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APPROXIMATION BY CRYSTAL-REFINABLE FUNCTIONS

URSULA MOLTER, MARÍA DEL CARMEN MOURE, AND ALEJANDRO QUINTERO

Abstract. Let Γ be a crystal group in Rd. A function ϕ : Rd −→ C is
said to be crystal-refinable (or Γ−refinable) if it is a linear combination of
finitely many of the rescaled and translated functions ϕ(γ−1(ax)), where the
translations γ are taken on a crystal group Γ, and a is an expansive dilation
matrix such that aΓa−1 ⊂ Γ. A Γ−refinable function ϕ : Rd → C satisfies
a refinement equation ϕ(x) =

∑
γ∈Γ

dγϕ(γ−1(ax)) with dγ ∈ C. Let S(ϕ)

be the linear span of {ϕ(γ−1(x)) : γ ∈ Γ} and Sh = {f(x/h) : f ∈ S(ϕ)}.
One important property of S(ϕ) is, how well it approximates functions in
L2(Rd). This property is very closely related to the crystal-accuracy of S(ϕ),
which is the highest degree p such that all multivariate polynomials q(x) of
degree(q) < p are exactly reproduced from elements in S(ϕ). In this paper,
we determine the accuracy p from the coefficients dγ . Moreover, we obtain
from our conditions, a characterization of accuracy for a particular lattice
refinable vector function F , which simplifies the classical conditions. Crystal
groups and Approximation property and Accuracy and Refinement equation
and Composite dilations

1. Introduction

Crystal groups (Crystallographic groups or space groups), are groups of isome-
tries of Rd that generalize the notion of translations along a lattice, allowing to
move using different (rigid) movements in Rd following a bounded pattern that is
repeated until it fills up space. Precisely (see [8]):

Definition 1.1. A crystal group is a discrete subgroup Γ ⊂ Isom(Rd) such that
Isom(Rd)/Γ is compact, where Isom(Rd) is endowed with the pointwise convergence
topology.

Or equivalently, one can define a crystal group to be a discrete subgroup Γ ⊂
Isom(Rd) such that there exists a compact fundamental domain P for Γ, i.e. there
exists a bounded closed set P such that

⋃

γ∈Γ

γ(P ) = R
d and γ(P ◦) ∩ γ′(P ◦) 6= ∅ then γ = γ′,

where P ◦ is the interior of P .

Note that the set of translations on a lattice is the simplest of the crystal groups.
It is known that d−dimensional crystal groups are intrinsically related to regular

tessellations of Rd, being Γ = {τk : k ∈ L}, the group of translations (τk(x) = x+k)
on a lattice L the simplest example. From the beginning of wavelets it is clear that
such tiling property of translations play a central role. The main idea in those
systems, is to move a wave through out the space, in such a way that every point
is reached. Dilations of the wave are also required to obtain reproducing systems.
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When we replace the translations in a lattice by movements on a crystal group,
we have many more reproducing systems available without losing the conditions of
moving at each scale under the action of a group (see Definition 1.6 ). If one just
thinks of Haar wavelets, which are systems intrinsically associated with self-affine
tiles we immediately realize the universe of new systems that arises if we change
the translations by transformations in a crystal group [10, 9, 11].

In this sense, crystallographic wavelets, or crystal wavelets, and its associated
crystallographic mutiresolution analysis are a natural generalization of classical
wavelets and multiresolution analysis ([18], Chapter 7). In these systems, a crystal
group Γ plays the role of translations in classical wavelets.

The group condition is not essential to building reproducing systems such as
wavelets, but is desirable in order to allow the use of powerful mathematical tools
[16, 1]. Further, if we want to ensure a regular movement throughout space (dis-
crete and uniform, see [20]) by the action of a group of isometries, we can not
have anything different than a crystal group. As already mentioned, the group of
translations on a lattice is the simplest of the crystal groups.

Accuracy has played an important role in both approximation theory and in
wavelet theory. In approximation theory, it is closely related to the approximation
properties of shift invariant spaces. In wavelet theory, one of the most successful
and systematic ways of constructing smooth, compactly supported, orthonormal
wavelet bases for L2(R) is based on the factorization of a symbol which determines
a scaling function [7]. This factorization of the symbol is related to the accuracy of
the scaling function. If the scaling function has accuracy p, then the corresponding
wavelet will have p zero moments. Hence accuracy is necessary for a refinable
function to be smooth, although it is not sufficient. General results of accuracy can
be found in [4, 5, 6, 14] and references therein.

Our goal in this paper is to obtain necessary and/or sufficient conditions for a
crystal refinable function ϕ to have crystal accuracy p. In this direction, our first
result establishes necessary conditions on S(ϕ) with ϕ an arbitrary function (not
necessarily refinable), to have crystal accuracy p. In the case that the function
ϕ is Γ−refinable, we will give necessary and sufficient conditions to ensure that
ϕ or S(ϕ) has crystal-accuracy p. Using the results obtained for crystal refinable
functions, accuracy conditions on the coefficients of the refinement equation for a
special case of functions turn out to be much simpler than in the general case (see
Theorem 3.8). Finally in Theorem 3.14 we establish Strang-Fix-type conditions
adapted to our case.

Let us start recalling the necessary definitions.

1.1. Crystal Groups. For crystal groups (see Def. 1.1), we have the fundamental
theorem of Bieberbach [2], [23] which states the following:

Theorem 1.2 (Bieberbach). Let Γ be a crystal subgroup of Isom(Rd). Then

(1) Λ = Γ ∩ Trans(Rd) is a finitely generated abelian group of rank d which
spans Trans(Rd), and

(2) the linear parts of the symmetries ad(Γ), the point group of Γ, is finite,
and satisfies ad(Γ) ∼= Γ/Λ.

(See also [15], IV-4). Here Trans(Rd) stands for translations of Rd.
We will denote the point group of Γ by G. and call (Γ, G,Λ) a crystal triple.

Remark 1.3.
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• Note that the set Λ is not empty by Bierberach’s theorem [2] and consists
of translations on the lattice Λ which is isomorphic to Zd. By abuse of
notation we will identify Λ with the translations on Λ.

We will denote by L and L∗ the fundamental domains of the lattices Λ
and its dual, Λ∗ respectively. Here Λ = R(Zd) with R an invertible d × d
matrix and hence Λ∗ = (R∗)−1(Zd).

• The Point Group G of Γ is a finite subgroup of O(d), the orthogonal group
of Rd, that preserves the lattice of translations, i.e. GΛ = Λ.

General results on crystal groups, can be found for example in [13], [24], [17],
[2], [3].

Note that the simplest example of a crystal group is the group of translations
on a lattice Λ, i.e. Γ = {τk : k ∈ Λ}, where τk(x) = x+ k.

