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ABSTRACT: This study developed and evaluated the toxicological effects of new
stable nanoemulsions (NEs) of peppermint essential oils (EOs) and palmarosa EO
+ linalyl acetate (LA) using ultrasound cavitation. Moreover, the study analyzed
the effect of LA in the stabilization process of palmarosa NEs. Peppermint NEs
had sizes of 34 nm and polydispersity index (PDI) values of 0.424, whereas
palmarosa NEs showed sizes of 15 nm and a PDI of 0.078. Peppermint NEs were
stable for 30 days and palmarosa NEs for 120 days. The insecticidal effect of NEs
was also evaluated against Cx p. pipiens and Plodia interpunctella larvae. In Culex
pipiens pipiens, the LCs, values were 31.24 ppm for peppermint NEs and 32.30
ppm for palmarosa + LA NEs. In P. interpunctella, the NEs were combined with /-
cypermethrin and the LCg, values were 0.12 ug larvae™" for peppermint NEs and
0.23 pg larvae™ palmarosa + LA NEs. In addition, the NEs showed no toxicity
effect in nontarget organisms such as Artemia salina and Tenebrio molitor. Finally,
viability on mammalian cell culture models was evaluated and it was also observed
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that NEs did not affect the cell viability after 3 and 7 days of exposure.
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B INTRODUCTION

Climate change could result in expansion of vector ranges from
endemic places to nonendemic areas.' In addition, many
studies have demonstrated that, generally because of the
increase in temperature, field populations of mosquitoes are
likely to accelerate their development.” Mosquitoes can
transmit many pathogens, which can produce important
diseases, such as dengue, malaria, and filariasis.> For instance,
Culex pipiens pipiens Say (Diptera: Culicidae) (Cx. p. pipiens)
has shown to play a critical role in the transmission of
lymphatic filariasis caused by Wuchereria bancrofti and other
important arboviruses.*

Climate change has already been affecting agriculture and
food systems in different regions, especially in developing
countries.” Therefore, an important factor in increasing food
supply is improving the postharvest and storage practices to
reduce food loss, which are caused by insects.’ Plodia
interpunctella, Hiibner (Lepidoptera: Pyralidae), the Indian
meal moth, is a cosmopolitan pest and it infests different stored
cereal products, dried vegetables, fruits, and nuts. Losses
caused by larvae include the direct consumption of kernels and
indirect damage because of the presence of larval farces, silk-
web, and body fragments.7

Synthetic insecticides are the most important products in
mosquito and Indian meal moth control practices. However,
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these products produce undesired environmental impacts and
side effects on human health.® Essential oils (EOs) are viewed
as an ecofriendly alternative to the use of conventional
insecticides to control pests.” Different studies have demon-
strated that EOs have toxic, fumigant, and repellent effects on
Cx. p. pipiens and P. interpunctella.”®"* Nevertheless, EOs have
showed some disadvantages, such as instability, volatility, and
low solubility in water, which may limit their applications."’
Nanotechnology facilitates the development of new nano-
formulations based on EOs in aqueous solutions, making
bioinsecticides more effective and more environmentally
friendly."* Over the last few years, one of the most promising
innovations in the field of insect pest control has been the
nanoemulsions (NEs) of different products.”> NEs are
colloidal delivery systems, with high thermodynamic stability,
solubility, and higher bioavailability. Besides, they have showed
a particle size range from 1 to 100 nm.'® NEs can be produced
using low-energy as well as high-energy methods. Furthermore,
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some high-energy methods, such as high pressure homoge-
nizer, ultrasonicator, or high shear homogenizer, use lower
concentrations of surfactant compared with the low energy
methods.'” New investigations informed that NEs based on
EOs can be formulated using a liquid whistle hydrodynamic
cavitation reactor, a microfluidizer, or an ultrasonic probe.lg_20
The ultrasonic technique uses an ultrasonic probe, which
produces waves to reduce the droplets from the macro-
emulsion.”’ The ultrasonication waves provide the energy
forces with a higher intensity to turn mechanically broken
larger droplets into smaller ones.'® Ultrasonication offers some
advantages, such as a better control over formulation variables
and a low production cost.””

