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Background. The rehabilitation process is a fundamental stage for recovery of people’s capabilities. However, the evaluation of the
process is performed by physiatrists and medical doctors, mostly based on their observations, that is, a subjective appreciation of
the patient’s evolution. This paper proposes a tracking platform of the movement made by an individual’s upper limb using Kinect
sensor(s) to be applied for the patient during the rehabilitation process. The main contribution is the development of quantifying
software and the statistical validation of its performance, repeatability, and clinical use in the rehabilitation process.Methods. The
software determines joint angles and upper limb trajectories for the construction of a specific rehabilitation protocol and quantifies
the treatment evolution. In turn, the information is presented via a graphical interface that allows the recording, storage, and report
of the patient’s data. For clinical purposes, the software information is statistically validated with three different methodologies,
comparing themeasures with a goniometer in terms of agreement and repeatability.Results.The agreement of joint anglesmeasured
with the proposed software and goniometer is evaluated with Bland-Altman plots; all measurements fell well within the limits of
agreement, meaning interchangeability of both techniques. Additionally, the results of Bland-Altman analysis of repeatability show
95% confidence. Finally, the physiotherapists’ qualitative assessment shows encouraging results for the clinical use. Conclusion.
The main conclusion is that the software is capable of offering a clinical history of the patient and is useful for quantification
of the rehabilitation success. The simplicity, low cost, and visualization possibilities enhance the use of the software Kinect for
rehabilitation and other applications, and the expert’s opinion endorses the choice of our approach for clinical practice. Comparison
of the newmeasurement technique with established goniometricmethods determines that the proposed software agrees sufficiently
to be used interchangeably.

1. Background

World Health Organization (WHO) [1] reported that more
than one billion people in the world live with some form of
disability; out of this number, nearly 200 million experience
considerable difficulties in their daily functions. In the years
ahead, disability will be an even greater concern because its
prevalence is on the rise. This is due to ageing populations
and the higher risk of disability in older people as well as
the global increase in chronic health conditions, such as
diabetes, cardiovascular disease, cancer, and mental health
disorders. The rehabilitation process is a fundamental stage
for recovery, helping patients to acquire (or reacquire) new

abilities for daily activities and improve independence. Reha-
bilitation needs an interdisciplinary staff and an exhaustive
analysis of the underlying level of impairment and needs
of the patient, suited by a thorough planning. However,
the evaluation of the process is performed by physiatrists
and medical doctors, mostly based on their observations,
that is, a subjective appreciation of the patient’s evolution.
Throughout the last years, several sensing systems have been
developed in order to quantify the movements performed by
the patient, especially focused on gait analysis, for example,
the trademarks called Codamotion [2] or Vicon� [3]. These
systems have been designed primarily for athletes but they are
applicable to disabilities, too. They usually track and analyze
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3Dmovements in every kind of environment, from large fixed
laboratories through outdoor sports activities.

Recent studies of the mechanisms underlying plasticity
and recovery following neurological injuries have originated
innovative lines of research in neurorehabilitation. Addi-
tionally, the development of new technologies of perfor-
mance evaluation and intervention procedures has stimu-
lated research on novel rehabilitation paradigms and more
effective strategies. Nonetheless, their transfer into actual
clinical practice remains a challenge, meaning that further
research to assess their effectiveness is needed [4].

Reduced mobility of upper limbs, whatever its origin,
makes the development of a diagnostic evaluation tool for
movement quantification imperative. Motion capture has
been widely used for rehabilitation exercises, gait analysis,
and posture disorders diagnosis. Artificial vision systems
[5, 6] are a suitable alternative or complement to electromyo-
graphic acquisition [7, 8], inertial measurement devices,
goniometry, and other techniques, mainly because of their
low cost, noninvasiveness, and user’s comfort.