One very important class of crystal groups, are the splitting crystal groups:

Definition 1.4. Γ is called a splitting crystal group if it is the semidirect product
of the subgroups Λ and G. In this case Γ = Λ⋊G, and for each γ, γ̃ ∈ Γ, we have

γ · γ̃ = (k + gk̃, gg̃), for γ = (k, g), γ̃ = (k̃, g̃) with k, k̃ ∈ Λ and g, g̃ ∈ G and
γ(x) = g(x) + k.

Every crystal group is naturally embedded in a splitting group, and very often
arguments for general groups can be relatively easy reduced to the splitting case
and then be proved for that simpler case. This justifies, that from now on we will
only consider splitting crystal groups.

For simplicity of notation, for each γ ∈ Γ we will use the notation γ = (k, g) in
stead of (τk, g).

Example 1.5. Consider the vectors u = (0, 1) and v = (1, 0) and let S be the
symmetry with respect to the X-axis (i.e S(x, y) = (x,−y)).

Let Γ be the group generated by {τu, τv, S}. Then Λ = {τℓ : ℓ ∈ Λ} where
Λ = Z2 and G = {Id, S}. The fundamental domain P is the rectangle of vertices
{(0, 0); (1, 0); (0, 1/2); (1, 1/2)}.

Definition 1.6. Let Γ be a crystal group. We will say that a ∈ Rd×d is a
Γ−admissible matrix, if a is an expanding affine map and aΓa−1 ⊂ Γ.

It is easy to see that if a is a Γ−admissible matrix, then m = | det a| is an integer.
Therefore, the quotient group Γ/aΓa−1 is of order m.

A function ϕ : Rd −→ C is Γ-refinable with respect to a and Γ if it is a lin-
ear combination of the rescaled and ‘translated’ functions ϕ(γ−1(ax)), where the
‘translates’ γ ∈ Γ are movements on Γ. Precisely, ϕ satisfies a refinement equation
or dilation equation of the form

(1) ϕ(x) =
∑

γ∈Γ′

dγϕ(γ
−1(ax)),

for some finite Γ′ ⊂ Γ.
Refinable functions with respect to a and Γ are related to Crystal Wavelets and

Wavelets with composite dilations [10], [12], [19].
In this paper we address the multidimensional case (d ≥ 1) with a Γ−admissible

matrix a for crystal-invariant spaces. We seek to determine one fundamental prop-
erty of the space spanned by the Γ−refinable function ϕ based on the coefficients
dγ : the property of providing good approximation in L2(Rd). For the 1-dimensional
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case (d = 1), and Γ = Z, the approximation order is equivalent to the accuracy of
the function ϕ. For d ≥ 2 unfortunately the equivalence is not true, however, ac-
curacy is still necessary for providing good approximation (see [14]). In section 3.4
we will elaborate on these relations for crystal-accuracy.

Definition 1.7. Let ϕ : Rd → C, the crystal accuracy of ϕ is the largest integer
p such that all multivariate polynomials q(x) = q(x1, . . . , xd) of deg(q) < p lie in
the space that is the closure of all finite linear combinations of Γ−translates of the
function ϕ,

(2) S(ϕ) = span

{
k∑

i=1

dγi
ϕ(γi(x)) : dγi

∈ C

}
.

As usual, equality of functions is interpreted as holding almost everywhere (a.e.).
Note that in fact, accuracy is a property of the space S(ϕ), but since the space is
generated by Γ−translates of the function ϕ, we will talk in-distinctively about the
accuracy of ϕ, or of S(ϕ). Just as a remark, we use this definition of S(ϕ) for
convenience of future calculations, but it is clear, that it also satisfies

S(ϕ) = span

{
k∑

i=1

dγi
ϕ(γ−1

i (x)) : dγi
∈ C

}
.

The results of this paper, for the most general case, of multidimensional vector-
valued functions, can also be obtained in a similar way, however, the notation is
even more complicated and the proofs are slightly more delicate. However the main
ideas are already contained in the single function case ϕ : Rd −→ C , and this is
why we chose to present this case of a single function and in the appendix we state
the general theorems without proof.

2. Notation

We use the standard multi-index notation xα = xα1

1 ...xαd

d , where x = (x1, ..., xd)
T

is in Rd and α = (α1, ..., αd) with each αi a nonnegative integer. The degree of α is

|α| = α1+...+αd. The number of multi-indices α of degree s is ds =

(
s+ d− 1
d− 1

)
.

We write β ≤ α if βi ≤ αi for i = 1, ..., d.
Following the ideas in [4] for each integer s ≥ 0 we define the vector-valued

function X[s] : R
d → Rds by

X[s](x) = [xα]|α|=s, x ∈ R
s.

For our purposes we need define two special matrices, a[s] and Q[s,t] for integers
s, t ≥ 0. Given a matrix a, we define the matrices a[s] and Q[s,t] by

X[s](ax) = a[s]X[s](x),

X[s](x− y) =

s∑

t=0

Q[s,t](y)X[t](x).

Note that a[s] ∈ Rds×ds and Q[s,t] ∈ Rds×dt .
These matrices have two properties that will be of great importance.

Lemma 2.1. Let a ∈ Rd×d be a matrix, and Λ be the lattice associated to the
crystal group Γ (see Remark 1.3). Then:
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(1) If a is an expansive matrix then a[s] is an expansive matrix for each s ≥ 0.

(2) If a is an invertible matrix then Q[s,t](az) = a[s]Q[s,t](z)(a
−1)[t].

The proof of the previous lemma as well as the explicit form and properties of
these matrices can be seen in [4].

From the matrices a[s] and Q[s,t] in order to obtain

X[s]

(
γ−1(x)

)
=
∑s

t=0 Q̃[s,t](γ)X[t](x) we give the following definition.

Definition 2.2. Let (Γ, G,Λ) be a splitting crystal triple. Let γ ∈ Γ, γ = (l, g)

then we define the matrices Q̃[s,t] by

Q̃[s,t](γ) = (−1)sg−1
[s] Q[s,t](l),

where g−1
[s] is the matrix that satisfies X[s](g

−1(x)) = g−1
[s] X[s](x). In the case that

γ = (l, Id) we will write Q̃[s,t](γ) = Q̃[s,t](l) = Q[s,t](l).

Lemma 2.3. Let (Γ, G,Λ) be a splitting crystal triple, and a an invertible matrix
such that aΓa−1 ⊂ Γ. We then have:

(1) Q̃[s,s](l, Id) = Id, l ∈ Λ.

(2) Q̃[s,0](γ) = g−1
[s] X[s](l) for each γ = (l, g) ∈ Γ.

(3) Q̃[s,t](γ1γ2) =
∑s

u=t Q̃[s,u](γ2)Q̃[u,t](γ1).

(4) Q̃[s,t](aγa
−1) = a[s]Q̃[s,t](γ)a

−1
[t] .

