
Article
Fat Body p53 Regulates Sy
stemic Insulin Signaling
and Autophagy under Nutrient Stress via Drosophila
Upd2 Repression
Graphical Abstract
Highlights
d Adipose AMPK-p53 axis is required for Drosophila survival to

nutrient stress

d Adipose Dmp53 represses Leptin/Upd2 expression, which

remotely controls Dilp2 secretion

d Dmp53 activation regulates autophagy induction upon acute

starvation

d Dmp53 regulation of Dilp2 levels and autophagy are

necessary for starvation survival
Ingaramo et al., 2020, Cell Reports 33, 108321
October 27, 2020 ª 2020 The Authors.
https://doi.org/10.1016/j.celrep.2020.108321
Authors

Marı́a Clara Ingaramo,

Juan Andrés Sánchez, Norbert Perrimon,

Andrés Dekanty

Correspondence
perrimon@genetics.med.harvard.edu
(N.P.),
adekanty@santafe-conicet.gov.ar (A.D.)

In Brief

Ingaramo et al. report an essential role for

adipose p53 in sensing nutrient stress,

maintaining metabolic homeostasis, and

extending organismal survival in

Drosophila. AMPK-dependent Dmp53

activation under nutrient stress

modulates Dilp2 circulating levels,

systemic insulin/TOR signaling, and

autophagy induction by repressing

Leptin/Upd2 expression in adipose cells.
ll

mailto:perrimon@genetics.med.harvard.edu
mailto:adekanty@santafe-conicet.gov.ar
https://doi.org/10.1016/j.celrep.2020.108321
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108321&domain=pdf


OPEN ACCESS

ll
Article

Fat Body p53 Regulates Systemic Insulin Signaling
and Autophagy under Nutrient Stress
via Drosophila Upd2 Repression
Marı́a Clara Ingaramo,1 Juan Andrés Sánchez,1 Norbert Perrimon,3,4,* and Andrés Dekanty1,2,5,*
1Instituto de Agrobiotecnologı́a del Litoral, Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Santa Fe 3000, Argentina
2Facultad de Bioquı́mica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), Santa Fe 3000, Argentina
3Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
4Howard Hughes Medical Institute, Boston, MA 02115, USA
5Lead Contact

*Correspondence: perrimon@genetics.med.harvard.edu (N.P.), adekanty@santafe-conicet.gov.ar (A.D.)

https://doi.org/10.1016/j.celrep.2020.108321
SUMMARY
The tumor suppressor p53 regulatesmultiple metabolic pathways at the cellular level. However, its role in the
context of awhole animal response tometabolic stress is poorly understood. UsingDrosophila, we show that
AMP-activated protein kinase (AMPK)-dependent Dmp53 activation is critical for sensing nutrient stress,
maintaining metabolic homeostasis, and extending organismal survival. Under both nutrient deprivation
and high-sugar diet, Dmp53 activation in the fat body represses expression of the Drosophila Leptin analog,
Unpaired-2 (Upd2), which remotely controls Dilp2 secretion in insulin-producing cells. In starved Dmp53-
depleted animals, elevated Upd2 expression in adipose cells and activation of Upd2 receptor Domeless in
the brain result in sustained Dilp2 circulating levels and impaired autophagy induction at a systemic level,
thereby reducing nutrient stress survival. These findings demonstrate an essential role for the AMPK-
Dmp53 axis in nutrient stress responses and expand the concept that adipose tissue acts as a sensing organ
that orchestrates systemic adaptation to nutrient status.
INTRODUCTION

The ability of an organism to sense nutrient stress and coordi-

nate metabolic and physiological responses is critical for its

survival. Over the last years, the p53 tumor suppressor has

emerged as an important regulator of cellular metabolism,

and its activation has been regularly observed in response

to diverse metabolic inputs, such as changes in oxygen levels

or nutrient availability (Berkers et al., 2013). It has been shown

that p53 interacts with main players in key nutrient-sensing

pathways, such as mammalian target of rapamycin (mTOR)

and AMP-activated protein kinase (AMPK), leading to modula-

tion of autophagy and lipid and carbohydrate metabolism. p53

restricts tumor development partially by inhibiting glycolysis

(Zawacka-Pankau et al., 2011), limiting the pentose phos-

phate pathway (Jiang et al., 2011), and promoting mitochon-

drial respiration (Berkers et al., 2013; Liang et al., 2013).

Conversely, p53 activation can benefit tumor growth by stim-

ulating adaptive cellular responses in nutrient-deficient condi-

tions. p53 activation is known to induce cell-cycle arrest and

promote cell survival in response to transient glucose depriva-

tion (Jones et al., 2005), regulate autophagy and increase cell

fitness upon fasting (Scherz-Shouval et al., 2010), and pro-

mote cancer cell survival and proliferation after serine or

glutamine depletion (Maddocks et al., 2013; Tajan et al.,
This is an open access article under the CC BY-N
2018). Therefore, p53 plays a pivotal role in the ability of cells

to sense and respond to nutrient stress, functions that are

important not only to control cancer development but also

to regulate crucial aspects of animal physiology. Further

studies concerning p53 regulation and function in response

to nutrient and metabolic challenges at an organismal level

would expand our understanding on the role of p53 in normal

animal physiology, aging, and disease.

The single Drosophila ortholog of mammalian p53 (Dmp53)

has also been shown to regulate tissue and metabolic homeo-

stasis (Barrio et al., 2014; Contreras et al., 2018; Ingaramo

et al., 2018; Mesquita et al., 2010; Sanchez et al., 2019).

Dmp53 regulates energy metabolism through induction of

cell-cycle arrest and cell growth inhibition in response to

mitochondrial dysfunction (Mandal et al., 2010) by regulating

glycolysis and oxidative phosphorylation to promote cell

fitness in dMyc-overexpressing cells (de la Cova et al.,

2014) and by modulating autophagy protecting the organism

from oxidative stress (Robin et al., 2019). Studies in

Drosophila have also identified tissue-specific roles of

Dmp53 in regulating lifespan and adaptive metabolic re-

sponses impacting on animal aging and stress survival (Barrio

et al., 2014; Bauer et al., 2007; Hasygar and Hietakangas,

2014; Robin et al., 2019), evidencing conserved functions of

p53 (Liu et al., 2014, 2017), and positioning Drosophila p53
Cell Reports 33, 108321, October 27, 2020 ª 2020 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:perrimon@genetics.med.harvard.edu
mailto:adekanty@santafe-conicet.gov.ar
https://doi.org/10.1016/j.celrep.2020.108321
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.108321&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article
ll

OPEN ACCESS
studies as a valuable alternative providing relevant insights on

mammalian health and disease.

The insulin pathway is highly conserved from mammals to

Drosophila and regulates carbohydrate and lipidmetabolism, tis-

sue growth, and longevity in similar ways (Taguchi and White,

2008; Wu and Brown, 2006). Drosophila insulin-like peptides

(Dilps) promote growth and maintain metabolic homeostasis

through activation of a unique insulin receptor (dInR) and of a

conserved intracellular insulin and insulin-like growth factor

(IGF) signaling pathway (IIS) (Andersen et al., 2013; Ikeya et al.,

2002). Dietary conditions tightly regulate Dilp2 production and/

or secretion from the insulin-producing cells (IPCs), neuroendo-

crine cells analogous to pancreatic b-cells located in the fly brain

(Ikeya et al., 2002; Rulifson et al., 2002). Interestingly, a nutrient-

sensing mechanism in the fat body (FB), a functional analog of

vertebrate adipose and hepatic tissues, non-autonomously reg-

ulates Dilp2 secretion and couples systemic growth and meta-

bolism with nutrient availability (Géminard et al., 2009). Accord-

ing to the nutritional status, the FB produces signaling molecules

capable of promoting or inhibiting insulin secretion from the IPCs

(Agrawal et al., 2016; Delanoue et al., 2016; Koyama and Mirth,

2016; Meschi et al., 2019; Rajan and Perrimon, 2012; Sano

et al., 2015). Thus, a simple integrated system composed of

various organs and conserved signaling pathways regulates

metabolic homeostasis and organismal growth in response to

nutrient availability.

The FB also functions as the organism’s main energy reserve

and is responsible for coupling energy expenditure to nutrient

status (Arrese and Soulages, 2010). In well-fed animals, circu-

lating insulin activates insulin receptors in the FB and promotes

energy storage in the form of glycogen and triacylglycerol

(TAG). Upon limited nutrient availability, stored lipids and

glycogen are broken down to supply energy for the rest of the

body (Arrese and Soulages, 2010). In previous work, we

showed that FB-specific inhibition of Dmp53 activity acceler-

ated the consumption of main energy stores, reduced sugar

levels, and compromised organismal survival during nutrient

deprivation (Barrio et al., 2014). The mechanism by which

Dmp53 regulates metabolic homeostasis and organismal

survival under nutrient stress is not entirely understood and

might involve regulation of specific signaling and metabolic

pathways.

Here, we provide evidence that AMPK-dependent Dmp53

activation in the FB non-cell-autonomously regulates TOR

signaling and autophagy induction upon acute starvation,

which is essential for organismal survival. Dmp53 activation

in response to nutritional stress is required for proper commu-

nication between the FB and IPCs by modulating the expres-

sion of the Drosophila Leptin analog, Unpaired-2 (Upd2).

