a problem in which the number of stages in the plant is a model
variable.

This work is intended to solve the aforementioned problems. Firstly, we start from a model
with a high level of detail. Operations have been represented through discretized differential equa-
tions that describe mass balances (in this case mass balances of batch fermentors). Furthermore,
constraints on feeds to each processing unit and equations of interconnections between stages are
considered. It is a level of detail that has been posed by few authors. Some exceptions that can be
mentioned are Bhatia and Biegler [13], even though with a simpler model since they work with a
predetermined number of stages and they do not admit its duplication.

The option of determining the number of stages in series to be considered has not been included
in general models of batch plants design. All of the elements that make up a plant structure have
been solved in previous models resorting to binary variables. It should be stressed that, in many
cases, when the level of detail of the operations included in the process was significant [13,14] this
last option was not even considered. As previously pointed out, this led to difficulties or con-
strained the capacity for solving the model. For that reason, this work proposes the solution of
the problem by explicitly including a superstructure that contemplates all possible options with
units in series or in parallel. These options can be obtained by means of different mechanisms.
A previous work [15] presented a heuristic procedure through a simplified optimization model that
provides an upper bound over the number of stages of each operation. Another option is to pose an
exhaustive detail of all the alternatives arisen from the upper bounds for the units in series or in
parallel. The designer�s criteria and his or her experience are also critical aspects taking into ac-
count that this approach is useful for expensive units with a significant impact on the complex pro-
cess performance. The resulting model is a NLP, and thus it avoids difficulties of resolution
methodologies of the outer approximation type that arise in non-convex programs. Therefore,
the work presents a representation schema of the configuration options of the plant, which is ex-
tremely compact and allows for taking into consideration a significant number of alternatives.

The developed model is presented over the case of a fermentors network. It is a typical case for
a number of reasons. First of all, it is often present in industrial plants. In addition, it is necessary
to represent the process with a high level of detail, due to the high economic value of the various
involved elements and its impact on the plant cost. Due to the operation characteristics, it is re-
quired to duplicate stages both in series and in parallel. On the other hand, the number of options
to be contemplated in both cases is relatively bounded by operative considerations. It is important
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to mention that this approach could be easily extended for another kind of operations. In the case
a mono-product plant it is solved in the same way, but it could be easily extended to the multi-
product case in which many products are made with the same equipment.

In the next section, the characteristics of the model are presented. Then, we describe its appli-
cation to the case of a fermentors network. The resolution of this example allows contemplating
the potentiality of the proposed approach. Finally, it is compared to a traditional formulation in
which the structural decisions of the plant are represented by means of binary variables.
2. Model formulation

We consider a plant that produces only one product and must meet a certain demand Q for that
product on the available time horizon H.

For the purpose of completing the product processing, P operations are required. Each oper-
ation is accomplished over several stages j, whose optimal number has to be determined. For each
operation p, there is an upper bound Cp on the number of stages to be contemplated for this oper-
ation. In this way, there is an allowance for varying the number of stages to be considered for each
operation. Therefore, for each operation p, there is a set of stages j ranging from 1 to Cp, whose
utilization must be determined as a solution to the optimization problem.

It should be pointed out that this approach is more realistic when the operation of each stage
can be represented by means of a detailed model and is not fixed by a size factor as in the first
examples we referred to in the introduction section. In this way, it is possible to take into account
the different tradeoffs that arise when considering different operative conditions. Therefore, the
model to solve the batch operations design comes to be more appropriate when the description
of the stages operation is explicitly contemplated.

For each operation p, alternatives a = 1, . . . ,Ap are defined. These alternatives can be either
automatically generated (through an optimization model, for example) or proposed by the de-
signer, which is more effective, taking into account the feasible options for the kind of process they
are working with. Each existing alternative a in operation p must be characterized. This implies
defining the following elements:

• Number of stages to be included in the alternative.
• Determining the last stage being included in the alternative (basic information to allow for con-

nection between successive operations).
• Number of in-phase (Gpaj) and out-of-phase (Mpaj) duplicated units for each stage included in

the alternative.

The existing j stages in alternative a of operation p may vary between 1 and Cp. For each alter-
native, the number of stages is predetermined. Each one of these alternatives has structural op-
tions due to the duplication of the units included in it. These options are predetermined in
each alternative a.