(5) Let bt ∈ C
dt×r be given matrices, for 0 ≤ t ≤ s. If

∑s
t=0 Q̃[s,t](al)bt = 0

for each l ∈ Λ, then bt = 0 for 0 ≤ t ≤ s.

The proof the previous lemma is immediate from Lemma 2.1 and Lemmas 4.1
and 4.7 of [4].

Given a collection {vα ∈ C : 0 ≤ |α| < p}, we shall associate special matrices
and functions, which play an important role in our analysis of accuracy.

We group the numbers vα by degree to form column vectors v[s] ∈ Cds , i.e.

(3) v[s] = [vα]|α|=s, 0 ≤ s < p.

Note that, when |α| = 0 then v[0] = [v0]0 = v0.
We define the matrices y[s](γ) by

(4) y[s](γ) =

s∑

t=0

Q̃[s,t](γ)v[t] = g−1
[s]

s∑

t=0

Q[s,t](l)v[t],

where γ = (l, g) and g−1
[s] is as before the matrix that satisfies X[s](g

−1(x)) =

g−1
[s] X[s](x).

Finally, we define the infinite row vector

(5) Y[s] = (y[s](γ))γ∈Γ.

The functions y[s] have the following properties.

Lemma 2.4. Let {vα ∈ C : 0 ≤ |α| < p} be given and let y[s] be the functions given
by (4). Let γ1 and γ2 in Γ, then

y[s](γ1γ2) =

s∑

t=0

Q̃[s,t](γ2)y[t](γ1).



6 URSULA MOLTER, MARÍA DEL CARMEN MOURE, AND ALEJANDRO QUINTERO

Proof. For the proof we use Lemmas 4.1, 4.2 and 4.3 of [4]. By definition

y[s](γ1γ2) =

s∑

t=0

Q̃[s,t](γ1γ2)v[t] =

s∑

t=0

s∑

u=t

Q̃[s,u](γ2)Q̃[u,t](γ1)v[t]

=

s∑

u=0

Q̃[s,u](γ2)

u∑

t=0

Q̃[u,t](γ1)v[t] =

s∑

u=0

Q̃[s,u](γ2)y[u](γ1).

�

Remark 2.5. Note that if γ2 = (l2, Id) = τl2 , then the previous equality yields

y[s](γ1τl2) =
s∑

t=0

Q̃[s,t](l2)y[t](γ1).

We will say that the translates of the function ϕ along Γ are Γ−independent if
for every choice of scalars bγ ∈ C,

∑

γ∈Γ

bγϕ(γx) = 0 if and only if, bγ = 0 for every γ.

Equivalently, for every choice of an infinite row vector b = (bγ)γ∈Γ,

bΦ(x) = 0 if and only if, b = 0.

Here Φ(x) is the infinite column vector with entries ϕ(γ(x)), i.e.

(6) Φ(x) = [ϕ(γ(x))]γ∈Γ .

3. Characterization of Accuracy

3.1. Necessary conditions for arbitrary functions. In this section, we will
present necessary conditions for an arbitrary (not necessarily Γ−refinable) function
f : Rd −→ C with Γ−independent translates, to have accuracy p.

Theorem 3.1. Assume that f : Rd → C is compactly supported, and that translates
of f are Γ−independent. If f has accuracy p then there exists a collection {vα ∈
C : 0 ≤ |α| < p} of row vectors such that

i): v0 6= 0.
ii): X[s](x) =

∑
γ∈Γ

y[s](γ)f(γ(x)) = Y[s]F (x) for 0 ≤ s < p, and F (x) is as

defined in (6)

where Y[s] =
(
y[s](γ)

)
γ∈Γ

=
(∑s

t=0 Q̃[s,t](γ)v[t]

)
γ∈Γ

(as in (4) and (5)).

Proof. Since f has accuracy p, there exist coefficients wα,γ ∈ C such that every
polynomial xα of degree α, 0 ≤ |α| < p can be written as a finite linear combination
of Γ−translates of f ,

xα =
∑

γ∈Γ

wα,γf(γ(x)) a.e.

For each γ ∈ Γ, group the wα,γ by degree to form the column vectors

w[s](γ) = [wα,γ ]|α|=s.

For each σ ∈ Γ define the infinite row vector

W[s](σ) =
(
w[s](γσ)

)
γ∈Γ

.
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Next, let vα = wα,I (where I = Id is the identity of Γ) and recall the definitions of
the vectors v[s] and the matrices y[s] from (3) and (4). Then we have for 0 ≤ s < p,
that

X[s](x) = [xα]|α|=s =


∑

γ∈Γ

wα,γf(γ(x))



|α|=s

=
∑

γ∈Γ

w[s](γ)f(γ(x)) =W[s](I)F (x).

Now for each σ = (ℓ, g) ∈ Γ with σ−1 = (−g−1ℓ, g−1)

W[s](σ)F (x) = X[s](σ
−1(x)) = X[s](g

−1(x− ℓ)) =

s∑

t=0

Q̃[s,t](σ)X[t](x)

=

(
s∑

t=0

Q̃[s,t](σ)W[t](I)

)
F (x).

Taking into account our assumption that translates of f are Γ−independent, this

implies that W[s](σ) =
s∑

t=0
Q̃[s,t](σ)W[t](I), and therefore for each γ ∈ Γ, w[s](γσ) =

s∑
t=0

Q̃[s,t](σ)w[t](γ). In particular, for γ = I we obtain w[s](σ) = y[s](σ).

Thus

X[s](x) =
∑

γ∈Γ

y[s](γ)f(γ(x)) = Y[s]F (x).

For s = 0, since y[0](γ) = v0 for every γ ∈ Γ we have

1 = x0 = X[0](x) =
∑

γ∈Γ

y[0](γ)f(γ(x)) = v0
∑

γ∈Γ

f(γ(x)),

and hence v0 6= 0. �

3.2. Accuracy for Γ−refinable functions. In this section we will obtain neces-
sary and/or sufficient conditions for a Γ−refinable function to have accuracy p.

First, we rewrite the refinement equation (1) in matrix form.
Let (Γ, G,Λ) be a splitting crystal triple and a ∈ Rd×d a Γ−admissible matrix.

Remember that a function f : Rd −→ C is Γ−refinable if it satisfies

f(x) =
∑

γ∈Γ

dγf(γ
−1(ax)), with dγ ∈ C.

We consider as before (6), F (x) to be the infinite column vector F (x) = [f(γ(x))]γ∈Γ.
Note that if f has compact support, for a given x, only finitely many entries f(γ(x))
of F (x) are non zero.

Lemma 3.2. Let f : Rd → C, a ∈ Rd×d a Γ−admissible matrix and F the function
defined by F (x) = [f(γ(x))]γ∈Γ (see (6)). Then, the function f is Γ−refinable

if and only if LF (ax) = F (x) a.e., where L is the Γ × Γ matrix given by L =[
daγa−1σ−1

]
γ,σ∈Γ

, where dγ are the coefficients of the refinement equation.