Simultaneously, with the development of nanoformulations
in the insect pest management field, econanotoxicology
emerges as a novel discipline focused on the potential hazards
of these products when they reach the environment. Many
aquatic animals such as crustacean, mollusks, and fish have
been used as models to evaluate the toxicological effects of
several nanomaterials.”*~>* Terrestrial models have involved
insects, earthworms, mammalian cell lines, and so forth.>™>%

Our work focused on the physicochemical characterization
of NEs obtained from peppermint and palmarosa + linalyl
acetate (LA), the analysis of LA in the stabilization of
palmarosa NEs, and the efficacy of NEs against larvae of Cx p.
pippiens and P. interpunctella. Moreover, we evaluated the
potential influence of NEs on the nontarget aquatic model
Artemia salina, L. (Anostraca: Artemiidae), and on the
terrestrial model Tenebrio molitor L. (Coleoptera: Tenebrioni-
dae). We also investigated the effect of NEs on the viability of
a mammalian cell culture model.

The overall objective was to develop an eflicient
bioinsecticide nanoformulation that can be used for safer
management of pest insects as well as an improvement in the
knowledge of the econanotoxicological field.

B MATERIALS AND METHODS

Materials. Tween 80, LA, and f-cypermethrin were purchased
from Sigma-Aldrich Commercial. Analytical grade Acetone (Dorwill,
Argentina) was used as the solvent. The peppermint and palmarosa
EOs were procured from Swiss-Just (manufactured under supervision
and control of Ulrich Justrich AG, Walzenhausen, Switzerland).

The gas chromatography—mass spectrometry analysis of EOs
showed that palmarosa presented geraniol (G) (77.07%) and LA
(9.13%) as a main compound, and peppermint had menthol
(52.51%), isomenthone (16.9%), and p-menthan-3-ona (10.03%) as
major substances.

Alpha-MEM (1.36 mM Ca®*; CaCl,-2H,0 0.2 g/L) and Neutral
Red dye were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Fetal bovine serum (FBS) was procured from Natocor (Cordoba,
Argentina).

Target and Nontarget Organisms. Cx p. pipiens was identified
at the Laboratorio de Zoologia Invertebrados II, Universidad
Nacional del Sur (UNS) Argentina. The mosquito larvae were
maintained in an acclimate room at 27 + 1 °C, 45—50% r.h., and 16:8
h L/D.

P. interpunctella were fed with a mixture of maize flour, wheat flour,
powdered milk, honey, and glycerin of analytical grade (2:1:1:1:1 w/
w). The colonies grew in plastic containers (13 cm diameter X 30 cm
high) at 27 + 1 °C, 45—50% r.h., and 16:8 h L/D.

In order to obtain 48 h-old nauplii from A. salina, the cysts were
put in distilled water for 24 h to hydrate them. After that, they were
moved to artificial synthetic seawater (33 ppm) at 27 °C with
continuous illumination and aeration for 24 h, where they start to
hatch.

Colonies of T. molitor were kept in a growth chamber and stored in
darkness. The colonies grew in plastic containers of 20 cm X 20 cm X
30 cm (length X width X height). Each one contained a mixture of
wheat flour, maize flour, and oats (2:1:1 w/w).

NE Formulation and Characterization. The NEs were
elaborated following Jesser et al.*’ Briefly, peppermint EO or
palmarosa EO + LA (in different ratios) were mixed with Tween
80 and 25 mL of double-distilled water. Then, the emulsion was
stirred at 700 rpm for 2 min and moved into a plastic container (3 cm
diameter X 50 cm high). Sonics Vibra cell, VCX 130 with a titanium
probe tip (9.5 mm diameter, 130 W nominal power, 20 kHz
frequency) were used to obtain NEs. Sonication parameters were
65W and an effective sonication time of 120s by cycles of 30 s on/20 s
off in order to obtain stable NEs.

The average droplet size and the polydispersity index (PDI) was
determined using dynamic light scattering (DLS) equipment
(Zetasizer nano ZEN 3690 model, Malvern, UK). All experiments
were performed at room temperature three times.

The stability of the emulsion over time was also analyzed. Thus, the
droplet size and the visual appearance were registered for 120 days.
The samples were stored at 25 ° C and they were observed one time a
week. Three replicates of each samples were carried out.