The transfer policy considered in this work is the zero wait (ZW) transfer. A stage-configura-
tion option is in series duplication. In this case, the cycle time (problem variable) for a plant is
determined as the longest time of all the stages over each operation involved in its production
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process. This cycle time settles down the time between two successive batches. Therefore, all units
that require less time for their operation have some idle time. With the aim of reducing this time,
out-of-phase parallel units can be introduced into the stage in which the cycle time is reached.
These units operate out-of-phase, thus allowing for reducing the time spent between two successive
batches, and consequently the remaining unit size is diminished as a result of having less idle time.

The other configuration option for units duplicated at a stage corresponds to the in-phase case,
in which duplicated units operate all together. In this case, when the batch enters that stage, it is
split among all units making up the stage and, when finishing the process, the resulting batch
is gathered together again. In this way, the processing capacity of a stage can be enhanced, which
is important when the unit size reaches the upper bound.

Fig. 1 shows an example. An operation (P = 1) has Cp = 3 stages, which indicates that any
alternative being used in this operation can have 3 stages at the most. The problem designer
Alternative 1: a = 1 j = 1

j = 1 j = 2Alternative 2: a = 2 

j = 3 j = 1 j = 2Alternative 3: a = 3 

Alternative 4: a = 4 

Alternative 5: a = 5 

j = 1

j = 1

j = 2

Alternative 6: a = 6 

j = 2

j = 2

j = 1

j = 1

j = 1

j = 1

Alternative 7: a = 7 

j = 2

j = 2

j = 1

j = 1

j = 3 

Alternative 8: a = 8 

j = 1

j = 1

Fig. 1. Alternatives to be considered for a three-stage operation.
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has settled that the A = 8 alternatives shown in Fig. 1 should be taken into account. The j stages
used in the corresponding a alternative are also indicated. The first alternative includes only one
stage, whereas the following two have added in series stages. The other alternatives have included
out-of-phase duplicated units for various stages, except for the last one (a = 8), which is the only
stage in which in-phase duplicated units are considered. This is shown through overlapped units in
Fig. 1.

The model tries to determine a plant design that allows producing the required quantity Q in
time horizon H at the lowest cost. This general presentation takes into account unit costs and
operative costs. The objective function is total annual cost (TAC) minimization and is calculated
from the following expression:
Min TAC ¼
XP

p¼1

XAp

a¼1

XCp

j¼1

apMpajGpajV
bp
paj þOC. ð1Þ
Vpaj is unit j size in alternative a for operation p. Its cost is calculated from coefficients ap and bp

that are usually used in this kind of problems [1–3]. Mpaj and Gpaj correspond to the number of
out-of-phase and in-phase duplicated units, respectively, for stage j in alternative a for operation p
(model data). OC represents operating costs that depend on how each operation is performed and
thus it cannot be represented through a general expression.

In the previous expression, all stages j of all existing alternatives for operation p are considered.
Taking into account that the objective function minimizes the units cost, only the best structural
option will be chosen, driving to zero the size of all units that are not involved in the optimal
structure. The simultaneous operation of two structures will always involve a greater cost taking
into account that the exponent coefficient bp is less than one. For that reason, the unit sizes of
non-optimal alternatives will be equal to zero.

According to this information, a set of constraints are developed. First of all, the required de-
mand should be satisfied. For that purpose, the plant production rate PR is employed, which is
given by:
PR ¼ Q
H

. ð2Þ
At the last stage of the last operation, the final product is obtained. The sum of what is pro-
duced through all of the alternatives there defined must meet the settled requirements for the
plant:
X

a2plast

PRplast
ajlast P PR; ð3Þ
where plast corresponds to the last operation of the process and jlast to the last stage in each option
a. For this operation, what is produced PRplasta is added in each available alternative for opera-
tion plast, which are given by
PRplastajlast
¼

Qplasta

TL
8a ¼ 1; . . . ;Aplast

; ð4Þ
Qplasta
corresponds to the quantity produced in alternative a in the last operation.



G. Corsano et al. / Applied Mathematical Modelling 30 (2006) 974–992 981
The total produced should be at least equal to the plant requirement. Logically, since the model
tries to minimize costs, the quantity to be produced will be just PR, and will be reached by using
only one alternative in operation plast. This will be so because in case of using two alternatives it
will be necessary to use equipment for both of them, which would notably increase the cost.