The proof of this result, is a consequence of the definition of the function F and
the matrix L.

The following result characterizes the accuracy of Γ−refinable functions.
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Theorem 3.3. Assume that f : Rd → C is integrable, compactly supported and
satisfies the refinement equation (1). Consider the following statements

I) f has accuracy p.
II) There exist a collection of complex numbers {vα ∈ C : 0 ≤ |α| < p} such

that
(i) v0f̂(0) 6= 0 and
(ii) Y[s] = a[s]Y[s]L for 0 ≤ s < p where Y[s] = (y[s](γ))γ∈Γ as in (4) and

(5).

Then we have the following:

a) If the translates of f along Γ are independent, then (I) implies (II).

b) (II) implies (I). In this case, if we scale all the vectors vα by C = (v0f̂(0))
−1 |P |

then

X[s](x) =
∑

γ∈Γ

y[s](γ)f(γ(x)) = Y[s]F (x), 0 ≤ s < p.

Proof.

a) Since f has accuracy p and translates of f along Γ are independent, by
Theorem 3.1 there exists a collection of coefficients {vα ∈ C : 0 ≤ |α| < p}
such that

X[s](x) = Y[s]F (x) 0 ≤ s < p,

with y[s] and Y[s] given by (4) and (5) respectively, and v0 6= 0.
Further, if P is a fundamental domain of Γ then

v0f̂(0) = v0

∫

Rd

f(x)dx = v0
∑

γ∈Γ

∫

P

f(γ(x))dx =

∫

P

1dx = |P | 6= 0,

which proves (i).
To prove (ii), using the refinement equation F (x) = LF (ax) and the

definition of a[s] we see that

Y[s]F (ax) = X[s](ax) = a[s]X[s](x) = a[s]Y[s]F (x) = a[s]Y[s]LF (ax),

and since f has independent Γ−translates, this implies that Y[s] = a[s]Y[s]L
for 0 ≤ s < p which completes the proof of a).

b) For each 0 ≤ s < p, define the vector-valued function G[s] : R
d → Cds , by

G[s](x) =
∑

γ∈Γ

y[s](γ)f(γ(x)) = Y[s]F (x).

Note that for each fixed x, only finitely many terms in the sum defining
G[s](x) are nonzero.

Using the equation Y[s] = a[s]Y[s]L and the refinement equation LF (ax) =
F (x), we have

(7) G[s](ax) = Y[s]F (ax) = a[s]Y[s]LF (ax) = a[s]Y[s]F (x) = a[s]G[s](x).

Since X[s](ax) = a[s]X[s](x), we see that G[s](x) and X[s](x) behave identi-

cally under dilation by a. We will show that if we take C = (v0f̂(0)) |P |
−1,

then G[s](x) = CX[s](x) for 0 ≤ s < p. So G[s] coincides with X[s], 0 ≤ s <
p - up to a constant that does not depend on s.
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The quotient Rd/Λ is a compact abelian group, equipped with the nor-
malized Haar measure. Let Π : Rn → Rn/Λ, be the canonical projection
onto the quotient.

The map τ := ΠaΠ−1 : Rd/Λ → Rd/Λ is a well defined, measure pre-
serving, continuous and surjective endomorphism of the group R

d/Λ.
The group of the characters of Rd/Λ is given by

(Rd/Λ)∧ = {γλ : Rd/Λ → S; γλ(x) = e2πi〈x,λ〉, with λ ∈ Λ∗}.

If γλ ◦ τ
n = γλ for some n ∈ N, then e2πi〈τ

nx,λ〉 = e2πi〈x,λ〉 for all x ∈
Rd/Λ or equivalently e2πi〈x,(a

n)tλ〉 = e2πi〈x,λ〉 for all x ∈ Rd/Λ. Therefore
(an)tλ = λ and since an is expansive, λ = 0. Hence γλ ◦ τ

n = γλ if and
only if γλ = 1. Therefore, by Theorem 1.10 of [21], the map τ is ergodic.

We now proceed by induction on s to show that G[s](x) = CX[s](x) for
0 ≤ s < p with C independent of s.

For s = 0 G[0](x) is scalar-valued. Since a[0] is the constant 1, Eq. (7)
states that G[0](ax) = G[0](x). Further, y[0](γ) = v0 for every γ ∈ Γ, so
G[0](x) =

∑
γ∈Γ

v0f(γ(x)). Therefore, for each ℓ ∈ Λ we have

G[0](x − ℓ) =
∑

γ∈Γ

v0f(γ(x− ℓ)) =
∑

γ∈Γ

v0f(γτ−ℓ(x)) =
∑

γ∈Γ

v0f(γ(x)).

Thus G[0](x) satisfies

G[0](ax) = G[0](x) and G[0](x− ℓ) = G[0](x) for all ℓ ∈ Λ.

Hence G[0](τ(x)) = G[0](x) for each x ∈ R
d/Λ. Since τ is ergodic, it follows

that G[0] is constant a.e on L, where L is the fundamental domain of Λ
(Theorem 1.6 of [21]). By periodicity, we therefore have G[0](x) = C a.e.

on R
d. Explicitly,

C|P | =

∫

P

G[0](x)dx = v0
∑

γ∈Γ

∫

P

f(γ(x)) = v0

∫

Rd

f(x)dx = v0f̂(0) 6= 0.

In particular C =
(
v0(f̂)(0)

)
|P |−1 6= 0. Suppose now, inductively, that

G[t](x) = CX[t](x) a.e. for 0 ≤ t < s. Then we have

G[s](x− ℓ) = Y[s]F (x− ℓ) =
∑

γ∈Γ

y[s](γ)f(γτ−ℓ(x)) =
∑

σ∈Γ

y[s](στℓ)f(σ(x))

=

s∑

t=0

Q[s,t](ℓ)
∑

σ∈Γ

y[t](σ)f(σ(x)) by Lemma 2.4.

This yields

G[s](x− ℓ) =

s∑

t=0

Q[s,t](ℓ)Y[t]F (x) =

s∑

t=0

Q[s,t](ℓ)G[t]

= Q[s,s](ℓ)G[s](x) +

s−1∑

t=0

Q[s,t](ℓ)G[t](x).
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Using the inductive hypothesis, we have

G[s](x− ℓ) = Q[s,s](ℓ)G[s](x) + C

s∑

t=0

Q[s,t](ℓ)X[t](x)− CQ[s,s](ℓ)X[s](x)

= G[s](x) + CX[s](x− ℓ)− CX[s](x) by definiton of Q[s,t].

Therefore, if we define H[s](x) = G[s](x)− CX[s](x) then

H[s](ax) = a[s]H[s](x) and H[s](x− ℓ) = H[s](x), for ℓ ∈ Λ.

This implies that

H[s](τ (x)) = a[s]H[s](x).