Kinect is a line of motion sensing input devices by
Microsoft, originally intended for video games and first
introduced in 2010. Interesting is the fact that, besides its
entertainment purposes, it can serve as evaluation and physi-
cal rehabilitation system.The authors in [9, 10] used Kinect to
motivate adolescents that suffer from cerebral palsy to carry
out their rehabilitation process. In [11], the authors applied
a virtual reality system using cameras for hand and arm
rehabilitation. The patient performs the task and the system
follows the movements of the hand and arm, generating
audible feedback when the patient achieves the goal. The
system senses the movement range and velocity but without
validation [12]. Other uses of Kinect include sensing systems
for patients with lateral disorders and detection and follow-
up of right and left hand and face movements. Majority
of applications for rehabilitation use visual feedback and
gaming incentives based on virtual reality to promote exercise
therapy, improving patient’s movement abilities. There are
many references available, for example, [13], which dealt with
the upper limb reachable workspace determined by the use of
Kinect or [14] that uses the same sensor to evaluate functional
scores in stroke patients with an objective perspective by
means of correlation coefficients. As was pointed out by
[15], the anatomical landmark of Kinect has excellent validity
with the data obtained by a 3D camera-based system. For
rehabilitation purposes andmotivation for exercise, a Kinect-
based system was tested in two young adults in a public
school setting, with encouraging results [16]. The work of
Rammer et al. [17] presents a study with 12 adolescents that
were evaluated using both the Kinect-based system and the
Shriners Hospitals for Children Upper Extremity Evaluation
(SHUEE), also a subjective measure method. With statistical
correlation analysis, they concluded that Kinect sensor can be
applied to standardized task-based tests. Similarly, in Vernon
et al.’s work [18], the reliabilitymeasures obtained with Kinect
sensor are examined and compared with the performance
on common clinical tests in stroke patients. They assessed
the test-retest reliability using intraclass correlation coeffi-
cient, redundancy with Spearman’s correlation, and score

prediction on the clinical tests using multiple regressions.
Their results demonstrate that the use of Kinect may provide
reliable and clinically useful information.

In [9], a comparison with Vicon motion capture demon-
strated the usability of Kinect to record movement and
posture, reporting the need of a further development that
allows portable ergonomic assessments. Low-cost sensor,
plug and play functioning, and open-source code have
potentially made of Kinect a useful tool in rehabilitation
engineering, but the exhaustive analysis of measurements
and comparison with standard methods are necessary before
clinical application.

This paper describes a tracking platform of themovement
made by an individual’s upper limb using Kinect sensor to
be applied for the patient during the rehabilitation process.
Assessment of the patient’s upper limbmovement is achieved,
extracting a quantification of the movement to provide the
physiotherapist or attending physician with more precise
data to carry out an objective diagnosis and, thus, plan a
more accurate rehabilitation in accordancewith each patient’s
needs. In addition, the evolution can be assessed after the
patient begins with the rehabilitation and verify whether
the patient is performing the best proposed trajectory,
redesigning the therapy if necessary. Only trunk posture and
upper limb are included in this paper, which have acceptable
performance [19].

The main contribution of the present work is the devel-
opment of quantifying software and the statistical validation
of its performance, repeatability, and clinical use in the reha-
bilitation process.Therefore, this paper aimed at verifying the
usefulness and agreement ofmeasurements obtained through
ad hoc software and a goniometer.

2. Methods

2.1. Kinect Architecture. The Kinect sensor allows the user to
control and interact with the console without a traditional
video game controller; it uses, instead, a natural interface that
recognizes gestures, voice commands, objects, and images.
The device has a RGB camera (CMOS technology), a depth
sensor, multiarray microphone, and an exclusive processor,
all of which provide a 3D movement capture of the whole
body aswell as facial and voice recognition commands. In this
work, we use the first version of the Kinect sensor, developed
for Xbox 360 console.

The system has an image processor to generate and keep
in memory the image frame of depth and color at a velocity
of 30 frames per second (fps). The depth camera acts as a 3D
scanner to carry out a tridimensional reconstruction of the
scene. This device is composed of an infrared (IR) camera
and a structured light infrared projector. A pattern of infrared
points is scattered projecting into the scene, over individuals
and objects, while the image of such projection is obtained
through the infrared light.