LA: Role in Palmarosa NE Formation. As palmarosa EO alone is
unable to produce a stable nanosystem, a comparative study was
performed using the oil or G mixed with LA in order to determine the
possible phenomena involved in the stabilization process of NEs. In
consequence, different ratios of palmarosa oil and LA (0.5:0.5, 0.6:0.4,
0.7:0.3, and 0.8:0.2) were mixed. Then, Tween 80 was added to this
mixture (2:1). After that, double-distilled water was incorporated and
stirred at 700 rpm for 2 min to attain a homogeneous emulsified
phase. The same ratios and steps were followed for the elaboration of
G + LA NEs. Moreover, for all the NEs, the ultrasound parameters
were maintained at 65 W, the cycles were 30 s on/20s off, and the
sonication time was 2 min.

Toxicity Bioassays. Cx p. pipiens Bioassays. Twenty mosquito
larvae (fourth instar) were used in the assay in conformity with the
WHO?" and the experiments were achieved in quadruplicate (1 = 80).
For EO bioassays, EOs were added in tap water with Tween 80 (1%
p/v) and for the NEs, they were added in tap water alone. The
concentration of EOs or their NEs ranged from 10 to 250 ppm.
Untreated (tap water alone) and surfactant (Tween 80 in the
corresponding ratio) controls were assayed. The bioassays were
performed at 27 + 1 °C, 45—50% r.h., and 16:8 h L/D.

P. interpunctella Bioassays. The determination of acute toxicity,
measured as mortality after 72 h of exposure, was made through
topical application of peppermint and palmarosa EO + LA or their
NEs and f#-cypermethrin to the fourth instar of P. interpunctella larvae
(n = 10). A pretreatment was carried out using a sublethal dose of the
EO (20 ug larva™) or the NEs at an equal dose. After 2 h, insects
were exposed to f-cypermethrin solution in doses from 0.00S to 5 ug
larva™ (topically applied). As control, acetone or surfactant alone (in
the corresponding ratio) was used. All experiments were performed in
quadruplicate.

Ecotoxicological Bioassays. A. salina Bioassays. In the present
work, 48 h-old nauplii were exposed to peppermint and palmarosa EO
and their NEs for 24 h. Briefly, 20 nauplii were transferred to each
sample vial containing 4 mL of freshly prepared synthetic seawater
alone. After that, EOs or their NEs were added. The products were
tested at concentrations ranging from 25 to 100 ppm in order to
obtain LCy, values. Untreated and Tween 80 controls were assayed.
Tests were performed in quadruplicate.

T. molitor Bioassays. To determine the combined effect of EOs or
NEs and f-cypermethrin in T. molitor, the same process for the P.
interpunctella bioassays was performed. A pretreatment was carried
out using a sublethal dose of the EO (20 ug larva™) or the NEs at an
equal dose. After a 2 h pretreatment, acetonic solutions of f-
cypermethrin were applied in doses ranging from 0.003 to 0.06 ug
larva™. Acetone or surfactant alone was used as control. All
experiments were performed in quadruplicate.
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Table 1. Characterization of Peppermint EO Formulations Elaborated by Ultrasound Technique®”

oil/surfactant diam. size (nm) + SE© PDI + SE° stability after 72 h visual appearance
1:1 102.5 + 56.04 a 0.296 + 0.015 a no whitish
1:1.5 6S.11 + 48.1S 0.479 + 0.014 b no translucent
1:2 33.97 £ 33.16 a 0.424 + 0.008 b Si transparent

“N = 3 replicates. YFor each column, different letters indicate significant statistical differences (P < 0.05). “SE = standard error (6/ \/ n).

Table 2. Characterization of Palmarosa + LA EO Formulations Elaborated by Ultrasonic Technique®”

oil/LA/Tween80 LA (%) Diam. size (nm) + SE¢
0.5:0.5:2 50 14.77 + 1.63 a
0.6:0.4:2 40 44.73 + 34.25 b
0.7:0.3:2 30 61.79 + 55.28 b
0.8:0.2:2 20 223.3 + 50.59 [
1:2 0 300.2 + 53.24 c

PDI + SE° stability after 72 h visual appearance
0.078 + 0.020 a yes transparent
1+ 0.0 b yes translucent
1+00 b yes translucent
0.193 + 0.017 c no white
0.148 + 0.021 d no white

“N = 3 replicates. YFor each column, different letters indicate significant statistical differences (P < 0.0S). “SE = standard error (o/ \/ n).