It is required to determine the plant cycle time TL. This is determined by the longest time
required in the stages being used at the plant. Let Tpaj be the unit operation time at stage j for
alternative a in operation p. This value is calculated from the model that described that operation.
Then, considering ZW policy, it should be
TL P
T paj

Mpaj
8p ¼ 1; . . . ; P ; 8a ¼ 1; . . . ;Ap; 8j ¼ 1; . . . ;Cp; ð5Þ
Mpaj corresponds to the number of out-of-phase duplicated units that exist at stage j of alternative
a in operation p.

Connection balances should be performed between successive stages of each alternative of an
operation. Let Be

paj and Bs
paj be the batch volume that enters and leaves the unit of stage j in alter-

native a in operation p; then the balances are
Be
paj ¼ Bs

pa;j�1 8p ¼ 1; . . . ; P ; 8a ¼ 1; . . . ;Ap; 8j P 2. ð6Þ
In case of handling several materials, this kind of connection constraint should be settled for each
of them. As it will be seen in the example, this balance can also consider adding extra feeds at each
stage.

Connection between successive operations must be also assured. For that reason, the last stage
of an operation should get in contact with the first stage of the following operation:
X

ap2p

Bs
p;a;jlast

¼
X

apþ12pþ1

Be
pþ1;a;1 8p ¼ 1; . . . ; P � 1. ð7Þ
In this case, the total obtained at the last stage jlast of all alternatives of operation p, must be equal
to all material entering the first stage of all alternatives of the following operation.

The Bpaj and Tpaj values being used must be characterized through appropriate equations. Even
the material to be considered could be decomposed into several components (substrate, biomass,
product, etc.) as it will be shown in the example of this work. The existing relationship among the
material to be processed, the equipment sizes and the time that will be required for processing
arises from the model to be used for describing this operation.

Therefore, there is a set of constraints that closely depend on the characteristics of the process
being used, so it is not possible to formalize them with a general format.
3. Fermentation process for ethanol production

In this example corresponding to fermentation for ethanol production, the previously described
model is applied to a specific case. The detailed models that allow describing each unit operation
are introduced.

Fermentation for ethanol production consists of two operations, namely: biomass fermentation
and ethanol fermentation. At the first operation, only biomass is produced, while at the second
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both ethanol and biomass are produced, even though the latter is produced at a growth velocity
that is lower than that of the previous operation. All stages of both operations can be fed with a
mixture of sugar substrates that provide different substrate concentrations. Water can be also
added to dilute these substrates. Mass balances of these stages are described by the following dif-
ferential equations:
Biomass :
dX paj

dt
¼ lpajX paj � tpajX paj; ð8Þ

Substrate :
dSpaj

dt
¼ �

lpajX paj

Yxpaj
; ð9Þ

Non-active biomass :
dX dead

paj

dt
¼ tpajX paj; ð10Þ

Product :
dEpaj

dt
¼

lpajX paj

Yepaj
; ð11Þ
where
l ¼ lmax;paj
Spaj

kspaj þ Spaj
; ð12Þ
where (8)–(12) are described for "p = 1, . . . ,P; "a = 1, . . . ,Ap; "j = 1, . . . ,Cp, X is biomass con-
centration, S is substrate concentration, X dead is non-active biomass concentration, E is ethanol
concentration. For this reason, Eq. (12) is not obtained in the first operation and l is growth spe-
cific velocity. All these are problem variables. t represents bacteria death velocity, Ye is ethanol
yield coefficient and ks is a substrate saturation constant. These are known parameters for the
model. Yx is biomass yield and is a function of the biomass fermentor feed at biomass fermentors
and a constant in the ethanol fermentation operation [15].