Elevated Upd2 levels in adipose cells of starved Dmp53-

depleted animals result in sustained Dilp2 circulating levels,

activation of insulin/TOR signaling, and impaired autophagy

induction in the whole animal, therefore reducing survival

rates upon nutrient deprivation. These results indicate that

Dmp53 plays an essential role in Drosophila, integrating

nutrient status with metabolic homeostasis by modulating

Dilp2 circulating levels, systemic insulin signaling, and

autophagy.
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RESULTS

FB Dmp53 Activity Regulates Organismal Resistance to
Challenging Nutrient Conditions
To better understand the role of Dmp53 in metabolic homeosta-

sis and nutrient stress response, we sought to analyze the

impact of FB-specific inhibition of Dmp53 transcriptional activity

on organismal survival upon different nutrient conditions. To

specifically reduce Dmp53 activity in the FB, we expressed a

dominant-negative version of Dmp53 lacking DNA-binding activ-

ity (Dmp53H159.N) under the control of the FB cg-Gal4 driver

(referred to as cg>p53H159.N). When maintained on a normal

diet, cg>p53H159.N larvae exhibited slight change or no differ-

ence in pupal size, TAG level, glycogen content, and circulating

glucose compared with control flies (Figure S1) (Barrio et al.,

2014). Upon starvation, cg>p53H159.N and cg>p53RNAi adult flies

exhibited a clear reduction in survival rates accompanied by an

accelerated rate of glycogen consumption as reported in previ-

ous work (Figures 1A, 1B, and S1) (Barrio et al., 2014). Similarly,

4-h starvation treatment of mid-third instar larvae (mid-L3) led to

a rapid decrease in glycogen content in cg>p53H159.N larvae

compared with control animals (Figure 1B), indicating that

Dmp53 is playing a role in the short-term starvation response

both in larval and in adult stages. Consistent with this, Dmp53

is activated upon acute starvation as shown by increased

expression of a Dmp53 activity reporter (p53RE-GFP, consisting

in p53 consensus DNA binding sites driving GFP expression)

(Barrio et al., 2014; Lu et al., 2010) following a 4-h starvation

treatment (Figure 1C). Interestingly, high-sugar diet (HSD)-fed

animals presented higher p53RE-GFP levels, which can be

blocked by Dmp53H159.N expression (Figure 1D), and

cg>p53H159.N larvae showed a strong developmental delay and

reduced viability on HSD when compared with control animals

(Figures 1E and S1), which suggests a general role of Dmp53

in maintaining metabolic homeostasis under nutrient stress.

Together, these results indicate that Dmp53 is activated in FB

cells exposed to acute starvation and HSD treatments, and

that Dmp53 activation in FB is required for maintaining metabolic

homeostasis and promoting survival. Therefore, despite that

Dmp53 absence in the FB appears to have minor effects on

metabolism under normal diet, it plays a critical role in regulating

energetic homeostasis and organismal survival under different

nutritional stress conditions.

FB Dmp53 Activity Is Required to Reduce TOR Signaling
and Induce Autophagy under Nutrient Deprivation
Because the TOR pathway is a common regulator of energy

metabolism, we explored the effects of depleting Dmp53 activ-

ity in the FB on TOR pathway activity. We first measured phos-

phorylation of S6 kinase, a well-described downstream target

of TOR activity, by western blot using a phospho-Drosophila

p70 S6 kinase (Thr398) antibody. Starvation treatment of mid-

L3 larvae led to a rapid decrease in TOR-dependent phosphor-

ylation of S6K (p-S6K) in FB extracts (Figure 2A). Expression of

Dmp53H159.N under the control of the cg-Gal4 driver showed

higher levels of p-S6K in FB samples of starved animals

(Figure 2A). We also analyzed unk gene expression, which is

induced after TORC1 inhibition (Tiebe et al., 2015), and



Figure 1. Fat Body Dmp53 Regulates Organismal Response to Challenging Nutrient Conditions

(A) Reduced survival rates to nutrient deprivation of adult flies (males) expressingDmp53H159.N (cg>p53H159.N) orDmp53RNAi (cg>p53i) under cg-Gal4 control. See

Table S1 for n, p, median, and maximum survival values.

(B) Glycogen content in whole larvae and adult flies from the indicated genotypes subjected to starvation (4 h in larvae; 24 h in adults). Data were normalized to

protein concentration and presented as a starved (STV)/well-fed (WF) ratio for each genotype.

(C and D) qRT-PCR showingGFPmRNA levels in whole larvae (C) and adult flies (D) bearing p53RE-GFP activity reporter and expressing the indicated transgenes

under WF, STV, or high-sugar-diet (HSD) conditions. Results are expressed as fold induction with respect to control WF animals. Three independent replicates

were carried out for each sample.

(E) Development timing of control (cg>+) and cg>p53H159.N animals raised immediately after hatching in HSD.

Mean ± SEM. *p < 0.05; **p < 0.01. See also Figure S1 and Table S1.
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observed reduced induction of endogenous unk transcript

levels in Dmp53-depleted FBs (Figure 2B), strongly suggesting

that TOR signaling is maintained more actively in starved

Dmp53-depleted animals. To investigate how sustained

TORC1 signaling impacts on autophagy induction in starved

cg>p53H159.N animals, we used either a transgenic autophagy

reporter, mCherry-tagged-Atg8a (mChAtg8), or the cell-perme-

able LysoTracker dye, which targets acidic organelles,

including autolysosomes. A clear accumulation of Lyso-

Tracker-positive vesicles was observed in FB cells of wild-

type larvae following 4 h of starvation (Figure 2C). Interestingly,

starvation-induced autophagy was strongly reduced in dmp53

mutant animals (dmp53ns and dmp535A14; Figure 2C) or when

expressing Dmp53 dominant-negative versions (Dmp53H159.N,

Dmp53259.N, and Dmp53R155H) under cg-Gal4 control (Figures

2C–2E). Because cg-Gal4 is mainly expressed in FB cells, as

well as lymph gland and hemocytes, we analyzed autophagy in-

duction upon depletion of Dmp53 activity in the FB by using

complementary Gal4 lines. Dmp53H159.N expression under the

control of lpp, ppl, R4, and Lsp2 Gal4 drivers strongly reduced

starvation-induced autophagy (Figures 2E and S2). Similar re-

sults were obtained with cg-Gal4 in combination with elav-

Gal80, which prevents expression of UAS transgenes in most

parts of the brain (Figure S2). In contrast, salivary gland- or
brain-specific depletion of Dmp53 activity (using SG-Gal4,

fkh-Gal4, elav-Gal4, and dilp2-Gal4) did not have any impact

on starvation-induced autophagy (Figure S2). Starvation treat-

ment also showed accumulation of mChAtg8-positive autopha-

gosomes and autolysosomes all through the larval FB that was

suppressed in dmp535A14 animals or by Dmp53H159.N expres-

sion (Figures 2F and S2). Note that following long-term starva-

tion (16 h), Dmp53H159.N-expressing FBs showed accumulation

of mChAtg8-positive vesicles, pointing to a defect in short-term

starvation response mechanisms (Figure S2). Collectively,

these results indicate that Dmp53 activity in the FB regulates

TOR activity and autophagy induction upon acute nutrient

deprivation.

Next, we askedwhether impaired autophagy is responsible for

reduced survival rates of cg>p53H159.N animals exposed to star-

vation. Chloroquine (CQ) inhibits autophagy as it raises lyso-

somal pH, leading to inhibition of both autophagosome-lyso-

some fusion and lysosomal protein degradation. Interestingly,

whereas CQ treatment renders flies more sensitive to starvation

at a similar extent as cg>p53H159.N (Figure 2G), it did not increase

sensitivity to starvation of cg>p53H159.N flies. Similar results were

obtained when blocking autophagy induction in the FB by

expression of ATG1RNAi (Figure S2), strongly suggesting that in-

hibition of autophagy contributes to the reduced survival rates of
Cell Reports 33, 108321, October 27, 2020 3



Figure 2. Fat Body Dmp53 Regulates TOR Signaling, Autophagy Induction, and Survival upon Starvation

(A) Immunoblot showing p-S6K levels in FB extracts from control (cg>+) and cg>p53H159.N animals inWF and STV conditions. Datawere normalized to actin levels

and expressed relative to WF animals. Mean ± SEM of three independent experiments are shown.

(legend continued on next page)
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starved, Dmp53-depleted animals. We then used rapamycin, a

potent inhibitor of TOR signaling, to test whether reducing TOR

activity would affect survival rates of Dmp53-depleted animals

to starvation. Rapamycin treatment significantly increased star-

vation resistance of control and cg>p53H159.N adult flies (Fig-

ure 2I) and partially rescued autophagy induction (Figures 2H

and S2), indicating that sustained TOR activity contributes to

the reduced survival rates of starved, Dmp53-depleted animals.

Altogether, these data indicate that Dmp53 activation in FB of

starved animals is required to reduce TOR signaling, induce

autophagy, and promote starvation resistance.