The distortion of the IR pattern allows the tridimensional
reconstruction of the scene and the depth image, thus
creating a grayscalemapof 640× 480 pixels.Thewhiter colors
indicate that the object is further away, while the darker ones
indicate that the object is closer [20].
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TheWindows SDK� software for Kinect (a set of software
tools for developers) allows up to a maximum of 20 joints
to define a standing skeleton. It can also delimit or mark
off a sitting skeleton providing a maximum of 10 joints.
This application works on dynamic situations of the trunk
and upper limb, thus establishing the position of the head,
breastbone, shoulders, elbows, and right and left wrists
throughout the movement.

The software developed implied data processing of the
information provided by Kinect. In the first stage, atypical
values were eliminated (outliers). In the second stage, the
trajectory was processed through the application of linear
interpolation algorithms and moving average filters. During
the last stage, joint position angles were calculated. These
stages will be explained in the next subsections and are briefly
described in the block diagram of Figure 1.

2.1.1. Removal of Atypical Values. Points with very different
values of the mean value produce large errors during data
recording and can lead to unwanted effects on the representa-
tion.These effects aremainly seen when the device has to reg-
ister overlapped points, especially over the longitudinal axis
of the camera depth. In this case, Kinect cannot accurately
detect the joint, and only an approximate value is inferred,
depending on themovement being performed.These atypical
values (or outliers) are observations that deviate from the
rest in such a way that they might have been generated by
a different mechanism and indicate experimental error.

To detect and correct outliers, let us assume the measure-
ments as a random sample following a Gaussian distribution
quite closely, since 5% of the values in a population are more
than 1.96 standard deviations (𝜎) from the mean 𝑥. Under
this assumption, this limit can be used to detect the outlier,
analyzing the data in consecutive segments of three elements
and the calculus of threshold values 𝐿1 and 𝐿2. They are
defined by (1) and (2); that is,

𝐿1 = 𝑥 − 1.96𝜎, (1)

𝐿2 = 𝑥 + 1.96𝜎, (2)

where 𝑥 is the mean calculated between the data centered
on the segment and its two adjacent neighbors (𝑥

𝑖−1
, 𝑥
𝑖
, 𝑥
𝑖+1
),

while 𝜎 stands for the standard deviation. When the outlier
value is lower than the lower threshold 𝐿1 (see (1)) or higher
than the upper threshold 𝐿2 (see (2)), it is replaced by its
neighbors’ mean. This procedure was carried out with the
data obtained from the three dimensions.

𝑥
𝑖

{{{{{{{{{

𝑥, if 𝑥
𝑖
< 𝐿1,

𝑥, if 𝑥
𝑖
> 𝐿2,

𝑥
𝑖
, else.

(3)

2.1.2. Linear Interpolation. As part of the processing stage,
the data underwent a linear interpolation process that can
be understood as a weighted average. Each trajectory was
organized in groups of 10 values. The interpolation was
carried out between the first and last values. The 8 calculated

points were replaced by the 8 values of the original trajectory
to keep the original data point number.The selection process
of the points considered for the interpolation did not widely
modify the morphology of the original trajectory.

2.1.3. Filtering Stage. After the interpolation process, a mov-
ing average filter was applied, therefore allowing the creation
of averages from several subgroups within the complete data
set. Each number from the whole group of results represents
the average of certain subgroup corresponding to the total
data; that is,

𝑥 = ∑𝑛𝑖=1 𝑥𝑖𝑛 , (4)

where 𝑥 is the average value of the subgroup of values 𝑥
𝑖
,

formed by 𝑛 samples. In this way, noise was better filtered
out, without modifying the real movement trajectory. It
was essential that the filter did not alter the movement
trajectory but it had to improve its graphic visualization and
interpretation.

2.1.4. Angle Calculation. Joint angles were calculated using
vectors, depending on the position of each joint, considering
that the reference system is located in the Kinect sensor and
the three anatomical planes: sagittal, coronal, and axial. Since
the movements are acquired frame by frame, capture and
representation of joint trajectory were displayed under the
same criteria.

First, we have to define the body segments 𝑃
𝑖
correspond-

ing to trunk, shoulders, arm, forearm, and hand, as Figure 2
shows.