Let now E ⊂ L be a set of positive measure on which H[s] is bounded, say

‖H[s](x)‖ ≤ M for x ∈ E, where ‖ · ‖ is any fixed norm on Cds . Since τ is
ergodic, by Birkhoff’s Ergodic Theorem (see [22]) for almost every x ∈ L,

(8) lim
n→∞

#{0 < k ≤ n : τ k(x) ∈ E}

n
= |E| > 0.

Let x ∈ L be such that (8) holds. Then there exists an increasing sequence
{nj}∞j=1 of positive integers such that τnj (x) ∈ E for each j. Hence

M ≥ ‖H[s](τ
nj (x))‖ = ‖a

nj

[s]H[s](x)‖.

But since a[s] is expansive ‖a
nj

[s]H[s](x)‖ −→ ∞ if H[s](x) 6= 0. Therefore we

must have H[s](x) = 0 a.e. on L. Since H[s] is Λ-periodic, it must therefore

vanish a.e. on Rd. Hence G[s] = CX[s] a.e., which completes the proof.

�

Since the conditions for accuracy given in the previous theorem are rather diffi-
cult to check, we follow [4] to give several equivalent formulations for condition (ii)
in statement (II).

Theorem 3.4. Assume that f : Rd → C is integrable, compactly supported and
satisfies the refinement equation (1). Let m = |det a| , and let γ1, . . . , γm be a full
set of digits of the left cosets of Γ. Here, the left cosets Γi are Γi = γiaΓa

−1.

Given a collection {vα ∈ C : 0 ≤ |α| < p}, y[s](γ) =
s∑

t=0
Q̃[s,t](γ)v[t] and Y[s] =

(y[s](γ))γ∈Γ.
If v0 6= 0, then the following statements are equivalent:

a) Y[p−1] = a[p−1]Y[p−1]L. Equivalently,
y[p−1](σ) = a[p−1]

∑
γ∈Γ

y[p−1](γ)daγa−1σ−1 for σ ∈ Γ.

b) Y[s] = a[s]Y[s]L for 0 ≤ s < p. Equivalently,
y[s](σ) = a[s]

∑
γ∈Γ

y[s](γ)daγa−1σ−1 for σ ∈ Γ.

c) y[s](γi) = a[s]
∑
γ∈Γ

y[s](γ)daγa−1γ
−1

i
for 0 ≤ s < p and i = 1, . . . ,m.

d) v[s] =
∑

γ∈Γi

s∑
t=0

Q̃[s,t](γ
−1)a[t]v[t]dγ−1 for 0 ≤ s < p and i = 1, . . . ,m.

Note that by this theorem, if one wants to check for accuracy p, one does not
need to check all conditions 0 ≤ s < p, but it is enough to check it for s = p− 1.
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Proof. b) ⇒ a) and b) ⇒ c) are trivial. So we will prove a) ⇒ b), c) ⇒ b) and
c) ⇔ d).
a) ⇒ b)

Assume that (a) holds, we consider for j ∈ Λ, and σ ∈ Γ

(9)

p−1∑

s=0

Q̃[p−1,s](aj)


a[s]

∑

γ∈Γ

y[s](γ)daγa−1σ−1


 .

Then by Lemmas 2.1 and 2.4 we have that

(9) =

p−1∑

s=0

a[p−1]Q̃[p−1,s](j)a
−1
[s] a[s]

∑

γ∈Γ

y[s](γ)daγa−1σ−1

= a[p−1]

∑

γ∈Γ

y[p−1](γτj)daγa−1σ−1

changing variables γ′ = γτj and noting that aγ′τ−1
j a−1σ−1 = aγ′a−1(στaj)

−1

= y[p−1](στaj) =

p−1∑

s=0

Q̃[p−1,s](aj)y[s](σ).

Then by Lemma 2.3 item 5 we have that

a[s]
∑

γ∈Γ

y[s](γ)daγa−1σ−1 = y[s](σ),

for 0 ≤ s < p and σ ∈ Γ, so statement (b) holds.
c) ⇒ b)

By hypothesis y[s](γi) = a[s]
∑
γ∈Γ

y[s](γ)daγa−1γ
−1

i
for 0 ≤ s < p, i = 1, . . . ,m and

each digit γi = (li, bi).

Let σ ∈ Γ then there exists unique i = 1, . . . ,m and λ ∈ Γ, such that σ =
γiaλa

−1. Then y[s](σ) = y[s](γiaλa
−1) and by hypothesis and Lemmas 2.4 and 2.3

item 4, we have that

y[s](γiaλa
−1) =

s∑

u=0

a[s]Q̃[s,u](λ)a
−1
[u] y[u](γi)

=

s∑

u=0

a[s]Q̃[s,u](λ)a
−1
[u] a[u]

∑

γ∈Γ

y[u](γ)daγa−1γ
−1

i

= a[s]
∑

γ∈Γ

(
s∑

u=0

Q̃[s,u](λ)y[u](γ)

)
daγa−1γ

−1

i

= a[s]
∑

γ′∈Γ

y[s](γ
′)daγ′a−1σ−1 where we again, set γ′ = γλ.

In the last equality we used Lemma 2.4 that
s∑

u=0
Q̃[s,u](λ)y[u](γ) = y[s](γλ).

Therefore

y[s](σ) = a[s]
∑

γ∈Γ

y[s](γ)daγa−1σ−1 .
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c) ⇒ d).
Assume that (c) holds, i.e. y[s](γi) = a[s]

∑
γ∈Γ y[s](γ)daγa−1γ

−1

i
, for 0 ≤ s < p and

i = 1, . . . ,m. Then

v[s] = y[s](Id) = y[s](γiγ
−1
i ) =

s∑

t=0

Q̃[s,t](γ
−1
i )y[t](γi)

=
s∑

t=0

Q̃[s,t](γ
−1
i )a[t]

∑

γ∈Γ

y[t](γ)daγa−1γ
−1

i

=
∑

γ∈Γ

s∑

t=0

t∑

u=0

Q̃[s,t](γ
−1
i )Q̃[t,u](aγa

−1)a[u]v[u]daγa−1γ
−1

i

=
∑

γ∈Γ

s∑

u=0

s∑

t=u

Q̃[s,t](γ
−1
i )Q̃[t,u](aγa

−1)a[u]v[u]daγa−1γ
−1

i

=
∑

σ∈Γi

s∑

u=0

Q̃[s,u](σ
−1)a[u]v[u]dσ−1 ,

where the last equality is obtained taking σ = γiaγ
−1a1 and therefore σ ∈ Γi.

d) ⇒ c).
Assume now that (d) holds. Then

y[s](γi) =

s∑

t=0

Q̃[s,t](γi)v[t]

=
∑

γ∈Γ

s∑

u=0

s∑

t=u

Q̃[s,t](γi)Q̃[t,u](aγa
−1γ−1

i )a[u]v[u]daγa−1γ
−1

i

=
∑

γ∈Γ

s∑

u=0

Q̃[s,u](aγa
−1)a[u]v[u]daγa−1γ

−1

i

=
∑

γ∈Γ

a[s]

(
s∑

u=0

Q̃[s,u](γ)v[u]

)
daγa−1γ

−1

i

= a[s]
∑

γ∈Γ

y[s](γ)daγa−1γ
−1

i
.