FB Dmp53 Non-Cell-Autonomously Regulates TOR
Signaling and Autophagy Induction upon Starvation
Autophagy induction is inhibited by TOR, which is activated

both by insulin signaling and directly by nutrients (Rusten

et al., 2004; Scott et al., 2004). We then asked whether

Dmp53 plays a cell-autonomous or non-autonomous function

in regulating starvation-induced autophagy. Notably, expres-

sion of Dmp53H159.N in single FB cells by using the actin-flip-

out-Gal4 technique was unable to impair autophagy induction

following 4-h starvation treatment (Figure 3A; compare

mChATG8 accumulation in control [GFP�] and Dmp53H159.N

[GFP+]-expressing cells). Next, we analyzed expression of the

unk-lacZ transcriptional reporter that bears a dimerized

enhancer region from unk intron 2, which is strongly induced af-

ter TORC1 inhibition (Tiebe et al., 2015) (Figure 3C). Upregula-

tion of unk-lacZ in the FB of starved animals was significantly

reduced when expressing Dmp53H159.N under cg-Gal4 control

(Figure 3C). Interestingly, however, starvation-induced unk-

lacZ expression was not affected when blocking Dmp53 activ-

ity in single FB cells (Figure 3B), strongly suggesting that

Dmp53 influences TOR signaling and autophagy induction in

a non-cell-autonomous manner. We also analyzed the level of

expression of upstream TOR elements, such as TSC2 and Sir-

tuins, along with several Autophagy-related genes (Atg) and

found no significant differences between cg>p53H159.N and

controls (Figure S3). To confirm that FB Dmp53 has an impact

on systemic autophagy induction, we examined LysoTracker

staining in other tissues different from the FB. Interestingly,

although we observed a significant increase in LysoTracker-

positive puncta in brain, salivary gland, and intestine of starved

control animals, autolysosomes were almost completely ab-

sent in these tissues upon expression of Dmp53H159.N in the

FB (Figure 3D). Altogether, these findings point to a tissue-spe-
(B) qRT-PCR showing unk transcript levels in FB samples obtained from cg>+ an

induction with respect to control animals. Three independent replicates were ca

(C) LysoTracker staining to detect autophagy induction in the FB of STV cont

(cg>p53259H or cg>p53R155H) larvae.

(D) Relative LysoTracker intensity of the indicated genotypes. n R 10 for 2 indep

(E) LysoTracker staining of STV larvae expressing Dmp53H159.N in the FB under th

strongly reduced starvation-induced autophagy.

(F) FB cells labeled to visualize autophagic vesicles by using mCherry-Atg8 fusion

WF or STV conditions.

(G and I) Survival rates to nutrient deprivation of adult flies (males) expressing the

rapamycin (I), or the corresponding vehicles. See Table S1 for n, p, median, and

(H) LysoTracker staining showing that reduced autophagy induction observed in

Mean ± SEM. ***p < 0.001; **p < 0.01; *p < 0.05. Scale bars, 25 mm. See also Fig
cific role ofDrosophila p53 in regulating systemic TOR signaling

and autophagy induction upon fasting.

Dmp53 Activation in the FB Is Required to Reduce Dilp2
Circulating Levels and Systemic Insulin Signaling
As stated before, TOR activity and autophagy induction can be

modulated directly by nutrients, as well as by insulin signaling

(Scott et al., 2004; Rusten et al., 2004), and the FB integrates

nutritional inputs with Dilp2 secretion at the IPCs (Géminard

et al., 2009). To study a possible function of FBDmp53 in control-

ling systemic insulin signaling, we analyzed Dilp2 protein levels in

IPCs upon fasting. As previously described, starvation treatment

led to a rapid accumulation of Dilp2 protein in IPCs of control an-

imals (Figure 4A). Expression of Dmp53H159.N in the FB, however,

resulted in significantly less Dilp2 accumulation upon acute star-

vation treatment (Figure 4A). Note that similarly to what is seen

with autophagy, following long-term starvation treatment (24

h), cg>p53H159.N animals showed similar Dilp2 protein levels in

the IPCs than controls (Figure S4). To confirm IPCs Dilp2 reten-

tion, we measured epitope-tagged Dilp2 levels (Dilp2HF) (Park

et al., 2014) in hemolymph of starved control and Dmp53-

depleted animals by ELISA. Whereas no differences were

observed between genotypes in well-fed conditions (Figure S4),

elevated levels of circulating insulin were observed in starved

cg>p53H159.N animals (Figure 4B). Note that we found no signif-

icant difference in dilp2 and dilp5 transcript levels between con-

trol and Dmp53-depleted larvae in either well-fed or starved con-

ditions (Figure S4).

To assess whether sustained Dilp2 circulating levels in starved

Dmp53-depleted animals have an impact on systemic insulin

signaling, we first measured 4EBP and dInR transcript levels.

These two genes are direct transcriptional targets of dFOXO

(Puig et al., 2003; Teleman et al., 2005), which is negatively regu-

lated by the insulin pathway. Consistent with a rapid drop of

circulating Dilp2, 4EBP and dInR transcript levels were strongly

induced in control larvae upon nutrient deprivation (Figure 4C).

Interestingly, however, starvation-induced expression of these

genes was significantly reduced in cg>p53H159.N larvae (Fig-

ure 4C). Additionally, we used the tGPH reporter for in vivo

PI3K activity, which consists of a GFP-Pleckstrin Homology

domain fusion protein ubiquitously expressed under the control

of b-tubulin promoter. tGPH is localized to plasma membrane in

FB and salivary gland cells of well-fed animals (Figure S4) (Britton

et al., 2002). In contrast, membrane-associated tGPH is dimin-

ished under nutrient deprivation as a consequence of reduced
d cg>p53H159.N larvae in WF or STV conditions. Results are expressed as fold

rried out for each sample.

rol (w1118 or cg>+), dmp53 mutant (p53ns or p535A14), and Dmp53-depleted

endent experiments.

e control of the indicated Gal4 drivers. In all cases, expression of Dmp53H159.N

protein (mChAtg8; in red) in control, p535A14/5A14, and cg>p53H159.N animals in

indicated transgenes under cg-Gal4 control and treated with chloroquine (G),

maximum survival values.

STV cg>p53H159.N larvae was partially rescued by rapamycin treatment.

ure S2 and Table S1.
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Figure 3. Dmp53Non-Cell-Autonomously Reg-

ulates TOR Signaling and Autophagy upon

Starvation

(A) FB cells labeled to visualize mCherry-Atg8 fusion

protein (mChAtg8; in red or white). STV FB cells ex-

pressing Dmp53H159.N (marked by the expression of

GFP, in green) showed similar autophagy induction

than neighboring wild-type cells (left). Relative

mChAtg8 area (right) between control and

Dmp53H159.N expressing cells are shown. nR 10 for 3

independent experiments.

(B) Immunostaining showing unk-lacZ expression

(b-gal in green or white). STV FB cells expressing

Dmp53H159.N (marked by the expression of RFP, in

red) showed similar unk-lacZ levels than neighboring

wild-type cells. Relative unk-lacZ levels between

control and Dmp53H159.N expressing cells are shown

(right). n R 10 for 3 independent experiments.

(C) Immunostaining showing unk-lacZ levels (b-gal,

green) in the FB of cg>+ and cg>p53H159.N larvae in

WF or STV conditions. Relative b-gal fluorescence

intensity showing reduced unk-lacZ levels in STV

cg>p53H159.N animals (right). nR 50 for 3 independent

experiments.

(D) LysoTracker staining to detect autophagy induc-

tion in the salivary gland, intestine, and brain of STV

cg>+ and cg>p53H159.N larvae.

Mean ± SEM. ***p < 0.001. Scale bars, 30 mm. ns, not

significant. See also Figure S3.
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insulin signaling (Figure 4D) (Britton et al., 2002). Impairing

Dmp53 transcriptional activity specifically in the FB showed

higher tGPH levels at the plasma membrane of starved mid-L3

larvae than control animals (Figure 4D). Consistent with a non-

cell-autonomous role of Dmp53 in regulating systemic insulin

signaling, these results were observed in cells from both FB

and salivary gland (Figure 4D), and expression of Dmp53H159.N

in single FB cells did not affect tGPH localization following 4-h

starvation treatment (Figure 4E; compare membrane-associated

tGPH levels in control [RFP�] and Dmp53H159.N [RFP+]-express-

ing cells).
6 Cell Reports 33, 108321, October 27, 2020
Next, we evaluated to what extent the

increased Dilp2 circulating levels observed

in starved Dmp53-depleted animals were

responsible for their reduced survival rates.

Overexpression of ImpL2, a secreted protein

that binds Dilp2 and inhibits insulin receptor

signaling in a non-cell-autonomous manner,

completely reverted the starvation sensitivity

caused by Dmp53 activity depletion in the

FB (Figure 4F). Additionally, ImpL2 overex-

pression reverted autophagy induction ki-

netics in starved cg>p53H159.N animals (Fig-

ures 4G and S4). Importantly, IPC-specific

depletion of Dmp53 activity (using dilp2-

Gal4) did not have any impact on either star-

vation sensitivity (Figure S4) or autophagy in-

duction (Figure S2). Taken together, these

results indicate that Dmp53 activity in the

FB of starved animals reduces Dilp2 circu-
lating levels, therefore influencing systemic insulin and TOR

signaling, autophagy induction, and starvation resistance.