Calculation was carried out through the classical defini-
tion of angle between two vectors; that is,

Θ = cos−1 𝑃1 ⋅ 𝑃2‖𝑃1‖ ⋅ ‖𝑃2‖ , (5)

where 𝑃1 ⋅ 𝑃2 is the inner product between 𝑃1 and 𝑃2 and‖𝑃1‖ and ‖𝑃2‖ are their respective norms.
The subscript indicates two consecutive segments, while𝜃, the angle, can be obtained for each movement. Thereafter,

the processed data were used to compute the angular position
of each joint and for each arm. Besides, the joints excursion
for a specific movement was plotted.

2.2. Development of the Graphic Interface. Agraphic interface
(DEMOVA�, i.e.,Determinación deMovimiento y Valoración
Angular, in Spanish, orMovement Determination and Angular
Assessment) was developed to facilitate data management,
acquisition, and collection by the medical team.This process
enabled easy access to information as well as storage of
patients’ medical, technical, and personal information. This
tool extends the use of the sensor outside the scope of research
and brings it closer to clinical practice. Matlab 7.0 was the
software employed.

2.2.1. Window Configuration. This display established the
initial parameters to carry out the acquisition, mainly the
person’s right location and the camera tilt, in order to
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Figure 1: Processing stages, represented by a typical curve that shows the modified acquired data for the purposes of analysis. The software
involves all stages and can be accessed through the graphical interface. Raw and processed data can be accessed through the visualization
menu.
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Figure 2: Vector representations to calculate the angles for different joints.

capture its movement more efficiently. This window makes
the information of both the RGB and depth cameras available
(both of which can be turned on and off indistinctly). Besides,
it is the starting point of the remaining interfaces, since,
through this calibration process, it is possible to have access
to the complete programmed movements.

2.2.2. Acquisition Window. The windows that enabled the
trajectory acquisition are separated under the type of move-
ments carried out and in accordance with the required data.
In general terms, all the windows have these common sec-
tions: graphs on which the trajectory are displayed; buttons:
“Start,” “Data Acquisition,” “Back,” “Save Personal Data,”
and “Save” (which can also save graphs if required); selection
panels to choose options to see the graphs: “Original Curves,”
“Smoothed Curves,” “Averaged Curves,” “All the Curves,”
and “Covered Area” (Figure 3). Moreover, a second window
shows trajectories in the 3D space and the surface covered for
the movement.

2.3. Experimental Protocol. The complete validation was
performed in three stages. For experimental Protocols 1 and
2, nine adults (29.2 ± 3.8 years old, 1.69 ± 0.11 meters
high) participated (5 females and 4 males), without history
of neurological and/or muscular disorders. The experiments

were performed according to the ethical considerations and
after signing the informed consent.

The first stage (Protocol 1) was a comparative routine for
static measurements of the upper limb, carried out by an
expert physiotherapist using a goniometer and the DEMOVA
software. Its objective was the statistical determination of
agreement between the system proposed and the standard
method. The volunteers were instructed to assume static
positions every 10 degrees with both arms in an abduction-
adduction trajectory. The angular position of the shoulder
was measured with a goniometer and with the DEMOVA
software. The movement was run in the coronal (𝑥-𝑦 pro-
jection) because it is the worst condition in terms of Kinect
precision, as can be seen in Figure 4(a).The laser depth sensor
has a very good performance with intrinsic characteristics
(reported error: 14.1–34.8mm, [17]), so the evaluation was
focused on the aforementioned projection.

Protocol 2 was designed with the aim of evaluat-
ing DEMOVA’s repeatability. The acquisition results were
assessed, repeating the same movement twice. Consequently,
a specific movement protocol was followed to develop acqui-
sition and determination of the trajectory, according to the
clinical evaluation usually performed by a physiotherapist.
The volunteers were asked to carry out the suggested tasks at a
comfortable speed.The individuals were placed in front of the
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Figure 3: Graphic interface for the DEMOVA software: acquisition window in an abduction-adduction movement. The raw, smoothed, and
averaged curves are presented in different colors and the user can choose the presentation through the submenu on the right. The bottom
window displays the angle excursion for all joints, selected in the dropdown submenu.