Viability on Mammalian Cell Culture Models. An osteoblast
cell culture was obtained from calvaria of 3—5-day-old neonatal rats
from the Laboratorio de Quimica Biolégica A, UNS, Argentina,
according to Katz et al®' All procedures were carried out in
conformity with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (NIH
Publication no. 85—23, revised 1996) under protocol no. 012/2014 of
Institutional Animal Care and Use Committee (CICUAE), UNS,
Argentina.

Cells were seeded at a density of 10,000 cells cm™ in plates of 48
multiwell and cultured for 3—4 days in a-MEM supplemented with
10% FBS, in a humidified atmosphere (5.5% CO,) at 37 °C. When
cells reached 80% confluence, they were starved in 1% FBS medium
for 7—16 h before starting treatment. They were performed by
replacing the starved medium with a treated medium which contained
the NEs at CLg, values reached in Cx p. pipiens larvae bioassays
(peppermint NEs = 46.73 ppm; palmarosa + LA NEs = 47.25 ppm).
Two control conditions were also assayed: one containing the
medium alone and the other containing the medium + Tween 80 (in
the corresponding ratio). Control or treatment mediums were
renewed every 2—3 days. The cell viability was recorded after 24 h,
72 h, and 1 week exposure and cell images were captured using a 13
Mpx camera in order to illustrate the different treatments. For each
experiment, eight samples were assayed.

The determination of cell viability was carried out using Neutral
Red staining. After the treatments, cells were washed with PBS 1X and
stained with Neutral Red for 3 h, at 37 °C. The dye excess was
removed with PBS 1X, and photographs of the cells were taken.
Finally, the dye incorporated into the cells was extracted with a
remover solution (50% ethanol 96%, 49% deionized water, 1% glacial
acetic acid), and quantified at 540 nm in a spectrophotometer with a
plate reader.

Statistical Analysis. Values of means of diameter size, PDI, and
cell viability parameter were subjected to ANOVA analysis and
compared using the post hoc test of multiple comparisons by
Bonferroni (InfoStat software). Means, SE (o/ \/ n), and statistical
results are informed in Tables 1—4 and Figure 7.

For Cx p. pipiens and A. salina, the mortality was recorded after a 24
h exposure, and for Plodia interpuctella and T. molitor, after 72 h in
order to calculate LCgo/LCyy or LDsy/LDy, values, respectively.
Statistics were carried out using SPSS 25.0. The values were
considered significantly different if their 95% confidence intervals
did not overlap.

B RESULTS AND DISCUSSION

NE Study. Based on Jesser et al,”” and in order to
determine the minimum possible droplet size of peppermint
and palmarosa + LA NEs, the ultrasonic parameters used in
this work were: ultrasound power = 65W, sonication time = 2

Table 3. Average Diameter and PDI for Peppermint and
Palmarosa + LA NEs for 120 days of Storage at 25 °C*"*

Diam.
nanoemulsiones  days  size (nm) =+ SE PDI + SE
palmarosa + LA 1 14.73 + 1.63 a 0.078 + 0.020 a
30 14.77 + 4.67 a 0.124 + 0.016 b
60 15.00 + 5.78 a 0176 £0019 b
120 18.01 + 3.65 a 0.097 + 0.013 a
peppermint 1 33.97 £ 33.16 a 0424 0008 a

30 70.10 + 33.95 a 0.624 + 0016 b

“. N = 3 replicates. “SE = standard error (o/ \/ n). “For each column,
different letters indicate significant statistical differences (P < 0.05).

min, cycles = 30 on/20 off, and ultrasonic probe distance (the
distance between the bottom of the container and the
ultrasonic probe) = 3.7 cm (Figure 1). The authors
demonstrated that applying more power beyond these values
becomes unnecessary and unproductive, as it consumes extra
energy, and can result in the “overprocessing” phenomenon.

