VI San Luis School and Conference on Surfaces, Interfaces and Catalysis

June 2nd to 8th, 2018

Santa Fe, Argentina

BOOK OF ABSTRACTS

Humboldt Kolleg

June 4th to 5th, 2018

Alexander von Humboldt

Stiftung/Foundation

Ministerio de Ciencia, Tecnología e Innovación Productiva

Secretaria del Estado de la Energía

DRIFT+MS Quantitative Study of the CO Oxidation on Gold supported on Ceria

A. Aguirre, S. E. Collins*

Instituto de Desarrollo Tecnológico para la Industria Química INTEC. Universidad Nacional del Litoral, CONICET, Güemes 3450, 3000 Santa Fe, Santa Fe, Argentina.

*email presenting author: scollins@santafe-conicet.gov.ar

The steps of the CO oxidation reaction on a Au/CeO₂ catalyst was quantitatively investigated using a novel DRIFT cell/micro-reactor. The design and characterization of this DRIFT cell/micro-reactor, coupled with mass spectrometry, to perform operando and transient studies of reactions at the gas/solid interface is presented. The cell was modeled and experimentally validated to obtain kinetic parameters of reactions under true chemical control conditions. Light-off curves of activity vs temperature, step-reaction and excitation modulation spectroscopy (MES) experiments were carried out. TOF and apparent activation energy were identical to the measured using a conventional reactor. The simultaneous detection of gas phase concentrations by MS and the intensity of the IR signals allowed the quantification of surface species active in the reaction: i) Au⁰-CO (2110 cm⁻¹), Au⁺-CO (2125 cm⁻¹), ii) carbonate adsorbed on the ceria support (1700-1200 cm⁻¹). Moreover, the amount of adsorbed oxygen could also be quantified. Kinetic constants of CO adsorption and oxidation were measured.