These equations have been discretized using the trapezoidal method and included in the global
model. This model also contains all constraints presented in the previous section: connections be-
tween stages of each alternative of each operation, connections between the last stage of an oper-
ation and the first stage of the following operation, constraints that define the time cycle,
constraints to meet production requirements, and a set of balances that are similar to those given
in Eqs. (6) and (7) that is performed for each component: biomass, substrate, non-active biomass
and ethanol. For example, substrate balances between successive stages are expressed by
V pajS
e
paj ¼

X

f2Feedpaj

SF pajfVF pajf þ V pa;j�1Ss
pa;j�1; 8p ¼ 1; 2; 8a ¼ 1; . . . ;Ap; 8j P 2; ð13Þ
where Se
paj represents substrate concentration entering stage j of alternative a of operation p, f the

various materials that constitute the feed for stage j and those that belong to the set Feedpaj. In
this example we took. Feedpaj = {molasspaj, filter_ juicepaj, vinassespaj, waterpaj}, each one of them
having a substrate concentration that is equal to SFpajf and volume equal to VFpajf. Ss

pa;j�1 is
the output substrate concentration of unit j � 1 of alternative a. It should be noted that in this
case, besides the material coming from the previous stage, other material from other sources
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represented by the set Feedpaj is also allowed to enter. In a similar way, the balances for the
remaining elements and interconnection balances between operations are posed.

Since variable feeds are considered, volume balances have been added:
V paj ¼
X

f2Feedpaj

VF pajf þ V pa;j�1 8p ¼ 1; 2; 8a ¼ 1; . . . ;Ap; 8j P 2. ð14Þ
The posed objective is minimizing total annual costs, which are computed as investment cost (given
by equipment cost) in addition to operating costs. In this specific case, variable OC of expression
(1) can be posed as shown by expression (15). This operating cost is the sum of the cost per m3 of
sugar substrates being used in feed f to stage j of alternative a of operation p. Let cf be cost per m3 of
the sugar substrate f being used in feed Feedpaj, then the total annual cost can be computed as:
Min TAC ¼
XP

p¼1

XAp

a¼1

XCp

j¼1

apMpajGpajV
bp
paj þ

H
TL

XP

p¼1

XAp

a¼1

XCp

j¼1

X

f2Feedpaj

cf VF pajf . ð15Þ
4. Example resolution

The fermentation model for ethanol production that was established in the previous section has
been solved. We will present three examples with different sets of data with the aim of evaluating
the optimal design of the plant according to various problem conditions.

It is a problem with P = 2 operations. For both first examples, the chosen superstructure sche-
ma is shown in Fig. 2. This figure includes the diverse alternatives that were selected by the de-
signer for each one of the two operations the plant comprises. It should be noted that this
superstructure allows considering the combination of the different alternatives that are chosen
for each operation.
Ethanol Fermentation (P = 2) 

Stage 1 
j = 1

Stage 2
j = 2 

Stage 1 
j = 1 

Stage 2
j = 2 

Biomass Fermentation (P = 1)

a = 1 

a = 2 

a = 1 

a = 2 

a = 3 

a = 4 

PRODUCT

Fig. 2. Superstructure for ethanol fermentation model in Examples 1 and 2.
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In the first operation, there are C1 = 2 stages, so any alternative can have up to two stages.
Fig. 2 also includes A1 = 2 alternatives that are taken into account in this operation. In the first
one, there is only one stage, while in the second one there are two stages in series. For the second
operation, four alternatives of up to C2 = 2 stages are considered. In this case, the first alternative
consists of only one stage, the second one consists of two stages in series, the third one is the out-
of-phase in parallel duplication of the first stage and the last one is the out-of-phase triplication of
the first stage in parallel. The selection of alternatives for these operations is assumed to be based
on the knowledge held by the designer on the problem as regards its feasibility from the engineer-
ing point of view. In this case, as the reaction velocity of the biomass fermentation operation is
faster than that of the ethanol fermentation operation, processing time of the first operation tends
to be lower than that of the following operation and therefore the option of in parallel stages
duplication in not included in the first operation.

It is necessary to characterize each of the alternatives. Table 1 describes the elements of each
alternative for biomass and ethanol fermentation. It indicates the number of in-phase and out-
of-phase duplicated units at each stage making up each alternative. Moreover, it indicates the last
stage of each alternative. This information is used for balances between stages and, in the case of
the last one, for determining the process production.

The models have been implemented and solved in GAMS (General Algebraic Modeling Sys-
tem, [16]) in a CPU Pentium IV, 1.60 GHz. CONOPT 2 code was used to solve the NLP problem.