�

As in the translation case the last theorem enables us to obtain a much nicer
accuracy condition for f .

Theorem 3.5. Let (Γ, G,Λ) be a splitting crystal triple, a ∈ Rd×d a Γ−admissible
matrix, m = | det(a)| and let Λ1, ...,Λm be the (left) cosets of Λ/aΛ. Let f : Rd → C

be a Γ−refinable function. If the coefficients dγ of the refinement equation (1)
satisfy:

i)
∑

γ∈Γ dγ−1 = m,

ii) For each g ∈ G and |α| < p

(10)
∑

ℓ∈Λ1

(−g(ℓ))αd(ℓ,g)−1 = · · · =
∑

ℓ∈Λm

(−g(ℓ))αd(ℓ,g)−1 = β(α,g),
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iii) 1 is not an eigenvalue of the matrix
∑

g∈G β(0,g)g
−1
[s] a[s] for each 0 ≤ s < p,

then f has accuracy p.

These conditions should be compared to Theorem 3.7 in [4].

Proof. Note first that the coefficients dγ are scalars, and hence commute with any
matrix or vector.

Is not very difficult to show that if {γ1, . . . , γm} is a full set of digits of the left
cosets of Λ/aΛ it is also for the left cosets of Γ/aΓa−1.

We define the matrices

M[s,t] =
∑

γ∈Γi

Q̃[s,t](γ
−1)dγ−1 .

Note that for γ = (ℓ, g), Q̃[s,t](γ
−1) = g[s]Q[s,t](−g(ℓ)), and therefore

M[s,t] =
∑

g∈G

∑

ℓ∈Λi

g[s]Q[s,t](−g(ℓ))d(ℓ,g)−1 ,

and by Lemma 2.3 Q̃[s,s](γ
−1) = g[s].

Since the coefficients dγ−1 satisfy (10), the sum

∑

ℓ∈Λi

g[s]Q[s,t](−g(ℓ))d(ℓ,g)−1 ,

is independent of i. Moreover, as 1 is not an eigenvalue ofM[s,s]a[s],
(
I −M[s,s]a[s]

)

is invertible.
We shall define scalars vα ∈ C so that v[s] satisfies condition d) of Theorem 3.4.
Define v0 = 1. It is not difficult to prove that,

∑
γ∈Γi

dγ−1 = 1, so v[0] = [v0] = 1

satisfies condition d).
Therefore, if we define the vectors v[s] recursively as

(11) v[s] :=
(
I −M[s,s]a[s]

)−1
s−1∑

t=0

M[s,t]a[t]v[t],

they will satisfy condition d) of Theorem 3.4. To see this, first rewrite (11) as

v[s] =M[s,s]a[s]v[s] +

s−1∑

t=0

M[s,t]a[t]v[t].
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Now for 0 ≤ s < p and i = 1, . . . ,m, let us compute

∑

γ∈Γi

s∑

t=0

Q̃[s,t](γ
−1)a[t]v[t]dγ−1

=
∑

γ∈Γi

Q̃[s,s](γ
−1)a[s]v[s]dγ−1 +

s−1∑

t=0

∑

γ∈Γi

Q̃[s,t](γ
−1)a[t]v[t]dγ−1

=
∑

γ∈Γi

g[s]a[s]v[s]dγ−1 +
s−1∑

t=0



∑

γ∈Γi

Q̃[s,t](γ
−1)dγ−1


 a[t]v[t]

= M[s,s]a[s]v[s] +

s−1∑

t=0

M[s,t]a[t]v[t]

= v[s] where this equality is true by the hypothesis that
∑

dγ−1 = m.

Therefore, by Theorem 3.3 f has accuracy p. �

3.3. Special vector functions. In this section we apply Theorem 3.5 to obtain
accuracy conditions for a special case of vector (lattice)-refinable functions.

Given (Γ, G,Λ) a splitting crystal triple, with the point group G = {g1 =
Id, ..., gr}. In [19] the authors show that if we associate to a scalar function
f : Rd −→ C the vector valued function F : Rd −→ Cr, F = (f ◦ g−1

1 , ..., f ◦ g−1
r ),

then these two functions have properties in common.
The following definition is important for our purpose.

Definition 3.6. Let (Γ, G,Λ) be a splitting crystal triple and G = {g1, g2, . . . , gr}.
Let a be a Γ−admissible matrix and {ck}k∈Λ, with ck ∈ Cr×r. We will say that
the matrices ck have (Γ, a)−symmetry, if

cki,j = c
g
−1

hi
(k)

1,ρi(j)
for all i, j = 1, ..., r and k ∈ Λ.

where hi and ρi are permutations of {1, . . . , r} such that

ghi
= agia

−1 and gρi(j) = g−1
hi

◦ gj for each i, j = 1, . . . , r.

In [19] it is shown that, under some (mild) conditions, f is Γ−refinable if and
only if F is Λ−refinable. Precisely, they prove the following theorem.

Theorem 3.7. Let (Γ, G,Λ) be a splitting crystal triple, G = {g1 = Id, ..., gr}, a a
Γ−admissible matrix and m = | det a|. We consider the sequence {cγ}γ∈Γ ⊂ C and
{c̃k}k∈Λ ∈ C

r×r, where the matrices c̃k are related to the scalars cγ by the equality

c̃k = (cki,j)i,j=1,...,r =
(
c(g−1

hi
◦gj ,g

−1

j
(k))

)

i,j=1,...,r
.

Then

(1) If f : Rd → C is Γ−refinable, then the function F = (f, f ◦ g−1
2 , ..., f ◦

g−1
r ) is Λ−refinable and the coefficients of the Λ-refinement equation have
(Γ, a)−symmetry.

(2) If
∑

γ∈Γ |cγ |
2 < m and F = (f1, . . . , fr) ∈ L2(Rd,Cr) is the solution of the

refinement equation associated to the matrices {c̃k}k∈Λ, then F = (f, f ◦
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g−1
2 , ..., f ◦g−1

r ) and the function f = f1 is the solution of the Γ−refinement
equation associated to the scalars {cγ}γ∈Γ, i.e., f is solution of

f(x) =
∑

γ∈Γ

cγf(γax) a.e. x ∈ R
d.

From Theorem 3.7 together with Theorem 3.5, we present a much simpler con-
dition for characterizing the accuracy of some special functions F : Rd → Cr.