Dmp53-Dependent Regulation of Upd2 Influences Dilp2
Levels, Autophagy Induction, and Organismal Survival
upon Nutrient Stress
Communication between the FB and the brain relies on hu-

moral signals emitted by fat cells according to nutrient condi-

tions (Britton and Edgar, 1998; Géminard et al., 2009). To

further understand the role of Dmp53 in brain-FB intercommu-

nication and the nature of the signals involved, we set up



Figure 4. Fat Body Dmp53 Activity Regulates Dilp2 Circulating Levels and Systemic Insulin Signaling

(A) Brain IPCs stained to visualize Dilp2 (green) protein levels in control (cg>+) and cg>p53H159.N larvae in WF and STV conditions (left). Relative Dilp2 levels

showing reduced accumulation in STV cg>p53H159.N animals (right). n R 10 brains per genotype, representative of 3 independent experiments.

(B) Immunoassays (ELISA) showing increased Dilp2-HF circulating levels in hemolymph of STV cg>p53H159.N compared with cg>+ animals.

(C) qRT-PCR showing 4EBP and dInR transcript levels in the FB of cg>+ and cg>p53H159.N animals subjected toWF or STV conditions. Results are expressed as

fold induction with respect to WF conditions. Three independent replicates were carried out for each sample.

(D) FB and salivary gland cells labeled to visualize tGPH reporter (green) in cg>+ and cg>p53H159.N animals in STV. Quantification of relative membrane-GFP

fluorescence intensity in the FB (right). n R 40 for 3 independent experiments.

(E) STV FB cells expressingDmp53H159.N (marked by the expression of RFP, in red) showed similar tGPH levels (in green or white) than neighboringwild-type cells.

Relative tGPH levels between control and Dmp53H159.N expressing cells are shown (right). n R 10 for 3 independent experiments.

(F) Survival rates to nutrient deprivation of adult flies (males) expressing the indicated transgenes under cg-Gal4 control. ImpL2 overexpression totally reverted

the reduced survival rates of cg>p53H159.N flies upon starvation. See Table S1 for n, p, median, and maximum survival values.

(G) LysoTracker staining showing that reduced autophagy induction observed in STV cg>p53H159.N larvae was largely rescued when co-expressing ImpL2.

Mean ± SEM. ***p < 0.001; **p < 0.01; *p < 0.05. Scale bars, 25 mm. See also Figure S4 and Table S1.
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ex vivo experiments. Inverted larvae from control (cg>GFP)

and cg>p53N159.H animals were incubated in M3 insect me-

dium (equivalent to starvation treatment; Kim and Neufeld,

2015) and stained to visualize IPCs Dilp2 levels. Recapitula-

tion of Dilp2 secretion results obtained in vivo was evidenced

by rapid increase in IPCs Dilp2 levels after 3-h incubation of

control inverted larvae in M3 medium compared with inverted

larvae at the time of dissection (WF [well-fed], Figure 5A). In-

verted larvae from cg>p53N159.H animals showed significantly

less Dilp2 accumulation (Figure 5A). Because FB secreted

molecules have been described acting either positively or

negatively on Dilp2 secretion, we then intended to distinguish

between these two possibilities by performing ex vivo co-cul-
ture experiments in which inverted larvae from control and

cg>p53N159.H animals were incubated together. Interestingly,

Dilp2 accumulation levels in the IPCs of control larvae were

drastically reduced when co-cultured with cg>p53N159.H in-

verted larvae (Figure 5A, compare middle and right panels;

see also Figure 5B for quantifications of Dilp2 intensity levels).

Similar results were obtained when dissected brains from

control mid-L3 larvae were cultured in M3 medium in the pres-

ence of isolated control or Dmp53-depleted FBs (Figures 5C

and 5D). As a physiological readout of insulin/TOR signaling,

we also monitored induction of autophagy in ex vivo experi-

ments. Whereas ex vivo incubation of inverted larvae in M3

medium led to a rapid accumulation of mChATG8-positive
Cell Reports 33, 108321, October 27, 2020 7



Figure 5. Fat Body Dmp53 Remotely Controls Dilp2 Secretion upon Starvation

Brain IPCs stained to visualize Dilp2 protein levels in ex vivo experiments.

(A) Inverted larvae from control (cg>GFP) and cg>p53H159.N animals were incubated individually (middle panel) or together (co-culture; right panel) in M3medium

for 3 h and stained to visualize Dilp2 (green) protein levels.Whereas cg>GFP or cg>p53H159.N inverted larvae showed high and lowDilp2 accumulation levels when

incubated individually, cg>GFP animals showed reduced IPCs Dilp2 levels when co-cultured with cg>p53H159.N inverted larvae. Dilp2 protein levels in WF

conditions are shown as controls (left panel).

(C) Dissected brains from early L3 larvae were cultured in M3 insect medium in the presence or absence of fat bodies from control (cg>GFP) or cg>p53H159.N

animals. Whereas control brains incubated ex vivowith cg>GFP fat bodies showed high Dilp2 accumulation levels, they showed reduced IPCs Dilp2 levels when

incubated with fat bodies from cg>p53H159.N animals.

(B and D)Quantification of relative IPCsDilp2 fluorescence intensity from experiments shown in (A) and (C), respectively. n = 6–8 (B) and n = 5 (D) for 2 independent

experiments.

Mean ± SEM. *p < 0.05. Scale bars, 25 mm. ns, not significant. See also Figure S5.
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vesicles throughout wild-type larval FB, co-cultures of in-

verted larvae from wild-type and Dmp53-depleted animals

prevented autophagy induction (Figure S5). Altogether, these

series of ex vivo experiments point to an overproduction of

secreted molecules that stimulate Dilp2 secretion by

Dmp53-depleted FBs under starvation conditions.

Next, we analyzed the expression of genes encoding FB

secreted molecules known to regulate Dilp2 secretion, such

as Upd2, CCHa1, CCHa2, GBP1, GBP2, and Sun. qRT-PCR

analysis showed significant differences in upd2 and sun tran-

script levels between controls and cg>p53H159.N larvae

exposed to a 4-h starvation treatment (Figure 6A). In contrast,

no differences were observed for ccha1, ccha2, gbp1, and

gbp2 mRNA levels (Figure 6A). Thus, we conducted a candi-

date screen in which these adipokines were specifically

silenced in the FB of larvae either well fed or exposed to starva-

tion, and screened for their capacity to recover autophagy in-

duction in cg>p53H159.N animals. Strikingly, upd2i expression

in the FB was able to rescue the autophagy delay observed in

starved cg>p53H159.N animals (Figures 6B and S6). Drosophila

cytokine Upd2 has been described as a secreted factor pro-
8 Cell Reports 33, 108321, October 27, 2020
duced by FB cells in well-fed animals, mainly responding to di-

etary fat and sugars (Rajan and Perrimon, 2012). FB-derived

Upd2 promotes Dilp2 secretion and systemic growth by acti-

vating the Janus kinase (JAK)/signal transducer and activator

of transcription (STAT) signaling pathway in GABAergic neu-

rons (Rajan and Perrimon, 2012). Notably, depletion of

Drosophila JAK/STAT receptor Domeless (Dome) in

GABAergic neurons by expressing domei under vgat-Gal4 con-

trol largely reverted impaired autophagy induction observed in

starved, dmp535A14 mutant larvae (Figures 6D and S6). Consis-

tent with a role of FB Upd2 in modulating insulin secretion, ex-

pressing upd2i along with Dmp53H159.N showed similar Dilp2

accumulation levels in the IPCs of starved larvae than upd2i-ex-

pressing larvae (Figure 6C). We then evaluated at which extent

increased Upd2 levels can account for the reduced survival

rates observed in starved cg>p53H159.N animals. Notably,

upd2i expression fully rescued starvation sensitivity caused

by Dmp53 activity depletion in the FB (Figure 6E). Similarly,

reduced survival rates displayed by dmp535A14 mutant flies

were restored when reducing Dome expression in adult

GABAergic neurons (Figure 6F). Altogether, our results indicate



Figure 6. Starvation-Induced Dmp53 Activation Regulates Upd2 Levels, Autophagy Induction, and Survival Rates

(A) qRT-PCR showing mRNA levels of indicated genes in control (cg>+) and cg>p53H159.N larvae in WF and STV conditions. Results are expressed as fold in-

duction with respect to WF conditions. Three independent replicates were carried out for each sample.

(B) LysoTracker staining in the FB of STV larvae expressing GFP (control) or Dmp53H159.N along with the indicated transgenes under cg-Gal4 control.

(C) Quantification of mean Dilp2 fluorescence intensity in the IPCs of STV larvae expressing the indicated transgenes in the FB under cg-Gal4 control. n R 10

brains per genotype, representative of 2 independent experiments.

(D) LysoTracker staining in the FB of STV larvae expressing domei in GABAergic neurons by using the vgat-Gal4 driver in either wild-type or p535A14 mutant

background.