The model parameters values for the following examples are shown in Table 2.
As a first example, the model of the previously presented superstructure is solved by setting the

equipment costs exponent b at 0.43 for both operations. The optimal configuration for producing
100 kg/h of ethanol corresponds to the first alternative of operation 1 and the first alternative of
operation 2, i.e., alternatives a = 1 for p = 1 and a = 1 for p = 2. Fig. 3 shows the optimal solu-
tion. The values of some process and design variables are found in Table 3. Sub-index ‘‘final’’ of
some variables denotes the value of the variable at final time (value corresponding to the last point
of discretization). The time cycle of the plant is 16 hr 24 min and the total annual cost is $287,865.

In the second example, we increase the production rate to 500 kg/h. The best alternative con-
sists of using a biomass fermentor and two ethanol fermentors in series. Fig. 4 shows this solution
Table 1
Description of the alternatives of ethanol superstructure for Examples 1 and 2

Operation: biomass fermentation Operation: ethanol fermentation

Stage 1 Stage 2 Last stage Stage 1 Stage 2 Last stage

Alternative 1 M111 = 1 M112 = 0 1 M211 = 1 M212 = 0 1
G111 = 1 G112 = 0 G211 = 1 G212 = 0

Alternative 2 M121 = 1 M122 = 1 2 M221 = 1 M222 = 1 2
G121 = 1 G122 = 1 G221 = 1 G222 = 1

Alternative 3 No No M231 = 2 M232 = 0 1
G231 = 1 G232 = 0

Alternative 4 No No M241 = 3 M242 = 0 1
G241 = 1 G242 = 0



Operation 1 Operation 2 

Biomass 
Fermentation 

Ethanol 
Fermentation

a = 1 
G111 = 1 
M111 = 1 

a = 1 
G211 = 1 
M211 = 1 

Feed Feed 

Product

TL = 16 hr 24’ 
TAC = $ 287865 

Fig. 3. Optimal solution for bp = 0.43 and PR = 100 kg h�1.

Table 2
Parameters used in the ethanol production model

Parameter Value

lmax,1aj 0.5 h�1

lmax,2aj 0.1 h�1

ap 115,550
tpaj 0.02 h�1

Yx2aj 0.124
Ye2aj 0.23
H 7500 h year�1

kspaj 20 kg m�3
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and Table 3 presents the values of some optimal design and process variables. The time cycle is
16 h 1 min and the Total annual cost is $883,732.

In the third example we decrease the equipment cost exponent of the first operation (b1) to 0.3
and increase the second ones (b2) to 1. For this case, we change the superstructure schema pre-
sented on Table 1. Table 4 presents the information about the superstructure for both biomass
and ethanol fermentation operation, and Fig. 5 shows this superstructure schema. The optimal
solution consists of the out-of-phase in parallel duplication of the first biomass fermentor fol-
lowed by one biomass fermentor and two ethanol fermentors in series. This solution corresponds
to Alternative 5 of the first operation and Alternative 2 of the second one. Fig. 6 shows this solu-
tion and Table 3 presents some of its optimal variables. In-parallel working equipment has the
same operative and design characteristics (operation time, size, feeds, flows, etc.). The time cycle
is in this case equal to 5 h 9 min 47 s and the total annual cost is $526,822.
5. A comparison with the traditional approach

A comparison will be made between the proposed approach, in which the different alternatives
of the plant configuration are modeled without resorting to binary variables, and the traditional
approach, in which the problem is represented through a MINLP program.



Table 3
Design and operating optimal solutions

First example Second example Third example

Biomass
fermentor

Ethanol
fermentor

Biomass
fermentor

Ethanol
fermentor 1

Ethanol
fermentor 2

Biomass
fermentor 1

Biomass
fermentor 2

Ethanol
fermentor 1

Ethanol
fermentor 2

Time (h) 16.44 16.44 16.017 16.017 16.017 10.326 5.163 5.163 5.163
Size (m3) 6.719 31.89 11.29 57.84 98.09 4.075 4.169 4.675 5.33
Xinitial (kg m�3) 0.1 7.45 0.1 6.74 8.6 0.1 5.75 31.86 34.94
Xfinal (kg m�3) 35.38 15.39 34.53 14.58 16.43 5.88 35.73 39.8 42.83
X dead

final (kg m�3) 2.7 0.568 2.405 3.94 6.6 0.296 2.1 5.65 9.08
Sfinal (kg m�3) 2.275 4.4 5.22 8.74 2.37 84.36 17.56 5.52 3.1
Efinal (kg m�3) – 51.54 – 49.2 81.64 – – 50.94 96.96
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Table 4
Description of the alternatives of ethanol superstructure for Example 3