Theorem 3.8. Let (Γ, G,Λ) be a splitting crystal triple and G = {g1 = Id, g2, . . . , gr}.
Let a be a Γ−admissible matrix and m = | det a|. Let F : Rd → Cr be a function
such that F = (f, f ◦ g−1

2 , . . . , f ◦ g−1
r ), is Λ−refinable and the coefficients c̃k of the

Λ-refinement equation have (Γ, a)−symmetry. Consider the scalars cγ = c(l,gi) =

c̃
gi(l)
1,i = (c̃gi(l))1,i, generated by the matrices c̃k. If the sequence {cγ}γ∈Γ satisfies

the hypothesis of Theorem 3.5 and
∑

γ∈Γ |cγ |
2 < m, then F has accuracy p.

Compare this to the conditions of Theorem 3.4 in [4]. The conditions of the
previous Theorem are clearly much easier to check!

Proof. Without loss of generality, we assume that g1 = Id. By Theorem 3.7 f = f1
is a Γ−refinable function, and {cγ}γ∈Γ are the coefficients of the Γ−refinement
equation. Further {cγ}γ∈Γ satisfy the hypothesis of Theorem 3.5, therefore the
function f has accuracy p.

To show that F has accuracy p let P (x) a polynomial of degree less than p. Then

(12) P (x) =
∑

γ∈Γ

cγf(γ(x)) =
∑

k∈Λ

n∑

i=1

c(k,gi)f(g
−1
i (x − k)) =

∑

k∈Λ

CkF (x− k).

Then F reproduces the same polynomials than f . Therefore F has accuracy p. �

From equality (12) we have in fact the following result.

Corollary 3.9. Let (Γ, G,Λ) be a splitting crystal triple andG = {g1 = Id, g2, . . . , gr}.
Let a be a Γ−admissible matrix and m = | detA|. Let f : Rd → C, f ∈ L2(Rd) and
F : Rd → Cr be defined by F = (f, f ◦ g−1

2 , ..., f ◦ g−1
r ). Then f has accuracy p if

and only if F has accuracy p.

3.4. Accuracy and Order of Approximation. The notion of accuracy has been
studied before in the context of approximation theory and can be related to proper-
ties of the space S(f) (see equation (2)). In this section we will discuss the connec-
tion between accuracy and order of approximation for crystal-invariant spaces. We
will state our results for L2(Rd), but it can also be formulated for Lq(Rd), q ≥ 1.

Let S := S(F ) ∩ L2(Rd), and set Sh = {g(x/h) : g ∈ S}. Let W 2
n(R

d) denote
the Sobolev space consisting of all functions whose weak derivatives up to order n
all lie in L2(Rd).

Definition 3.10. We say that S(F ) provides L2−approximation order n if for each
g ∈ W 2

n(R
d) there exists a constant cg independent of h such that

for all h > 0; inf
k∈Sh

‖g − k‖2 ≤ cgh
n.

We say that S(F ) provides L2−density order n if for each g ∈W 2
n(R

d)

lim
h→0

( inf
k∈Sh

‖g − k‖2)/h
r = 0.
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Let us recall the general Poisson formula for a function f ∈ L1(Rn) and a lattice
Λ. Consider f with compact support, Λ a lattice and Λ∗ its dual. We then have

∑

k∈L

f(x+ k) = |L|−1
∑

l∈L∗

f̂(l)e−2πi〈l,x〉,

where L is a fundamental domain of Λ.
Now, we recall the Strang-Fix conditions for a single function f : Rd → C and a

vector function F : Rd → C
r, and generalize them to the crystal setting.

Definition 3.11. Let f : Rd → C be a compactly supported function in L2(Rd),
Λ a lattice, Λ∗ its dual and α a multi-index, we say that f satisfies the Strang-Fix
conditions of order n if

(13) f̂(0) 6= 0 and Dαf̂(ℓ) = 0, for all ℓ ∈ Λ∗, 0 ≤ |α| ≤ n− 1.

Let F = (f1, . . . , fr)
t : Rd → Cr be a vector of compactly supported functions, we

say that F satisfies the Strang-Fix conditions of order n if there exists a function g
which is a finite linear combination of lattice translates of f1, . . . , fr, i.e.,

g(x) =

r∑

i=1

∑

k∈M

ck,ifi(x− k),

and which satisfies the Strang-Fix conditions (13), where M is a finite subset of Λ.
We say that F satisfies the crystal Strang-Fix conditions, if F = (f ◦ g−1

1 , . . . , f ◦
g−1
r )t : Rd → Cr, with gi ∈ the point group of Γ, and F satisfies the Strang-Fix
conditions for the lattice Λ = Λ associated to Γ.

Before stating the main theorem of this section, we show the relation between
accuracy and Strang-Fix condition for a function f , in the context of translations.

Theorem 3.12. Let f : Rn → C a function with compact support such that
xαf(x) ∈ L1(Rn), for all multi-indices α with |α| ≤ p − 1, then the following
are equivalent:

(1) f satisfies the Strang-Fix conditions of orden p

(2) For each multi-index α with |α| ≤ p− 1,
∑

k∈L

kαf(x− k) is a polynomial of

degree |α|, moreover the coefficient of xα is non-zero.

Proof. Since xαf(x) ∈ L1(Rn) we have that Dαf̂(x) = ∂|α| f̂
∂xα (x) exists for each

x ∈ Rd. We consider the function ψ(y) = yαf(x − y) where x ∈ Rn is fixed. Its
Fourier transform is

ψ̂(ξ) =

∫

Rn

f(x− y)yα1

1 ...yαn

n e−2πiy1ξ1 ...e−2πiynξndy

=

∫

Rn

f(x− y)
1

(−2πi)|α|
∂|α|

∂(ξα)
(e−2πi〈y,ξ〉)dy

=
1

(−2πi)|α|
∂|α|

∂(ξα)

(∫

Rn

f(x− y)e−2πi〈y,ξ〉dy

)

=
1

(−2πi)|α|
∂|α|

∂(ξα)

(
e−2πi〈y,ξ〉f̂(−ξ)

)
.
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Then, the by the Poisson formula for ψ for each x we have
∑

k∈L

kαf(x− k) =

=
|P |−1

(−2πi)|α|

∑

l∈L∗

Dα (e−2πi〈x,ξ〉f̂(−ξ))
∣∣∣
ξ=l

=
|P |−1

(−2πi)|α|

∑

l∈L∗


∑

β≤α

(
α
β

)
Dβ(e−2πi〈x,ξ〉)Dα−β f̂(−ξ)



∣∣∣∣∣∣
ξ=l

.(14)

By hypothesis, in this last sum the only non-zero terms are those corresponding
to l = 0. Therefore

∑

k∈L

kαf(x− k) =
|P |−1

(−2πi)|α|

∑

β≤α

(−2πi)|βxβ(−1)|α|−|β|Dα−β f̂(0),

which is a polynomial in x of degree |α| because when β = α the coefficient is

|L|−1f̂(0) 6= 0.
Now we assume that 2. holds. Taking α = 0 in (14) we have that the Fourier se-

ries in L2(Rn/Λ) of the constant function
∑

k∈L

f(x−k) is |L|−1
∑

l∈L∗ e−2πi〈x,l〉f̂(−l),

and therefore f̂(0) 6= 0 and f̂(l) = 0 for all l ∈ Λ∗ and l 6= 0.
We now consider the multi-index α = (1, 0, ..., 0). Then

|P |−1

(−2πi)

(
∑

l∈L∗−0

(
e−2πi〈x,l〉(−1)

∂f̂

∂ξ1
(−l) + (−2πi)x1e

−2πi〈x,l〉f̂(−l)

)
+

+(−1)
∂f̂

∂ξ1
(0) + (−2πi)x1f̂(0)

)
,

is a polynomial whose main coefficient is cx with c 6= 0 and f̂(l) = 0 if l 6= 0.