Coronal
plane

180∘

(a)

Sagittal
plane

90∘

(b)

Axial
plane

90∘

(c)

Figure 4: Movements corresponding to Protocol 1 (a) and Protocol 2 (b and c). The abduction movement is performed in the coronal plane
and the axis is marked with a cross. Similarly, the figure shows the flexion-extension in sagittal and axial plane for Protocol 2.
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camera (2 meters, recommended by Kinect) and completed
the set of movements.The protocol included shoulder flexion
in both planes, sagittal and axial at 90 degrees (Figures 4(b)
and 4(c)). All movements were performed in two different
sessions by each user to examine their repeatability.

Finally, in Protocol 3, a qualitative assessment of the
software was performed through a questionnaire answered
by three physiotherapists in order to evaluate the data
presentation, graphical interface, and overall performance of
DEMOVA as a clinical tool (Table 1).

2.4. Statistical Analysis. Themost commonly used technique
for measuring joint angles and upper limb motion is the
goniometer, long considered the gold standard. It is impor-
tant to note that both measures (by Kinect and by the
goniometer) are estimates of the real one because they are
indirect and noninvasive techniques. Besides, the goniometer
measure is affected by the observer subjectivity and can vary
in different sessions.

To test validity, we evaluated the agreement between
DEMOVA and the goniometric measurements using Bland-
Altman plots [21]. Two measurements of the same subject
performed with different methods may differ for several
reasons but, when trying to focus on the method itself (and
not on population), agreement is the characteristic that better
describes how close the two measurements are. As pointed
out by Bland and Altman, agreement is the correct approach
when the true value is unknown. Significance and correlation
are not adequate. Under the Gaussian hypothesis, it can be
assumed that 95% of the data are within the range that lies
between the limits of agreement; that is,

inf = 𝑚 − 1,96 × 𝑠𝑑 (𝑑) ,
sup = 𝑚 + 1,96 × 𝑠𝑑 (𝑑) , (6)

where 𝑚 is the mean of both measures (goniometer and
DEMOVA) and 𝑑 is the difference between them. If this
hypothesis ismet, it is valid to affirm that the twomethods are
interchangeable. The Bland-Altman plot was constructed by
using the data of the first experimental protocol (see below).

Repeatability is defined as the closeness between the
results of the same measurement under repeatable condi-
tions, with the same procedure, by the same observer and
the same instrument. Dispersion is a good way for such
assessment. For that matter, Protocol 2 was applied and
the mean and standard deviations of the data obtained
with DEMOVA in two sessions were analyzed. Once again,
assuming a Gaussian distribution, (6) wasmodified replacing𝑚 by 𝑢, the difference between twomeasurements of the same
subject in two sessions; that is,

infRep = 𝑢 − 1,96 × 𝑠𝑑 (𝑢) ,
supRep = 𝑢 + 1,96 × 𝑠𝑑 (𝑢) . (7)

These limits are according to the repeatability concept
adopted by the British Standards Institution [22], in which
95% of differences are expected to be less than 2𝑠𝑑. This
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coefficient CR can be easily computed, assuming the mean
difference to be zero (or near to zero):

CR = √∑(𝑢2)𝑛 . (8)

3. Results

3.1. Agreement. The agreement of joint angles measured with
DEMOVA and goniometer was evaluated with Bland-Altman
plots (Figure 5). The mean difference between DEMOVA
and the goniometric measurements was −0.46∘, while the
limits given by the confidence interval (see (6)) were 3.1∘
and −4.0∘. Such limits are consistent with the instrumental
error reported for Kinect [17]. The absence of outliers is
remarkable; in other words, all measurements fell well within
the limits of agreement, indicating interchangeability of both
techniques. Therefore, 95% of future differences would lie
within these limits.

3.2. Repeatability. Figure 6 shows the results of Bland-
Altman analysis of repeatability, with 95% confidence interval
(±6.28). These results belong to the experiments performed
with Protocol 2, measurements with DEMOVA in two ses-
sions, for all volunteers in 90 degrees position.

With these results, we can infer that, in next sessions
using DEMOVA, 95% of the obtained values will be in the
confidence interval, in this case between 84∘ and 96∘ degrees
(approximately). This conclusion complies with agreement
results, because all the analysis is limited by Kinect intrinsic
errors.