Operation: biomass fermentation Operation: ethanol fermentation

Stage 1 Stage 2 Last stage Stage 1 Stage 2 Last stage

Alternative 1 M111 = 1 M112 = 0 1 M211 = 1 M212 = 0 1
G111 = 1 G112 = 0 G211 = 1 G212 = 0

Alternative 2 M121 = 1 M122 = 1 2 M221 = 1 M222 = 1 2
G121 = 1 G122 = 1 G221 = 1 G222 = 1

Alternative 3 M131 = 2 M132 = 0 1 M231 = 2 M232 = 0 1
G131 = 1 G132 = 0 G231 = 1 G232 = 0

Alternative 4 M141 = 3 M142 = 0 1 M241 = 3 M242 = 0 1
G141 = 1 G142 = 0 G241 = 1 G242 = 0

Alternative 5 M151 = 2 M152 = 1 2
G151 = 1 G152 = 1

Alternative 6 M161 = 1 M162 = 2 2
G161 = 1 G162 = 1

TL = 16 hr 01’ 
TAC = $ 883732 

Biomass 
Fermentation 

a = 1
G111 = 1 
M111 = 1 

Feed Feed 

Ethanol 
Fermentation

Feed Feed 

G221 = 1 
M221 = 1 

Ethanol 
Fermentation

Product

G222 = 1 
M222 = 1 

Operation 1 Operation 2 

a = 2

Fig. 4. Optimal solution for bp = 0.43 and PR = 500 kg h�1.
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Firstly, it should be highlighted that traditional models do not solve this problem by consider-
ing in series stages duplication. Consequently, in order to perform a comparison, we assume that
the number of plant stages is fixed, and thus we are facing a problem that is sensitively simpler
than the one presented in this article. Therefore, the only way of comparing both approaches is
solving a sequence of MINLP problems that contemplate all the alternatives. This work has been
accomplished in this example because this includes a small number of operations and stages. In
more realistic problems, this task can be extremely burdensome.

It is assumed that each MINLP model contemplates all the previously posed constraints. The
difference lies in the fact that the number of stages on each operation is fixed, and the number of
out-of-phase and in-phase parallel units for each stage is variable (Mj and Gj). In this case,



Ethanol Fermentation (P=2) 

Stage 1 
j = 1 

Stage 2
j = 2 

Stage 1 
j = 1 

Stage 2
j = 2 

Biomass Fermentation (P=1) 

a = 1

a = 2 

a = 1 

a = 2 

a = 3 

a = 4 

PRODUCT
a = 3

a = 4

a = 5

a = 6

Fig. 5. Superstructure for ethanol fermentation model in Example 3.

TL = 5hr 9’ 47’’ 
TAC = $ 526,822 

Feed 

Ethanol 
Fermentation

G221 = 1 
M221 = 1 

G151 = 1 
M151 = 2 

Biomass 
Fermentation

Feed 

G152 = 1 
M152 = 1 

Biomass 
Fermentation 

Biomass 
Fermentation 

Feed 

Feed 

Ethanol 
Fermentation 

Feed 

Product

G222 = 1 
M222 = 1 

Operation 1 Operation 2 

a = 5 a = 2 

Fig. 6. Optimal solution for PR = 100 kg h�1, b1 = 0.3 and b2 = 1.
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sub-indexes p and a disappear and we only work with stages j that are included in the plant. Mpaj

and Gpaj, which used to be parameters of each alternative, now become variables Mj and Gj, since
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it is intended to determine the number of units composing each stage. All the previously posed
equations remain.

Among the previously solved examples, the third example was chosen. The optimal solution
there obtained had two biomass fermentation stages where the first one uses out-of-phase parallel
duplicated units and two ethanol fermentation stages in series. In order to perform the compar-
ison, four models are solved which contemplate the possible configurations using a predetermined
number of units in series for each operation. For this example, up to two stages are used for each
operation because this was obtained in the optimal solution of the NLP superstructure model.
Then, the number of parallel units and size of each stage are to be determined.