(E and F) Survival rates to nutrient deprivation of adult flies (females) expressing the indicated transgenes under the control of cg-Gal4 (E) or vgat-Gal4 (F) drivers.

Inhibiting Upd2 expression in the FB totally reverted the reduced survival rates of cg>p53H159.N flies upon starvation (E), and blocking JAK/STAT signaling in

GABAergic neurons strongly rescued the reduced survival rates of p535A14 mutant flies (F). See Table S1 for n, p, median, and maximum survival values.

Mean ± SEM. **p < 0.01; *p < 0.05. Scale bars, 25 mm. ns, not significant. See also Figure S6 and Table S1.
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that sustained FB Upd2 expression and activation of JAK/STAT

signaling in GABAergic neurons is responsible for increased

Dilp2 circulating levels, reduced autophagy induction, and hy-

persensitivity to starvation displayed by Dmp53-depleted ani-

mals. Interestingly, recent chromatin immunoprecipitation

sequencing (ChIP-seq) analysis showed Dmp53 binding to

Upd2 locus in Drosophila embryos and adult heads (Kudron

et al., 2018; Kurtz et al., 2019). Considering the identification

of a conserved p53 binding site at the same location (Figure S6),
we propose that Dmp53may directly regulate Upd2 expression

in the FB of starved animals.

AMPK-Dependent Dmp53 Activation Regulates
Systemic Insulin Signaling and Autophagy Induction
upon Nutrient Stress
TOR and AMPKs play essential roles in nutrient sensing and

are important regulators of cell growth and metabolism

(Grewal, 2009; Hietakangas and Cohen, 2009). Whereas
Cell Reports 33, 108321, October 27, 2020 9



Figure 7. Effect of Fat Body AMPK-Dmp53

Axis in Controlling Insulin Signaling, Auto-

phagy, and Survival under Nutrient Stress

(A) qRT-PCR showing gfp mRNA levels in the FB of

control (cg>+) and cg>AMPKai larvae bearing

p53RE-GFP and subjected to WF or STV conditions.

Results are expressed as fold induction with respect

to control WF animals. Three independent replicates

were carried out for each sample. (B) LysoTracker

staining in the FB, salivary gland, intestine, and brain

of STV cg>+ and cg>AMPKai animals.

(C) Immunoassays (ELISA) showing increasedDilp2-

HF circulating levels in hemolymph of STV

cg>p53H159.N or cg>AMPKai larvae. Results are

normalized to control animals in STV conditions.

(D) Survival rates to nutrient deprivation of adult flies

(males) expressing the indicated transgenes in the

FB under cg-Gal4 control. Co-expression of

Dmp53H159.N and AMPKai showed similar survival

rates as expression of each transgene individually.

See Table S1 for n, p, median, and maximum sur-

vival values. (E) Number of individuals entering pu-

pariation from control, cg>p53H159.N, or cg>AMPKai

animals raised immediately after hatching in HSD.

Data were represented as a ratio of HSD-fed control

animals.

(F) qRT-PCR showing increased upd2 transcript

levels in HSD-fed larvae expressing Dmp53H159.N

under cg-Gal4 control. Results are expressed as

fold induction with respect to control WF animals.

Three independent replicates were carried out for

each sample. (G) Immunoassays (ELISA) showing

increased Dilp2-HF circulating levels in hemolymph

of HSD-fed animals from cg>p53H159.N. Results are

normalized to control animals in HSD.

Mean ± SEM. *p < 0.05; **p < 0.01. Scale bars,

25 mm. See also Figure S7 and Table S1.
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TOR is regulated in response to amino acid availability, AMPK

is modulated by changes in the cellular ATP:AMP ratio. In or-

der to see whether Dmp53 is activated downstream of TOR or

AMPK pathways upon acute starvation treatments, we used

the Dmp53 activity reporter, p53RE-GFP. Although rapamycin

treatment of mid-L3 larvae significantly increased unk tran-

script levels, it was not able to increase p53RE-GFP expres-

sion (Figure S7). In contrast, starvation-induced p53RE-GFP

was significantly reduced by expression of AMPK⍺i (Fig-

ure 7A). These results prompted us to analyze a possible

non-cell-autonomous role of AMPK in controlling autophagy

induction upon nutrient deprivation. To determine whether

AMPK activity in the FB has an impact on systemic autophagy

induction, we examined LysoTracker staining in different tis-

sues of starved animals where AMPK was depleted in the

FB by expression of AMPK⍺i under cg-Gal4 control

(cg>AMPK⍺i). In all tissues analyzed (brain, salivary gland, in-

testine, and FB), depletion of FB AMPK levels almost

completely blocked autophagy induction when compared

with control animals (Figure 7B). Additionally, AMPK⍺i expres-
10 Cell Reports 33, 108321, October 27, 2020
sion in single FB cells had no effect on starvation-induced

accumulation of mChAtg8 punctae at a cellular level (Fig-

ure S7). Next, we measured epitope-tagged Dilp2 levels

(Dilp2HF) in the hemolymph of starved control and

cg>AMPK⍺i animals. Starved AMPK-depleted larvae showed

higher Dilp2 circulating levels than controls (Figure 7C), sug-

gesting that FB AMPK activity indirectly influences Dilp2

release from IPCs. Even though AMPK mutant flies show

high starvation sensitivity (Johnson et al., 2010), the contribu-

tion of FB AMPK activity on this phenotype has not been ad-

dressed so far. Interestingly, the expression of AMPK⍺i in the

FB reduced survival rates of adult flies exposed to starvation

conditions at a similar level as cg>p53H159.N (Figure 7D). Flies

expressing AMPK⍺i along with Dmp53H159.N showed similar

survival rates as flies expressing each transgene individually

(Figure 7D). Together, these results reveal an AMPK-Dmp53

axis acting in the FB to promote starvation resistance.

Next, we analyzed a possible contribution of FB AMPK-p53

signaling in the response to other nutritional stresses. As

shown before, HSD-fed animals showed Dmp53 activation
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(Figure 1D), and cg>p53H159.N larvae exhibited reduced

viability when compared with control animals (Figures 1E

and S1). In addition, AMPK knockdown in the FB caused

reduced viability of HSD-fed animals (Figure 7E). Notably,

cg>p53H159.N animals fed with HSD showed increased Upd2

expression and elevated Dilp2 circulating levels (Figures 7F

and 7G), suggesting that the role of p53 in nutrient sensing

and in the regulation of systemic insulin signaling may be a

general response to nutrient stress rather than a specific

response to starvation. Even though we cannot rule out the

possibility of an additive effect of HSD and Dmp53 inhibition

on Upd expression, our results suggest that Dmp53 is acting

through an endocrine mechanism similar to the one used in

starvation.

It has been previously shown that Dilp3, but not Dilp2, is

involved in acute responses to altered sugar levels. Dietary sugar

stimulates Dilp3 secretion from the IPCs, which in turn promotes

systemic TOR activation and suppresses autophagy in the larval

FB (Kim and Neufeld, 2015). Interestingly, however, animals

reared on a HSD develop insulin resistance and show elevated

circulating Dilp2 levels Musselman and K€uhnlein, 2018. At which

extent, Dilp3 is also playing a role in chronic responses to HSD,

and whether altered Dilp3 levels can contribute to Dmp53-

dependent phenotypes in excess nutrient stress remain to be

studied.

DISCUSSION

A Role of p53 in Organismal Resistance to Challenging
Nutrient Conditions
Even though progress has been made in understanding p53

metabolic functions at the cellular level, its role in the context

of a whole animal response to metabolic stress is poorly under-

stood. Here, we provide evidence thatDrosophila p53 is critically

involved in nutrient sensing and in the orchestration of an organ-

ismal response to nutrient stress. AMPK-dependent Dmp53

activation in the FB in response to nutritional stress is required

for proper communication between the FB and the IPCs by

modulating the expression of Drosophila Leptin analog, Upd2.

Elevated Upd2 levels and activation of JAK/STAT signaling in

the brain of starved Dmp53-depleted animals result in sustained

Dilp2 circulating levels, activation of insulin signaling, and

impaired autophagy induction in various tissues, therefore

reducing survival rates upon nutrient deprivation. These results

position the AMPK-p53 axis as a key player in nutrient sensing

and in regulating adaptive physiological responses to low

nutrient availability by remotely controlling insulin secretion and

autophagy.

Studies in mice have also shown that p53 is activated under

several nutrient stress conditions, such as nutrient depriva-

tion, high-caloric diet, and high-fat diet (HFD). p53 becomes

activated under nutrient deprivation and regulates expression

of genes involved in mitochondrial fatty acid uptake and

oxidative phosphorylation (Liu et al., 2014). In turn, pharmaco-

logical or genetic inhibition of p53 prevented excessive fat

accumulation commonly observed under HFD (Derdak et al.,

2013; Yokoyama et al., 2014) and resulted in decreased

expression of proinflammatory cytokines and improved insulin
resistance in mice with type 2 diabetes (T2D)-like disease

(Minamino et al., 2009). Conversely, upregulation of p53 in ad-

ipose tissue caused an inflammatory response that led to in-

sulin resistance (Minamino et al., 2009). These results show

that both mice and Drosophila p53 activation in individuals

exposed to challenging nutrient conditions regulate global

metabolism and directly contribute to diet-associated

phenotypes.

p53-Dependent Leptin Regulation in Animal Physiology
and Disease
Leptin is mainly produced by adipose tissue in mice and hu-

mans, and regulates food intake, energy expenditure, and

metabolism acting mostly on neuronal targets in the brain.