The autocorrelation function (Figures 2—4, column 3)
shows that the NE parameters were correctly estimated. Table
1 shows the different ratios of the surfactant/peppermint EO.
Generally, when the surfactant concentration was increased,
the droplet size from peppermint NEs was reduced and the
macroscopic aspect of the NEs appears to be transparent. Even
though based on PDI values, all system tend to be
polydisperse. The whitish emulsions were formed when the
peppermint EO/Tween 80 ratio was 1:1 with an average size of
102.5 + 56.04 nm and the PDI value being 0.296 + 0.015. The
NEs with 1:1.5 ratios of peppermint EO/Tween 80 had a
droplet diameter of 65.11 + 48.15 nm and the PDI value of
0.479 =+ 0.014, and the macroscopic aspect was translucent. In
the end, transparent NEs were achieved using a 1:2
peppermint EO/Tween 80 ratio. These NEs showed sizes of
33.97 + 33.16 nm and the PDI value of 0.424 + 0.008, and
were stable after 30 days (Figure 2). However, no significant
differences were found between the NE droplet sizes (P >
0.05).

It is important to point out that the palmarosa EO alone at
the highest Tween 80 ratio (1:2) was unable to produce a
stable NE (droplet diameter = 300.2 + $3.24 nm, PDI = 0.148
+ 0.021 macroscopic aspect = white emulsion). The addition
of LA to the coarse emulsion made the NE production
possible. The characterization of the droplet size and the PDI

https://dx.doi.org/10.1021/acssuschemeng.0c02224
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Table 4. Characterization of G + LA Formulations Elaborated by Ultrasonic Technique™”

G/LA/surfactant LA (%) Diam. size (nm) + SE©
0.5:0.5:2 50 13.95 + 1.515 a
0.6:0.4:2 40 15.00 + 3.084 a
0.7:0.3:2 30 15.26 + 2.902 a
0.8:0.2:2 20 154.09 + 39.46 b
1:0:2 0 383.3 + 63.50 c

PDI + SE° stability after 72 h visual appearance
0.097 + 0.019 a yes transparent
0.176 + 0.017 b yes transparent
0.156 + 0.032 b yes transparent
0.226 + 0.015 c no whitish
0.311 + 0.023 d no white

“N = 3 replicates. For each column different letters indicate significant statistical differences (P < 0.05). “SE = standard error (o/ \/ n).
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Figure 1. Schematic diagram of NE formation using ultrasound.
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Figure 2. Visual appearance (column 1), size distribution (column 2), and autocorrelation function (column 3) of peppermint NEs.

values of the palmarosa + LA NEs are presented in Table 2,
and their appearance and droplet size distribution are shown in
Figure 3. Generally, in these NEs the droplet size decreases
when the LA content is increased, affecting their macroscopic
aspect. When the ratio of LA was increased by 20%, the
macroscopic aspect of the NEs was whitish and showed a

droplet diameter of 223.3 + 50.59 nm and PDI values of 0.193
+ 0.017. Therefore, no significant differences were found
between palmarosa alone and palmarosa + 20% LA system (P
> 0.05). When the ratio of LA was increased by 30 and 40%,
the palmarosa + LA NEs exhibited droplet sizes of 61.79 +
55.28 and 44.73 + 34.25 nm, respectively, and both PDI values
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Figure 3. Visual appearance (column 1), size distribution (column 2), and autocorrelation function (column 3) of palmarosa EO + LA NEs.

were 1. Moreover, the visual appearances of the NEs were
translucent. It is important to emphasize that both NEs (30
and 40%) showed significant differences in the droplet size and
the PDI values with palmarosa alone and palmarosa + 20% LA
(P < 0.05). These results showed the positive effect of LA on
the stabilization of NEs. Finally, transparent NEs from
palmarosa + LA were achieved using 50% LA, and they
showed the lowest droplet size (P < 0.05). The NEs measured
14.73 + 1.63 nm and their PDI values were 0.078 + 0.020.

Once the NEs were stabilized, the Tween 80 concentration
was decreased. Nevertheless, when the palmarosa + LA/ Tween
80 ratios were 1:1 and 1:1.5, the NEs lost stability and the
visual appearance was white.

Table 3 shows the stability of peppermint (ratios 1:2) and
palmarosa + LA (ratios 0.5:0.5:2) NEs over time. For 30 days,

peppermint showed no changes in the stability. On the first
day, the NE size was 33.97 + 33.16, and after 30 days their size
was 70.10 + 33.95 (P < 0.05). For palmarosa NEs, no changes
in the stability were observed for 120 days. On day 1, the NE
size was 14.73 + 1.63 and after 120 days their size was 18.01 +
3.65 (P < 0.05).