This is obviously a much simpler problem but it is included with the object of evaluating the
behavior of this kind of highly non-convex models when handling binary variables explicitly.

The cases modeled with binary variables are:

(i) one biomass fermentation stage and one ethanol fermentation stage,
(ii) one biomass fermentation stage and two ethanol fermentation stages,

(iii) two biomass fermentation stages and one ethanol fermentation stage,
(iv) two biomass fermentation stages and two ethanol fermentation stages.

The upper bounds for the Mj variables are shown in Table 5 for each previously mentioned
case. In Table 6 the results for each studied case are shown, including the operations configura-
tion, operating time, unit sizes, objective function value, number of constraints, number of con-
tinuous and discrete variables and CPU time to perform the solution.

The NLP superstructure model of Example 3 has 1707 continuous variables and 1617 con-
straints and the solution was performed in 10.5 CPU seconds. As it can be observed, the solutions
of the MINLP cases were performed in a shorter CPU time, but in all cases the number of con-
straints and variables is smaller and the models are much simpler as it was previously mentioned.
The solution of the model (iv) coincides with that obtained in the NLP superstructure model.

A commentary on the CPU resolution time is that the differences are not so significant (on the
same order). Anyway this depends strongly on diverse factors, for example the initialization of
variables, which can lead to changes in CPU resolution time. Nevertheless, it is necessary to
emphasize that, ahead of the comparison of the resolution times, the MINLP model requires a
greater effort for the generation of the different options. In this example only four options have
been necessary, but in cases with more operations this number can be considerably increased,
Table 5
Out-of-phase parallel units upper bounds for MINLP models

Cases Upper bound for M in biomass
fermentation

Upper bound for M in ethanol
fermentation

Stage 1 Stage 2 Stage 1 Stage 2

(i) 2 – 4 –
(ii) 2 – 3 3
(iii) 2 2 4 –
(iv) 2 2 3 3



Table 6
Optimal solutions of MINLP cases

Case (i) Case (ii) Case (iii) Case (iv)

Biomass
fermen-
tation

Ethanol
fermen-
tation

Biomass
fermen-
tation

Ethanol
fermen-
tation 1

Ethanol
fermen-
tation 2

Biomass
fermen-
tation 1

Biomass
fermen-
tation 2

Ethanol
fermen-
tation

Biomass
fermen-
tation 1

Biomass
fermen-
tation 2

Ethanol
fermen-
tation 1

Ethanol
fermen-
tation 2

Configuration M = 2 M = 1 M = 2 M = 1 M = 1 M = 2 M = 1 M = 1 M = 2 M = 1 M = 1 M = 1
Time (h) 14.469 7.234 14.207 7.103 7.103 10.628 5.314 5.314 10.326 5.163 5.163 5.163
Size (m3) 12.6 13.88 5.84 6.39 7.28 7.76 9.15 10.29 4.075 4.169 4.675 5.33
TAC ($) 643,687 583,410 605,692 526,822
Constraints Num 252 387 359 494
Continuous

Variable Num
270 412 384 526

Discrete Variable
Num

8 12 12 16

CPU time (s) 1.281 2.16 3.711 8.105
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because all possible combinations of alternatives must be done. Another subject to consider is the
exigency of handling several models with different configurations, which leads to confusions.
6. Conclusions

This work presents a novel NLP model that serves to find the optimal configuration of plants
with several operations, without resorting to binary variables to pose the different options. This
approach gains more importance in cases for which operations can have several in series or in par-
allel duplicated stages (in-phase and out-of-phase). As regards the decision on how many stages in
series have to be duplicated, there are no previous published works. For this reason, this method-
ology is an important tool. Furthermore, all possible options or those determined by the designer
are simultaneously considered. This formulation is more appropriate and useful when detailed
representations are posed. The resulting NLP model avoids difficulties that arise with resolution
methodologies of MINLP problems applied to non-convex programs.

The model was described in a generic way and has a set of general constraints, but it also admits
constraints that are specific to the operation to be designed and optimized.