We have shown that Dmp53 activation in the FB under

nutrient stress impacts systemic insulin signaling and auto-

phagy induction via regulation of Upd2/Leptin expression.

Notably, reduced survival of Dmp53-depleted animals to

nutrient deprivation was highly reverted when inhibiting either

Upd2 expression in the FB or JAK/STAT signaling in

GABAergic neurons in the fly brain. Similar to Upd2, Leptin

circulating levels decline during fasting conditions and are

increased in animals fed with a HFD (Ahima et al., 1996; Fred-

erich et al., 1995; Rajan and Perrimon, 2012; Rajan et al.,

2017). Low Leptin levels during starvation trigger adaptive

metabolic and hormonal responses, such as increased appe-

tite and decreased energy expenditure (Ahima et al., 1996;

Sano et al., 2015). In HFD-fed mice, p53 activation is neces-

sary for fat accumulation in the liver and adipose tissue, indi-

cating that p53 is essential for coordinating energy expendi-

ture and storage in response to nutrient availability (Liu

et al., 2017). Reduced expression of p53 target genes, such

as GLUT4 and SIRT1, has been proposed to reduce NAD+

levels and energy expenditure, leading to obesity (Liu et al.,

2017). Alternatively, p53 activation in adipose cells could

regulate Leptin expression, which is known to act on the

CNS to reduce food intake and enhance energy expenditure,

thus limiting obesity in times of nutrient abundance. Further

investigations into the role of adipose tissue p53 activity in

modulating physiological and metabolic responses to stress

will be necessary to have a better picture of the role p53 plays

in the development of metabolic disorders, such as obesity

and T2D. Of importance, based on conserved adipose tis-

sue-specific functions of p53 and signaling pathways

involved, studies in Drosophila are likely to provide insights

relevant to mammalian health and disease.

In the past decade, significant interest has been raised in

understanding non-canonical functions of p53 that might

have potential roles in tumor suppression (Ingaramo et al.,

2018). The fact that p53 is activated in the adipose tissue

of obese animals, along with the results here presented

concerning a putative direct role of p53 in controlling Upd2/

Leptin expression, demonstrates the importance of p53 in

regulating metabolism. This is particularly interesting given

that epidemiological studies over the last few decades

have shown a strong influence of obesity on cancer risk and

that increased Leptin can have hormone-like functions

affecting tumor development (Andò et al., 2019; Maroni,
Cell Reports 33, 108321, October 27, 2020 11
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2020; Singh et al., 2020; Xu et al., 2020). In this context,

our results give insights toward the molecular understanding

of p53 activation under metabolic stress and its possible

role in tumor suppression acting at either local or organismal

level.

Regulation of Adipose p53 Function under Metabolic
Stress
TOR and AMPK play essential roles in nutrient sensing, are

important regulators of energy balance at both cellular and

whole-body levels, and have been shown to interact with p53

(Grewal, 2009; Hietakangas and Cohen, 2009; Jones et al.,

2005). We previously showed that TOR inhibition following long

starvation treatments (24–48 h) contributes to Dmp53 activation,

mainly by alleviating miRNA-mediated targeting of Dmp53 in the

FB (Barrio et al., 2014). In this work, we demonstrated that rapid

activation of Dmp53 is dependent on AMPK and absolutely

required for metabolic and physiological changes that promote

organismal resistance to nutrient deprivation. This short-term

activation of Dmp53 by AMPK could be part of a dualmechanism

along with previously demonstrated long-term activation by lack

of TOR, and both of these regulatingmechanismsmay be impor-

tant for establishing a rapid response to transient acute nutrient

stress also guaranteeing a sustained response when facing a

much longer nutrient-deprived period. Given that activated

Dmp53 reduces Upd2 expression, systemic insulin, and TOR

signaling, it would be reasonable to speculate that Dmp53-

dependent TOR inhibition constitutes a positive feedback loop

to reinforce Dmp53 activation upon long-term starvation condi-

tions. Therefore, our results place p53 in a crucial position con-

necting nutrient sensing pathways to endocrine mechanisms,

as part of a possible physiological feedback mechanism.

Drosophila AMPK activation has been shown to extend life-

span and promote tissue proteostasis through non-cell-autono-

mous regulation of autophagy (Stenesen et al., 2013; Ulgherait

et al., 2014). Given that Dmp53, acting downstream of AMPK un-

der nutrient stress, non-cell-autonomously regulates Dilp2 levels

and autophagy, it will be interesting to determine whether p53,

and perhaps its direct phosphorylation by AMPK, is also required

for extending organismal lifespan upon tissue-specific AMPK

activation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-b-galactosidase Invitrogen Cat#A11132; RRID: AB_221539

Mouse monoclonal anti-GFP Developmental Studies Hybridoma Bank Cat#12A6; RRID: AB_2617417

Rat polyclonal anti-Dilp2 Géminard et al., 2009 N/A

Rabbit anti-phospho-Drosophila S6 Kinase Cell Signaling Cat#9209; RRID: AB_2269804

Mouse monoclonal anti-actin Developmental Studies Hybridoma Bank JLA20; RRID: AB_528068

Mouse monoclonal anti-FLAG Sigma Cat#F1804; RRID: AB_262044

Anti-HA-Peroxidase Roche Cat#12013819001; RRID: AB_390917

Chemicals, Peptides, and Recombinant Proteins

Lysotracker Green ThermoFisher Cat#L7526

Rapamycin LC Labs Cat#R5000

Critical Commercial Assays

1-Step Ultra TMB-ELISA Substrate ThermoFisher Cat#34029

Amyloglucosidase Sigma Cat#A7420

Glucose (GO) Assay Kit Sigma Cat#GAGO-20

TRIZOL RNA Isolation Reagent Invitrogen Cat#15596026

Halt Protease Inhibitor Cocktail ThermoFisher Cat#87785

Cell lysis buffer Cell Signaling Cat #9803

SuperSignal West Pico PLUS

Chemiluminescent Substrate

ThermoFisher Cat#34580

Experimental Models: Organisms/Strains

cg-Gal4 Bloomington Drosophila Stock Center BDSC:7011

ppl-Gal4 Bloomington Drosophila Stock Center BDSC:58768

R4-Gal4 Bloomington Drosophila Stock Center BDSC:33832

lsp2-Gal4 Bloomington Drosophila Stock Center BDSC:6357

vgat-Gal4 Bloomington Drosophila Stock Center BDSC:58980

fkh-Gal4 Bloomington Drosophila Stock Center BDSC:78061

elav-Gal4 Bloomington Drosophila Stock Center BDSC: 8765

dmp53ns Bloomington Drosophila Stock Center BDSC: 23283

dmp535A14 Bloomington Drosophila Stock Center BDSC: 6815

UAS-Dmp53H159N Bloomington Drosophila Stock Center BDSC: 8420

UAS-Dmp53R155H Bloomington Drosophila Stock Center BDSC: 8419

GUS-Dmp53259H Bloomington Drosophila Stock Center BDSC: 6582

UAS-Dmp53RNAi Bloomington Drosophila Stock Center BDSC: 29351

UAS-AMPK⍺RNAi Bloomington Drosophila Stock Center BDSC: 57785

UAS-sunRNAi Vienna Drosophila Resource Center VDRC: 23685

UAS-upd2RNAi Bloomington Drosophila Stock Center BDSC: 33949

UAS-ccha1RNAi Bloomington Drosophila Stock Center BDSC: 57562

UAS-ccha2RNAi Bloomington Drosophila Stock Center BDSC: 57183

UAS-gbp1RNAi Vienna Drosophila Resource Center VDRC: 15512

UAS-gbp2RNAi Vienna Drosophila Resource Center VDRC: 330018

UAS-domeRNAi Bloomington Drosophila Stock Center BDSC: 53890

tGPH Britton et al., 2002 N/A

unk-lacZ Tiebe et al., 2015 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dilp2-HF Park et al., 2014 N/A

p53RE-GFP Lu et al., 2010 N/A

hsFlp; UAS-Dicer2; R4-Cherry-atg8, act >

y+ > Gal4, UAS-GFP

Arsham and Neufeld, 2009 N/A

UAS-mCherry-atg8a Chang and Neufeld, 2009 N/A

Oligonucleotides

Oligos used in this study are listed in Table

S2

N/A

Software and Algorithms

Prism Graph Pad https://www.graphpad.com/

scientific-software/prism/

Adobe Photoshop CS5 Adobe https://www.adobe.com/uk/products/

photoshop.html

Leica Confocal Software Leica https://www.leica-microsystems.com/

products/microscopesoftware/

Fiji Schindelin et al., 2012 https://imagej.nih.gov/ij/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrés

Dekanty (adekanty@santafe-conicet.gov.ar).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Original images and data for figures are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila melanogaster stocks were reared at 25�C on standard media containing: 4% glucose, 40 g/L powder yeast, 1% agar, 25

g/L wheat flour, 25 g/L cornflour, 4 ml/L propionic acid and 1.1 g/L nipagin. Fly stocks and their resources are listed in the Key Re-

sources Table.