It is known that an increase in the surfactant concentration
causes a decrease in particle size and we also observed this
phenomenon in the present work.”"”*** Basak and Guha®
demonstrated that the surfactant concentration in the aqueous
solution is an important factor in the reduction of the droplet
size. Generally, smaller droplet sizes lead to NEs with
improved stability, which is an important factor for many
commercial applications.”* Furthermore, Heydari et al.*
demonstrated that the droplet size of different peppermint
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Figure 4. Visual appearance (column 1), size distribution (column 2), and autocorrelation function (column 3) of G + LA NEs.

formulations increases with the decrease of Tween 80
concentration. Moreover, it is known that the macroscopic
aspect depends on the droplet size and its interaction with
visible light.n’36 According to Salvia-Trujillo et al,’” the
change in color is observed in the emulsions from white to
transparent because of a reduction in the droplet diameter size,
which is smaller than visible light. The size of peppermint and
palmarosa NEs in our work is similar to the one reported by
Barzegar et al.”® and smaller than the one informed by Salvia-
Trujillo et al.,”” respectively.

Summarizing, peppermint (ratio 1:2) and palmarosa + LA
(ratio 0.5:0.5:2) NEs were selected for the toxicological and
ecotoxicological bioassays because of their small droplet size

and stability.

LA: Role in Palmarosa Oil NE Formation. As mentioned
previously, palmarosa EOs need the addition of LA in order to
obtain stable NEs. G is the major compound of palmarosa oil
(77%). However, because of their hydrophobic properties, it is
difficult to achieve an even dispersion in products with high
water content.”” Moreover, some properties of NEs could be
modified with the addition of different compounds.®” There-
fore, we decided to study the influence of LA (a minor
compound of palmarosa oil) in the stabilization of G + LA
NEs. Table 4 shows the physicochemical characteristics, and
Figure 4 shows the DLS graphic and the visual appearance of
G alone and combined with LA NEs. The G emulsion without
LA presented a droplet size of 383.3 + 63.50 and a PDI value
of 0.311 =+ 0.023, and its visual appearance was white. The
emulsion of palmarosa oil alone showed values and macro-
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Figure 5. Biological activity of EOs and their NEs against fourth instar larvae of Cx p. pipiens. LCs, values are expressed in ppm.
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Figure 6. Biological activity of # cypermethrin alone or combined with geranium EO and their NEs against fourth instar larvae of P. interpunctella.

LDs, values are expressed in ug larvae™.

scopic aspect similar to G alone. When the systems were
formed with 20% of LA, the droplet size was 154.09 + 39.46,
the PDi value was 0.226 + 0.015, and the general appearance
was whitish. Transparent NEs were obtained with 30, 40, and
50% of LA. These NEs showed similar droplet sizes, from
13.95 to 15.26 nm (P > 0.05). However, significant differences
were observed in the PDI values, and a lower value was
obtained in the NEs with 50% LA (P < 0.05).

Ziani et al.*" described different physicochemical phenom-
ena that may act in the formation of stable NEs. First, the
molecular characteristics of the oil compounds could be
affected by mass transfer rate of molecules from emulsion
droplets to surfactant micelles. Second, some oil molecules
could act as cosurfactants that alter the optimum curvature of
the surfactant monolayer and the optimum size of the micelle.
Third, the possibility of the oil to be introduced into a
surfactant micelle depends on its water solubility, conforma-
tion, and molecular weight. Consequently, the compounds
with a relatively low molecular weight or a high water solubility
tend to be present in the aqueous phase (G molecular weight:
154.25 g/mol, water solubility: 100 mg/L at 25 °C). However,
the compounds with a relatively high molecular weight or a
low water solubility (LA molecular weight: 196.29 g/mol,
water solubility: 8.2 mg/L at 25 °C) tend to be incorporated
into the hydrophobic interior of the micelle, improving the
nanosystem stability. This idea could explain our observation
where the increase in the G/LA ratio from 1:0 to 0.5:0.5

reduces the droplet diameter size. Similar physicochemical
phenomena could be acting in the stabilization of palmarosa +
LA NEs.

Bioassays. Figure 5 shows the LCs values for Cx p. pipiens
larvae on exposure to peppermint EO and its NEs. For
peppermint EO, the LCy, value was 88.90 ppm (78.68—
103.61), and for its NEs it was 31.24 ppm (20.11—49.76).
Therefore, the NEs enhanced the insecticidal activity 2.84
times. For palmarosa EO + LA, the LCs, value was 80.29 ppm
(75.58—84.71), and for their NEs it was 32.30 ppm (29.71—
35.09). Consequently, NEs enhanced 2.48 times the
insecticidal activity of palmarosa EO + LA.