Variability in measurements made on the same subject
can be ascribed only to errors in themeasurementmethod, so
the couple of measures that we can see out of the boundaries
of the confidence interval can be attributed to changes in
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Figure 6: Bland-Altman analysis of repeatability. Mean value = 0.83
and bounds of confidence interval (dotted lines) ±6.28. There is a
single outlier in these measurements.

lighting conditions and sensor errors rather than angle calcu-
lus. The coefficient of repeatability is CR = 3.6406, calculated
with (8), which means that, in future measurements made by
DEMOVAmethod under identical conditions, the results will
have variations less than 4.04% in any range of measure.

3.3. DEMOVA Qualitative Assessment. After completing the
questionnaire, the physiotherapists’ qualitative assessment
was scored by 40-42-29; that is, two of them evaluated
DEMOVA as a trustworthy tool and the third one considered
it as a useful tool but it does not inspire enough confidence
to replace the goniometer method completely. The question-
naire model is shown in Table 1.

Regarding the information provided by the DEMOVA
plots, all participants point out the easy understanding of
asymmetries, joint angles and restrictions, trunk compensa-
tions, and time evolution information. This kind of data is
unavailable in conventional measures and can be stored for
further analysis of the patient.

From the transcripts, the authors identified the novelty
as the most important motivator to the use of DEMOVA.
Patient’s safety, clarity of visualization, research possibilities,
and objective analysis of the patient’s evolution were central
to these data. Interviewees also made open suggestions for
future improvements of the software.

4. Discussion

In this paper, we propose software based on the new Kinect
technology to acquire and quantify movements, as well as the
determination of upper limb joint angles, which are offered
to the specialist to improve the diagnosis during the global
rehabilitation process. The software is capable of offering a
clinical history of the patient useful for quantification of the
rehabilitation success.

The data were processed to produce a smoothed trajec-
tory, removing noise and outliers values but preserving the
natural behavior of each user. To present the patients’ data,
a graphical interface was used, which included algorithms
that enhance the visualization of the movements performed
throughout the different processing stages as well as the
angles’ graphics. It is worthmentioning that the software does
not require sophisticated equipment, thus facilitating its use
in any personal computer.The system is of low cost and is easy

to use, two characteristics that make it suitable for everyday
use by physical therapists and physicians. In addition, the
movements can be personalized to the patient’s needs by
adapting the system to the range of motions and tasks.

Comparison of the new measurement technique with
established goniometric methods is often needed to deter-
mine whether the DEMOVA software agrees sufficiently to
be used interchangeably. In this order, the statistical analysis
with Bland-Altman plots is more appropriate than correla-
tion coefficient or regression [20], especially with indirect
or estimated measures, in which the agreement between
both measurement techniques is a must. As presented in
Figures 4 and 5, all measures were between the limits of
agreement, allowing the use of DEMOVA software instead
of the goniometer. It is important to note that measure-
mentswith goniometer varywith observer expertise, scapular
motion, and identification of anatomical structures or the
reference points. Kinect and the designed software have
intrinsic errors due to image capture and uncertainties, which
can be minimized with correct positioning, fixed distance
to the sensor, and clarity in verbal commands. However,
simplicity, low cost, and visualization possibilities enhance
the use of DEMOVA and Kinect for rehabilitation and other
applications, and the expert’s opinion endorses the choice of
our approach for clinical practice.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors read and approved the final manuscript.

Acknowledgments

The authors want to acknowledge Universidad Nacional de
San Juan, Ministerio de Ciencia, Tecnoloǵıa e Innovación
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[6] M. González, D. Mulet, E. Perez, C. Soria, and V. Mut, “Vision
based interface: an alternative tool for children with cerebral
palsy,” in Proceedings of the 32nd Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society
(EMBC ’10), pp. 5895–5898, Buenos Aires, Argentina, August
2010.

http://www.who.int/disabilities/world_report/2011/report.pdf
http://www.who.int/disabilities/world_report/2011/report.pdf
http://www.codamotion.com/
https://www.vicon.com/motion-capture


BioMed Research International 11
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