Therefore ∂f̂
∂ξ1

(l) = 0 for l 6= 0 and f̂(0) 6= 0. Repeating this argument for α = ei

where ei ∈ Rd is the vector with entries 0 in the place j 6= i and 1 in the place i,
we obtain that f satisfies the Strang-Fix contions of order p. �

The following result shows that if f is a crystal-refinable function with compact
support and Γ−independent translates, then order of approximation, density order,
Strang-Fix conditions and accuracy are equivalent.

Remark 3.13. When Γ consists only of translations, i.e. G = {g1 = Id}, this
theorem was proved in [14].

Theorem 3.14. Let (Γ, G,Λ) be a splitting crystal triple, G = {g1 = Id, . . . , gr}
and f ∈ L2(Rd) be a function with compact support and Γ−independent translates.
We consider the function F = (f, f ◦ g−1

2 , ..., f ◦ g−1
r ). The following statements are

equivalent:

(1) f has accuracy p.
(2) S(F ) provides L2-density order p− 1.
(3) S(F ) provides L2-approximation order p.
(4) F satisfies the Strang Fix conditions of order p
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Proof. If f has Γ−independent translates it is immediate that the vector-function F
has independent translates with respect to the lattice Λ associated to Γ. By Corol-
lary 3.9 we know that f has accuracy p if and only if F has accuracy p. Therefore,
by Remark 3.13, it is equivalent for f to have accuracy p, that S(F ) provides L2-
approximation order p, which in turn is equivalent to S(F ) providing L2-density
order p−1, and this is equivalent to F satisfying the Strang-Fix conditions of order
p. Therefore f has accuracy p if and only if S(F ) provides L2-approximation order
p if and only if S(F ) provides L2-density order p− 1, if and only if F satisfies the
Strang-Fix conditions of order p. �

4. Statements of the Theorems for the multi function case

The main theorems of this paper, can be extended, using the techniques intro-
duced in [4] for the case of vector-valued functions. We will state the theorems in
full generality, but leave the proofs for the interested reader.

We will say that a vector valued function: φ(x) : Rd −→ Cℓ, φ(x) := (ϕ1(x) . . . , ϕℓ(x))
T

is Γ−refinable, if it satisfies the refinement equation:

(15) φ(x) =
∑

γ∈Γ′

dγφ(γ
−1ax),

for some finite Γ′ ⊂ Γ, and matrices dγ ∈ C
ℓ×ℓ. These matrices dγ are called

coefficients of the refinement equation.
Given a collection

{vα = (vα,1, ..., vα,ℓ) ∈ C
1×ℓ : 0 ≤ |α| < p},

of row vectors of length ℓ, we group the vα by degree to form ds× 1 column vectors
v[s] with block entries that are the 1× ℓ row vectors vα. Specifically, we set

v[s] = [vα]|α|=s, 0 ≤ s < p.

Note that, when α = 0 then v[0] = [v0] = v0.
We define the matrices y[s](γ) as before by

y[s](γ) =

s∑

t=0

Q̃[s,t](γ)v[t],

but noting that now v[t] are matrices of size dt × ℓ.

Theorem 4.1. Assume that f : Rd → Cℓ is integrable, compactly supported and
satisfies the refinement equation (15). Consider the following statements

I) f has accuracy p.
II) There exist a collection of row vectors {vα ∈ C1×ℓ : 0 ≤ |α| < p} such that

(i) v0f̂(0) 6= 0 and
(ii) Y[s] = a[s]Y[s]L for 0 ≤ s < p where Y[s] = (y[s](γ))γ∈Γ as in (4) and

(5).

Then we have the following:

a) If the translates of f along Γ are independent, then (I) implies (II).

b) (II) implies (I). In this case, if we scale all the vectors vα by C = (v0f̂(0))
−1 |P |

then

X[s](x) =
∑

γ∈Γ

y[s](γ)f(γ(x)) = Y[s]F (x), 0 ≤ s < p.
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As for the single function case, this theorem can be simplified so that, if one
wants to check for accuracy p, one does not need to check all conditions 0 ≤ s < p,
but it is enough to check them for s = p− 1.

Theorem 4.2. Assume that f : Rd → Cm is integrable, compactly supported and
satisfies the refinement equation (15). Let δ = |det a| , and let γ1, . . . , γδ be a full set
of digits of the left cosets of Γ. Here, the left cosets Γi are Γi = γiaΓa

−1, i = 1, . . . , δ.
Given a collection {vα ∈ C1×r : 0 ≤ |α| < p} of row vectors, let

y[s](γ) =
s∑

t=0
Q̃[s,t](γ)v[t] and Y[s] = (y[s](γ))γ∈Γ.

If v0 6= 0, then the following statements are equivalent:

a) Y[p−1] = a[p−1]Y[p−1]L. Equivalently,
y[p−1](σ) = a[p−1]

∑
γ∈Γ

y[p−1](γ)daγa−1σ−1 for σ ∈ Γ.

b) Y[s] = A[s]Y[s]L for 0 ≤ s < p. Equivalently,
y[s](σ) = A[s]

∑
γ∈Γ

y[s](γ)dAγA−1σ−1 for σ ∈ Γ.

c) y[s](γi) = A[s]

∑
γ∈Γ

y[s](γ)dAγA−1γ
−1

i
for 0 ≤ s < p and i = 1, ..., δ.

d) v[s] =
∑

γ∈Γi

s∑
t=0

Q̃[s,t](γ
−1)A[t]v[t]dγ−1 for 0 ≤ s < p and i = 1, . . . , δ.

5. Acknowledgements

The authors gratefully acknowledge support fromMinCyT, ANPCyT PICT2014-
1480 and UBA, UBACyT 20020130100403BA.

References

[1] L. Baggett, A. Carey, W. Moran, P. Ohring, General existence theorems for orthonormal
wavelets, an abstract approach, Publ. Res. Inst. Math. Sci. 31, 95-111 (1995).
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