PB-Cypermethrin is an effective pyrethroid commonly used
against many agricultural insect pests including P. interpunc-
tella*'. Figure 6 shows the insecticidal activity on P.
interpunctella larvae using f-cypermethrin alone or EO
(peppermint or palmarosa EO + LA) or NEs combined with
f-cypermethrin. After 24 h of exposure, the LD value from j-
cypermethrin was 0.89 ug larvae™' (0.72—1.08). When the
larvae were treated with peppermint + fJ-cypermethrin, the
LDy, value was 0.36 pg larvae™' (0.28—0.49). The insecticidal
activity of the peppermint EO + f-cypermethrin was 2.47
times higher than the f-cypermethrin alone. Peppermint NEs
+ fB-cypermethrin had a LDy, value of 0.12 pg larvae™ (0.07—
0.15). Mortality rates caused by peppermint NEs + f-
cypermethrin were significantly higher than those recorded
for p-cypermethrin alone (7.41 times). In addition, NEs
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enhanced the insecticidal activity of peppermint EO 3.08
times.

When the larvae were treated with palmarosa EO + LA + f-
cypermethrin, the LDs, value was 0.37 ug larvae™' (0.28—
0.49). The LDy, value for palmarosa EO + LA NEs + f-
cypermethrin was found to be 0.23 pug larvae™ (0.19—0.26). In
particular, for palmarosa EO + LA NEs + f-cypermethrin
showed a strong insecticidal activity with respect to the f-
cypermethrin alone (3.78 times). Consequently, the NEs
enhanced the insecticidal activity of the EO 1.56 times.

EOs are considered safe products, which have effects on
metabolism, physiology, and the behavior of insects.”* Several
works have suggested the inhibition of acetylcholinesterase and
the block of the cholinergic, octopaminergic, and GABAergic
system, as a possible mode of action of EOs.**™* Moreover,
different authors have demonstrated that EOs have insecticidal
activity against P. interpunctella’’ and Cx p. pipiens.**™**

Vatandoost et al.*’ standardized larvicidal activity of EOs
against mosquito larvae in different categories. Based on them,
peppermint and palmarosa EOs could be classified as a
moderately active larvicidal product. However, the NEs could
be classified as active products by enhanced effect previously
noted.

Gross et al.’’ and Joffe et al.’' demonstrated that EOs
enhance the toxicity effects of some synthetic insecticides. The
oil could increase the penetration of the synthetic insecticide
and contribute to the inhibition of detoxified enzymatic
systems.”” Besides a higher availability of the pyrethroid, it is
possible when EOs (geranium, cinnamon, oregano, and clove)
can interfere in the detoxification process.”> Probably, the EOs,
in our research, work in a similar way.

In recent years, the use of nanotechnology in pest
management has been increasing, and one of the most
important goals is the preparation of ecofriendly nano-
pesticides.*” Our results have highlighted the good insecticidal
activity of the NEs developed by ultrasound against Cx p.

pipiens and P. interpunctella. Currently, it is known that the
nanosize of the droplet improves the ability of the EO to pass
through the pores in the cuticle, which is a critical point in the
insecticidal activity of any product.’> Moreover, the NEs
increase the affinity between the EO particles and the target
organism, and show several advantages, such as solubility and
chemical stability.”*

Ecotoxicology Assay. Generally, it is assumed that the
ecotoxicity of bioinsecticides is related to the active ingredient
mass concentration. Even though the nanoformulation
containing bioinsecticides as an active ingredient must be
considered as a different product as it shows novel unique
properties, it would require a separate ecotoxicology assess-
ment.”> Consequently, the ecotoxicology of the NEs was
analyzed.