METHOD DETAILS

Fly husbandry and mosaic analysis
Gal4/Upstream Activating Sequence (UAS) binary system was used to drive transgene expression in the different Drosophila tissues

(Brand and Perrimon, 1993) and experimental crosses were performed at 25�C, unless otherwise specified. Crossing all Gal4 driver

lines tow1118 background provided controls for each experiment. Flp/Out systemwas used to generate GFP- or RFP-marked clones.

Flies from Flp/Out lines (hsFLP; act>y+>Gal4, UAS-RFP or hsFlp; UAS-Dicer2; R4-Cherry-atg8, act>y+>Gal4, UAS-GFP) were

crossed to corresponding UAS-transgene lines at 25�C and spontaneous recombination events taking place in the fat body prior

to the onset of endoreplication were analyzed (Britton et al., 2002).

Starvation Treatments, High-Sugar Diet and Survival Experiments
For starvation treatments in larvae, eggs were collected for 4 h intervals and larvae were transferred to vials containing standard food

immediately after eclosion (first instar larvae, L1) at a density of 50 larvae per tube. Larvae were then raised at 25�C for 72h prior to the

starvation assay. Mid-third instar larvae were washed with PBS and placed in inverted 60 mm Petri dishes with phosphate-buffered

saline (PBS) soakedWhatman paper (starvation, STV) or maintained in standard food (well fed, WF). Each plate was sealed with par-

afilm and incubated at 25�C for the duration of the experiment. After the starvation period, full larvae or dissected fat bodies were

used for immunostaining, RNA/protein extraction or metabolite measurements.
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For starvation sensitivity assays, 5- to 7-day-old flies of each genotype were transferred into vials containing 2% agar in PBS. Flies

were transferred to new tubes every day, and dead flies were counted every six hours. Control animals were always analyzed in par-

allel in each experimental condition. Statistics were performed using GraphPad Prism 6.0 software, which uses the Kaplan-Meier

estimator to calculate survival fractions as well as median and maximum survival values. Curves were compared using the log-

rank (Mantel-Cox) test. The two-tailed p value indicates the value of the difference between the two entire survival distributions at

comparison. For chloroquine and rapamycin treatments, adults were transferred to food containing 2.5 mg/ml of chloroquine

(Sigma), 400 uM of rapamycin (LC Labs) or an equivalent volume of ethanol as a control. Number of individuals used in each exper-

iment is detailed in Table S1.

For high-sugar diet (HSD) experiments, eggs were collected for 4h interval and larvae were transferred to either standard (4% su-

crose) or high-sugar (34% sucrose) food immediately after eclosion (50 L1 larvae per tube). Mid-third instar larvae were used for

immunoassay (Dilp2 circulating levels), and 5- to 7-day-old flies were used for RNA extraction. Survival rates were measured as

the percent of individuals entering pupariation. At least 120 larvae per genotype were scored. Data were normalized with respect

to the control genotype and Student’s t test analysis was carried out for statistical significance.

Immunostainings
Mid-third instar larvaewere dissected in cold PBS and fixed in 4% formaldehyde/PBS for 20min at room temperature. Inverted larvae

and dissected tissues from ex vivo experiments were directly fixed after incubation. They were then washed and permeabilized in

PBT (0.2% Triton X-100 in PBS) for 30 min and blocked in BBT (0.3% BSA, 250 mM NaCl in PBT) for 1 h. Samples were incubated

overnight at 4�C with primary antibody diluted in BBT, washed three times (15 min each) in BBT and incubated with secondary an-

tibodies for 1.5 hour at room temperature. After three washes with PBT (15 min each), dissected tissues were placed in mounting

medium (80% glycerol/PBS containing 0.05% n-Propyl-Gallate). Images were acquired on a Leica SP8 inverted confocal micro-

scope and analyzed and processed using Fiji (Schindelin et al., 2012) and Adobe Photoshop. The following primary antibodies

were used: rabbit anti-b-Gal (A11132, Invitrogen); rat anti-Dilp2 (Géminard et al., 2009), mouse anti-GFP (12A6, DSHB). The following

secondary antibodies were used: anti-mouse IgG-Alexa Fluor 594; anti-mouse IgG-Alexa Fluor 488; anti-rabbit IgG-Alexa Fluor 594;

and anti-rabbit IgG-Alexa Fluor 488 (Jackson InmunoResearch). Antibodies and their resources are listed in the KeyResources Table.

For Lysotracker staining, five mid-third instar larvae either well fed or starved were dissected in cold PBS and incubated 5min with

LysoTracker Green (ThermoFisher) at a final concentration of 0,5 mM in PBS. After washing, dissected tissues were placed in

mounting medium (80% glycerol/PBS containing 0.05% n-Propyl-Gallate) and immediately imaged.

Western blot
Dissected fat bodies were homogenized and lysed in 25 ml of cell lysis buffer (Cell Signaling), supplemented with protease inhibitor

cocktail (Halt Protease Inhibitor Cocktail, Thermo Fisher Scientific) and protein concentration was determined (Bio-Rad Protein

Assay). Twenty-five micrograms of protein extracts were loaded and separated in 4%–20% SDS polyacrylamide gel electrophoresis

(Mini-PROTEAN� TGX Precast Protein Gels) and blotted onto PVDF membranes (Immobilion-P, Millipore). Membranes were

blocked for 1 hour at room temperature with 5% BSA in TBS-T (TBS with 0.1% Tween 20) and then incubated overnight with mouse

anti-actin (DSHB) and rabbit anti-phospho-Drosophila S6 Kinase (Cell Signaling) antibodies in TBS-T. Membranes were extensively

washed and incubated for 1 hour at room temperature with a peroxidase-conjugated anti-mouse or anti-rabbit secondary antibody

(ThermoFisher). Immunoblots were developed with SuperSignal West Pico PLUS Chemiluminescent Substrate (ThermoFisher),

imaged with ChemiDoc imager (Bio-Rad) and quantitated using Fiji. Phospho-S6K levels were normalized to actin and represented

as fold change respect to control, well fed animals. Data represent mean ± SEM of three independent experiments.

RNA isolation and quantitative RT-PCR
To measure mRNA levels, total RNA was extracted from adults, whole larvae, or dissected FBs of 30 animals using TRIZOL RNA

Isolation Reagent (Invitrogen). First strand cDNA synthesis was performed using an oligo(dT)18 primer and RevertAid reverse tran-

scriptase (ThermoFisher) under standard conditions. Quantitative PCR was performed on an aliquot of the cDNA with specific

primers using the StepOnePlus Real-Time PCR System. Expression values were normalized to actin transcript levels. Data were

then normalized to control WF animals using the DD-CT and fold change was calculated afterward. In all cases, three independent

samples were collected from each condition and genotype. Student’s t test was used for statistical analysis.

Circulating Dilp2 levels in hemolymph
Dilp2 circulating levels in the hemolymph of well-fed or starved animals were quantified by sandwich ELISA as previously described

(Park et al., 2014). Hemolymph was obtained by bleeding washed larvae on ice, and collected in tubes with 55 mL cold PBS. Super-

natant after centrifugation at 1,000 x g for one minute was used for ELISA. Briefly, coated plates (Greiner 655061) were incubated

overnight at 4�Cwithmonoclonal anti-FLAG antibody (2.5 mg/ml, Sigma F1804) diluted in 0.2M sodium carbonate/bicarbonate buffer,

pH 9.4. Plates were washed with PBTw (0,2% Tween-20 in PBS) and blocked with PBS containing 2% BSA overnight at 4�C. Plates
were then washed with PBTw before adding hemolymph. Samples were mixed with anti-HA-Peroxidase (Roche #12013819001) at a

dilution of 1:350 in PBS-Tween-20 2%, added to plates and incubated overnight at 4�C. Plates were extensively washed with PBTw
Cell Reports 33, 108321, October 27, 2020 e3
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and incubated with 1-Step Ultra TMB-ELISA Substrate (ThermoFisher #34029) for 25min at RT. The reaction was stopped by adding

2M sulfuric acid and absorbance was measured immediately at 450nm.

Fluorescence quantification in IPCs and FB cells
For fluorescence quantification, confocal Z series were taken using a Leica SP8 confocal microscope as described below and iden-

tical microscope settings and all subsequent treatments of images were used for control and experimental samples. Total fluores-

cence intensity of maximum Z-projections was measured using Fiji and data were normalized to control animals. Student’s t test

analysis was carried out for statistical significance. To quantify Dilp2 intensity levels in larval brains, confocal sections covering

the entire IPCs were obtained. To quantify b-gal (unk-lacZ reporter) intensity levels in FB cells, confocal sections covering the entire

nuclei were taken from 10 FBs and nuclei fluorescence were assessed. To quantify membrane GFP (tGPH reporter) intensity levels,

confocal sections covering a 5 micron plasma membrane section were taken from 10 FBs. To quantify Lysotracker intensity levels

and mCherry-ATG8 positive punctae, randomly selected pictures were loaded in FIJI and automatically processed. Total fluores-

cence intensity (Lysotracker) and area (mCh-ATG8) were scored and normalized to control animals. At least 10 images taken

from 6-8 animals, and 2-3 independent experiments, per genotype and condition were analyzed. Student’s t test was used for sta-

tistical analysis.