This work presented the case of a fermentors network for ethanol production, whose operations
were described in detail by means of a set of constraints that include dynamical equations. All
constraints were included in the global model (superstructure) and simultaneously solved. Thus,
optimal configuration, design and operation were found through a NLP problem.

Due to the characteristics of the operations on which this modeling technique is applied to real
cases, the number of alternatives is restricted. Indeed, most of the time it is not necessary to apply
all combinations among the various alternatives of the different operations because the designer
can apply some criteria to describe only those that come out to be feasible for the process that is
being optimized.

This model is simple to be written and includes a procedure to find initial solutions, which is
generally known since it deals with real cases. Convergence and good solution are guaranteed
in reasonable CPU time.
Acknowledgements

The authors want to thank the financial support from CONICET (Consejo Nacional de Inves-
tigaciones Cientı́ficas y Técnicas) and Agencia Nacional de Promoción Cientı́fica y Tecnológica
from Argentina.
References

[1] R.W.H. Sarget, I.E. Grossmann, Optimal design of multipurpose chemical plant, Ind. Eng. Chem. Process. Des.
Dev. 18 (2) (1979) 343–348.

[2] F.C. Knopf, M.R. Okos, G.V. Reklaitis, Optimal design of batch/semi-continuous processes, Ind. Eng. Chem.
Process Des. Dev. 21 (1982) 79–86.



992 G. Corsano et al. / Applied Mathematical Modelling 30 (2006) 974–992
[3] A.K. Modi, I.A. Karimi, Design of multiproduct batch processes with finite intermediate storage, Comput. Chem.
Eng. 13 (1–2) (1989) 127–139.

[4] V.T. Voudouris, I.E. Grossmann, MILP model for scheduling and design of a special class of multipurpose batch
plants, Comput. Chem. Eng. 20 (1996) 1335–1360.

[5] F.C. Galiano, J.M. Montagna, Optimal allocation of intermediate storage in multiproduct batch chemical plants,
Math. Comput. Modell. 18 (9) (1993) 111–129.

[6] D.E. Ravemark, Optimal Model for Design and Operation of Chemical Batch Processes, Thesis for the degree of
Doctor of Technical Sciences, Swiss Federal Institute of Technology, Zurich, 1995.

[7] H.E. Salomone, O.A. Iribarren, Posynomial modeling of batch plants, Comput. Chem. Eng. 16 (1992) 173–184.
[8] J.M. Montagna, O.A. Iribarren, F.C. Galiano, The design of multiproduct batch plants with process performance

models, Trans. IChemE. 72 (Part A) (1994) 783–791.
[9] J.M. Montagna, A.R. Vecchietti, O.A. Iribarren, J.M. Pinto, J.A. Asenjo, Optimal design of protein production

plants with time and size factor process models, Biotechnol. Prog. 16 (2000) 228–237.
[10] J.M. Pinto, J.M. Montagna, A.R. Vecchietti, O.A. Iribarren, J.A. Asenjo, Process performance models in the

optimization of multiproduct protein production plants, Biotech. Bioeng. 74 (2001) 451–465.
[11] J. Viswanathan, I.E. Grossmann, A combined penalty function and outer-approximation method for MINLP

optimization, Comput. Chem. Eng. 14 (7) (1990) 769–782.
[12] I.E. Grossmann, Review of nonlinear mixed-integer and disjunctive programming techniques, Optimiz. Eng. 3

(2002) 227–252.
[13] T.K. Bhatia, L.T. Biegler, Dynamic optimization in the design and scheduling of multiproduct batch plants, Ind.

Eng. Chem. Res. 35 (1996) 2234–2246.
[14] M.D. Barrera, L.B. Evans, Optimal design and operation of batch processes, Chem. Eng. Commun. 82 (1989) 45–

66.
[15] G. Corsano, O.A. Iribarren, J.M. Montagna, P.A. Aguirre, Batch fermentation networks model for optimal

synthesis, design and operation, Ind. Eng. Chem. Res. 43 (2004) 4211–4219.
[16] A. Brooke, D. Kendrick, A. Meeraus, R. Raman, GAMS, A User Guide, Scientific Press, CA, 1998.


	Design and operation issues using NLP superstructure modeling
	Introduction
	Model formulation
	Fermentation process for ethanol production
	Example resolution
	A comparison with the traditional approach
	Conclusions
	Acknowledgements
	References


