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ABSTRACT 21 

The La Esperanza plutonic-volcanic complex is the largest Late Paleozoic-Early Triassic composite 22 

magmatic system of northern Patagonia. This paper reports new SHRIMP U-Pb zircon ages and K-Ar 23 

muscovite dating as well as whole-rock geochemical data for selected units. In addition, we present 24 

some new and reprocessed whole-rock Sr isotopic compositions. On the basis of the new and 25 

published data, three compositionally and isotopically distinct high-K magnesian calc-alkaline series 26 

were distinguished. Two of these are characterized by high Ba-Sr: (i) biotite and muscovite bearing 27 

rhyolites and granites (265 ± 2 Ma; 260 ± 2 Ma) and (ii) metaluminous amphibole-biotite bearing 28 

granodiorites (273 ± 2 Ma), monzogranites (255 ± 2 Ma), dacites (253 ± 2 Ma), and slightly 29 

peraluminous granites (dated herein as 251 ± 2 Ma).  There is also a low Ba-Sr series of high-silica 30 

metaluminous rocks (granites and acid dike swarms; 250 ± 2 Ma and ≈244 ± 2 Ma). Geochemistry 31 

coupled with geochronology revealed a pulsatory multi-sourced open magmatic system with mafic 32 

magma replenishment and reactivation of crystal mushes that occurred before upward migration to 33 

upper crustal levels.  Mafic magmas alternated with crust-derived magmas incrementally assembled 34 

in subvolcanic levels over 30 Ma.  Zircon crystallization and mica cooling ages in the granite units 35 

allowed detection of two magmatic lulls, between 270 and 265 Ma and between 260 and 255 Ma. 36 

Both episodes coincide with a period of exhumation in upper crustal levels. The new temporal and 37 

geochemical constraints allow correlation of the La Esperanza plutonic-volcanic complex with the 38 

Los Menucos Group (258-248 Ma), encompassing a volume of magmatism comparable to a 39 

moderately sized large igneous silicic province. These mid-to-late Permian to Middle Triassic rocks 40 

record the transition between subduction-related magmatism (>273 Ma) and post-orogenic 41 

extensional magmatism (<250 Ma) in the Gondwana margin. Even though this magmatism would be 42 

coeval with the proposed collision of the Patagonia terrane, no expected syn-collisional magmatism 43 

or associated deformation were found in upper crustal levels. However, the different nature and 44 

melting conditions of the inferred sources of the magmas that crystallized before 270 Ma, between 45 



265 and 260 Ma, and from 255 to 245 Ma, suggest that the La Esperanza plutonic-volcanic complex 46 

was assembled during a 30 Ma period of major plate reorganization. 47 
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INTRODUCTION 53 

The igneous rocks in the La Esperanza area have received much attention since Ramos 54 

(1984) proposed the allochthonous origin of Patagonia. Their isolated location far away from already 55 

suspected Paleozoic active margins, the calc-alkaline character of the rocks and alleged 56 

Carboniferous ages (subsequently corrected to Permo-Triassic; Pankhurst et al., 1993) together with 57 

the deformation in Late Paleozoic rocks of Sierra de la Ventana, were the three strongest arguments 58 

that the rocks in La Esperanza were an active magmatic arc with pre- to syn-collisional stages. 59 

Pankhurst et al. (2006) proposed that this magmatism was the result of a thermal anomaly in the 60 

upper plate (i.e. post-collisional magmatism) postdating the earlier Carboniferous collision of the 61 

Deseado Massif and the North Patagonian Massif (Fig.1a).  Recently, Luppo et al. (2019) found 62 

anomalous paleomagnetic pole positions for the 265-252 Ma volcanic rocks around La Esperanza, 63 

whereas the paleomagnetic poles of rhyolite dikes dated at 244±2 Ma were consistent with the pole 64 

position for Middle-Triassic in most reference paths for South America.   65 

The aim of this paper is to present the magmatic stratigraphy, geochronological and 66 

geochemical backgrounds of a very well exposed example of a shallow composite magmatic system, 67 

the La Esperanza plutonic-volcanic complex of northern Patagonia (Llambías and Rapela, 1984; 68 

Martínez Dopico et al., 2013, 2017a), to provide a framework to test future hypotheses regarding 69 

the potential cogenetic evolution of the magmas. We report new SHRIMP U-Pb zircon data and two 70 