Ex vivo experiments
For ex vivo incubation experiments of whole inverted larvae (carcasses containing fat body, brain and other tissues) sixteenmid-third

instar larvae per condition were used. After washing and disection, inverted larvae were incubated in 50 mL of Shields and Sang M3

Insect Medium (Sigma) at room temperature for 3 h. Incubation of inverted larvae inM3medium has been previously shown to reduce

TOR pathway activity and induce autophagy resembling starvation (Kim and Neufeld, 2015). Inverted animals were then fixed, per-

meabilized, and inmunostained as described above using rat anti-Dilp2 antibodies (1/400). In the case of co-culture experiments,

eight inverted larvae from each genotype (cg>GFP and cg>p53H159.N) were incubated together in M3 medium and all subsequent

steps were performed in the same tube to minimize variability. Dissected brains from 6-8 larvae per genotype and condition were

imaged and used for quantification.

For ex vivo incubation experiments of dissected tissues, brains from eight wild-type mid-third instar larvae were co-incubated with

eight dissected fat bodies from the different genotypes (cg>GFP and cg>p53H159.N) in 25 mL of M3medium at room temperature for 3

h. After immunostaining with anti-Dilp2 antibodies, five brains were placed in mounting medium, imaged, and Dilp2 fluorescence

quantified.

Metabolic Assays
TAG, glycogen and glucose levels were determined as previously described (Barrio et al., 2014). Briefly, mid-third instar larvae or 5-

7 days old adult flieswere fast frozen in liquid nitrogen, homogenized in 200 ml of PBS and immediately incubated at 70�C for 10min to

inactivate endogenous enzymes. For quantification of glucose, hemolymph from 15 larvae was diluted 1:100 and incubated at 70�C
for 5 min. TAG levels were determine using a serum triglyceride determination kit (Sigma, TR0100) according to the manufacturer’s

protocol. For glycogenmeasurements, 40 ml of heat-treated homogenates were incubatedwith or without 1 unit of Amyloglucosidase

(Sigma, A7420) for 2 hr at 55�C and assayed using a Glucose (GO) Assay Kit (Sigma, GAGO-20). Glycogen amounts were determined

by subtracting from the total amount of glucose present in the sample treated with amiloglucosidase the amount of free glucose of

untreated samples. Metabolite levels were normalized to protein concentration (BioRad Protein Assay). Five replicates for each ge-

notype and condition were performed, and data were represented as a percentage of the corresponding levels in fed condition for

each genotype.

Developmental timing and pupal size
For developmental timing, eggs were collected for 4h interval and first instar larvae were transferred to new vials containing either

standard (4% sucrose) or high-sugar (34% sucrose) food immediately after eclosion at a density of 50 larvae per tube. Larvae

were then raised at 25�C and the number of pupae was counted at different time points. Five replicates for each genotype and con-

dition were performed, and the resulting percentage of pupae was calculated.

For pupal size measurements, volume was calculated by the formula 4/3p(L/2)(l/2)2 (L, length; l, diameter). Images were taken with

a Leica MZ10F Stereoscope, and measures were done using ImageJ software. Pupal size values were shown as the ratio with

respect to control animals.

QUANTIFICATION AND STATISTICAL ANALYSIS

For starvation sensitivity assays statistics were performed using GraphPad Prism6, which uses the Kaplan-Meier estimator to calcu-

late survival fractions as well as median and maximum survival values. Curves were compared using the log-rank (Mantel-Cox) test.

The two-tailed p value indicates the value of the difference between the two entire survival distributions at comparison.
e4 Cell Reports 33, 108321, October 27, 2020
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Graphpad Prism6was used for statistical analysis and graphical representations based on three ormore replicates for each exper-

iment. All significance tests were carried out with unpaired two tailed Student’s t tests. Significance P values: *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001, nsp > 0.05.

Images were acquired on a Leica SP8 inverted confocal microscope and analyzed and processed using Fiji (Schindelin et al., 2012)

and Adobe Photoshop. Tissue orientation and/or position was adjusted in the field of view for images presented. No relevant infor-

mation was affected. The original images are available upon request.
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Table S1. Related to Figures 1, 2, 4, 6, 7, S1, S2 and S4

n Median
Survival

Maximum
survival

Figure 1A cg>w1118 cg>p53H159.N

cg>w1118 100 49h 67h - -
cg>p53H159.N 98 37h 49h <0.0001 -
cg>p53i 99 33h 49h <0.0001 0,0002

Figure 2G (Chloroquine) cg>w1118 cg>p53H159.N Treated cg>w1118

cg>w1118 97 64h 80h - - -
cg>p53H159.N 50 44h 56h <0.0001 - -
Treated cg>w1118 90 44h 56h <0.0001 0,3971 -
Treated cg>p53H159.N 103 38h 64h <0.0001 0,0123 0,117

Figure 2I (Rapamycin) cg>w1118 cg>p53H159.N

cg>w1118 171 43h 55h - -
Treated cg>w1118 193 55h 71h <0.0001 -
Treated cg>p53H159.N 198 49h 61h <0.0001 <0.0001

Figure 4F and 7D cg>w1118 cg>p53H159.N cg>Impl2 cg>AMPKi
cg>w1118 99 48h 60h - - - -
cg>p53H159.N 70 36h 48h <0.0001 - - -
cg>Impl2 99 54h 66h <0.0001 <0.0001 - -
cg>Impl2, p53H159.N 99 60h 66h <0.0001 <0.0001 0,044 -
cg>AMPKi 65 30h 48h <0.0001 <0.0001 - -
cg>AMPKi, p53H159.N 40 36h 48h <0.0001 0,2678 - 0,701

Figure 6E cg>w1118 cg>p53H159.N  cg>Upd2i
cg>w1118 104 40h 60h - - -
cg>p53H159.N 76 34h 52h <0.0001 - -
 cg>Upd2i 99 40h 52h 0,4608 <0.0001 -
cg>Upd2i, p53H159.N 98 40h 52h 0,4681 <0.0001 <0.0001

Figure 6F VGAT>Domei VGAT>, p535a14

VGAT>Domei 101 58h 82h - -
VGAT>, p535a14 100 38h 70h <0.0001 -
VGAT>Domei, p535a14 70 50h 70h 0,0005 <0.0001

Figure S1E w1118 UAS-p53H159.N/w1118

w1118 102 44h 56h - -
UAS-p53H159.N/w1118 75 44h 50h 0,5424 -
UAS-p53i/w1118 98 50h 60h 0,2083 0,1139

Figure S2K cg>w1118 cg>p53H159.N  cg>Atg1i
cg>w1118 100 49h 67h - - -
cg>p53H159.N 98 37h 49h <0.0001 - -
 cg>Atg1i 100 33h 55h <0.0001 <0.0001 -
cg>Atg1i, p53H159.N 100 33h 44h <0.0001 <0.0001 0,0046

Figure S4F dilp2>w1118

dilp2>w1118 97 52h 88h -
dilp2>p53H159.N 104 52h 83h 0,4205

Table compiling the number of individuals (n), p-values according to the Mantel-cox test, median and maximun survival
values (h) corresponding to the different genotypes of all the experiments of starvation resistance presented.
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Table S2. Related to Figures 1, 2, 4, 6, 7, S3, S4, S7 and STAR methods

List of primers

Gene Name Primer sequence (Fw) Primer sequence (Rev)
actin CAAGTGCGAGTGGTGGAAGTT GCAGGTGGTTCCGCTCTTT
unk GCCCATGTGGAACCTTGC GCGCCGAGGAACGTGTTA
InR GCTGTCAAGCAAGCAGTGAA TCTTTTTACCCGTCGTCTCC
4EBP AACCCTCTACTCCACCACTC CAATCTTCAGCGACTTGG
dilp2 GTATGGTGTGCGAGGAGTAT TGAGTACACCCCCAAGATAG
dilp5 AGTTCTCCTGTTCCTGATCC CAGTGAGTTCATGTGGTGAG
Upd2 CGGAACATCACGATGAGCGAAT TCGGCAGGAACTTGTACTCG
ccha2 AAACAGCAACAGCAGCAAAC AGGACCACGGTGCAGATAAC
ccha1 AGTGCAGTTGGACTTTGGTAGTGT AGGGATGCTGTTTAGCATCTATGAC
gbp1 ATCCTACCGCTGGTCTTCCTC CTCCAGCAATATTCGGTTGTC
gbp2 CGCCTCCTTCGTATTATCCAG CCAGATGGTTGTGGTCTATTG
GFP CCCGACAACCACTACCTGA CGGTCACGAACTCCAGCA
Sesn TTCACCAGATACGGACACTGA TCCGCTGCCTAACGATTACAG
TSC2 GAGCCGTTTATAGAAGCTCAAGG GCTGCACAACTTCAATCTGGA
sun ATGACTGCCTGGAGAGCTG GTGAACTTCACATGGCTCGC
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