The results from the ecotoxicology assay in A. salina (aquatic
model) showed that the LCy, value from peppermint and
palmarosa + LA NEs was 63.96 ppm (61.26—67.01) and 42.57
ppm (40.26—44.68), respectively. These LCg, values were
significantly higher than the LCg, values from Cx p. pipiens (P
< 0.05). The combined effects of the NEs and f-cypermethrin
were also analyzed in T. molitor (terrestrial model). For
peppermint NEs combined with f-cypermethrin, the LCq,
value was 0.016 yg larvae™ (0.003—0.025), and for palmarosa
+ LA NEs combined with S-cypermethrin, the LCs, value was
0.019 (0.006—0.030). These results did not show significant
differences between the NEs and the control assay (LCg, =
0.025, CI = 0.021—0.029). Our results showed that the NEs
can still be considered relatively safe for these nontarget
organisms.

The basic principle involved in the nanoformulation
development of insecticides was the general agreement that
they possess better environmental safety properties as these
products reduce the active ingredient concentration applied.
However, the nanoformulation tends to produce a slow release
of this active ingredient, which implies a longer exposure of the
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product to the environment and consequently, a higher risk for
beneficial and nontarget organisms.’® There is little research
focused on the biosafety evaluation of nanoinsecticides based
on botanical products. However, Oliveira et al.””>® analyzed
the effect of solid lipic nanoparticles of pyrethrum extract on
anuran amphibians and honeybees, and demonstrated that
they are relatively safe for these nontarget organisms.

On the other hand, the ecological risk assessment of the EO
alone showed discordant results. Some authors showed
negative effects of the EO on Daphinia magna Straus
(Cladocera, Daphnudae),”g °! whereas Pavela and Govindar-
ajan®* and Pavela® demonstrated that some EOs could be
relatively friendly to nontarget organisms and the environment.
In this sense, our work shows that the NEs are relatively safe
for nontarget organisms, such as A. salina and T. molitor.

Cell Culture and Viability. In the context of the biosafety
evaluation of these novel nanofomulations, the viability of cell
culture exposed to peppermint and palmarosa + LA NEs was
evaluated. After 24 h, the treated cells with NEs showed a
significant slowdown on the cell growth rate (P < 0.01) (Figure
7). However, after 72 h, osteoblasts exposed to Tween 80 and
NEs exhibited a significant increase in the cell viability rate
compared with the control cells (P < 0.01) (Figure 7). After 1
week, the NEs did not show a significant effect on the cell
viability when compared with control and control + Tween 80.
The enhanced cell viability promoted by the control +
surfactant and NEs after 72 h of exposure could be explained
taking into account the work of Taoka et al,®* which showed
that Tween 80 increases the cell membrane permeability and
enhances the nutritional input from the medium into the cell.

It is important to emphasize the fact that there is lack of
information about the cytotoxicity effects of NEs loaded with
EOs. Da Silva et al.”® found that Basil NEs did not cause a
reduction of cell viability with doses from 100 to 6000 ppm. Li
et al.%® formulated a nanosystem based on Tween 80/ethanol/
water and Cymbopogon citrus EO, and found little toxicity
against human cells.® Nevertheless, Nuchuchua et al.®’
worked with NEs based on citronella, hairy basil, and vetiver
oil, and demonstrated the cytotoxic effect against fibroblast
cells depending on the doses. Moreover, neem oil NEs were
found to be toxic in lymphocyte cells.”® Our results confirm
that peppermint and palmarosa + LA NEs are safe and do not
affect the cell viability.

B CONCLUSIONS

The potential uses of NEs based on EOs as novel
bioinsecticides responds to the new socioproductive conditions
and fulfill the demands of new ecofriendly pest management
tools. This study focused on the optimization and character-
ization of peppermint and palmarosa + lynaly acetate NEs
assisted by ultrasound. All the NEs were elaborated in the same
ultrasound conditions (power = 6SW time = 2 min cycles = 30
on/20 off). The peppermint NEs were formed using a 1:2 EO/
Tween 80 ratio and were stable for 30 days. The palmarosa
NEs used 0.5:0.5:2 EO/LA/Tween 80 ratio and were stable for
120 days. The NEs also enhanced the insecticidal effect of
peppermint and palmarosa EO, on Cx p. pipiens 2.48 and 2.84
times, respectively, and 3.08 and 1.56 times on P. interpunctella.
The successful implementation of the NEs as new insecticides
requires that they do not produce a toxic effect for nontarget
organisms. The peppermint and palmarosa + LA NEs did not
have a toxicity effect on A. salina and T. molitor. Moreover,

after 3 and 7 days, the viability on mammalian cell culture
models was not affected by NEs.
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