K-Ar muscovite dating as well as WR geochemical data for selected units. In addition, we present 71 

some new and reprocessed whole-rock Sr isotopic compositions and review Hf and O (in zircon) and 72 

whole rock Nd-isotope data published for the area. 73 

 74 

GEOLOGICAL BACKGROUND 75 

The La Esperanza plutonic-volcanic complex crops out in the surroundings of La Esperanza 76 

settlement (“Estancia La Esperanza Nueva”, 19G 543350 E 5525800 UTM coordinates), in central Río 77 

Negro province, Patagonia, Argentina. The Estancia La Esperanza is located 170 km to the south of 78 



Neuquén and 60 km to the north of Los Menucos (Fig.1a). Permian to Triassic igneous rocks are 79 

distributed in an area of over 1000 km2 (conservatively), although recent regional correlations 80 

(Luppo et al., 2018, 2019) suggest that the magmatic event could have extended over more than 81 

3000 km2 beneath large areas covered by the Cenozoic Somun Curá volcanic plateau.  82 

The geology of the La Esperanza area was described in detail by Llambías and Rapela (1984) 83 

who proposed the terms “La Esperanza plutonic complex” and “Dos Lomas volcanic complex” to 84 

distinguish the plutonic suites from the volcanic and volcaniclastic rocks, subvolcanic leucogranites 85 

and dikes. These complexes were thought to be separated by a regional unconformity. This former 86 

stratigraphy, followed by Cucchi et al. (2001), was modified by Martínez Dopico et al. (2013b) with 87 

the hypothesis of a single magmatic plumbing system built by the assembly of magma batches and 88 

termed it the La Esperanza plutonic-volcanic complex. Rapela and Llambías (1985) and Martínez 89 

Dopico et al. (2013, 2014) studied the geochemistry of the pre-Jurassic units, describing a meta- to 90 

slightly peraluminous, magnesian, high-K calc-alkaline granite series that evolved through a 91 

combination of processes such as mixing and fractional crystallization of magmas from at least two 92 

different sources (Martínez Dopico, 2013).   93 

The first reliable time constraints for these rocks were established with WR Rb-Sr isochrons 94 

yielding late Permian to Middle Triassic ages (Pankhurst et al 1993), superseding previous mistaken 95 

Carboniferous ages. U-Pb zircon crystallization ages were provided by Pankhurst et al. (2006), and 96 

after by Martínez Dopico et al. (2017b) and Luppo et al. (2019). Together with thermochronological 97 

data (Martínez Dopico et al. 2013, 2017b), mica cooling ages bracketed the evolution of the rocks 98 

between mid-Permian (Kungurian-Roardian) and Middle Triassic (Anisian). Sm-Nd, Lu-Hf and O 99 

isotopic data are available from Pankhurst et al. (2006), Fanning et al. (2011) and Castillo et al. 100 

(2017).  101 

 102 

LA ESPERANZA PLUTONIC-VOLCANIC COMPLEX  103 



The exposures of igneous rocks around Estancia La Esperanza cover an area larger than 2500 104 

km2, where mid-Permian to Middle Triassic intrusions and associated volcanic products were 105 

mapped as La Esperanza plutonic-volcanic complex (LEPVC) (Fig. 1b). The intrusive rocks of the 106 

LEPVC crop out as small scattered and flat bodies, whereas the volcanic and subvolcanic 107 

counterparts constitute a dome (known as a rhyolite dome in Llambías and Rapela, 1984), and a 108 

large mostly eroded plain (Fig. 1b). These rocks are intruded by several generations of large super-109 

acidic dike swarms and leucogranite plugs that stand out above the regional topography as ridges. 110 

Volcanic rocks are distributed along a N-S elevated axis that extends 45 km to the south, from the 111 

puesto Llanquil to the Piche Graben (outside our area of interest). Spatial distribution is affected by 112 

E-W transform faults (Giacosa et al., 2005). The regional host rocks of the LEPVC are the Early 113 

Paleozoic phyllites and quartzitic schists of the Colo Niyeu Formation (Labudía and Bjerg, 1994; 114 

Martínez Dopico et al., 2017c), which are intruded by the oldest unit of the complex, the Prieto 115 

Granodiorite, 30 km to the SW of Estancia La Esperanza.  116 

The geochemical data provided in this paper is a compilation of the whole-rock major and 117 

minor elements of Rapela and Llambías (1985), major, minor and trace elements of Martínez Dopico 118 

(2013), mineral chemistry of Martínez Dopico et al. (2013a) and new data representative of the main 119 

units of the LEPVC.  120 

 121 

Intrusive units 122 

Geochemical and field data allow recognition of four main mappable units among the 123 

subvolcanic intrusions: 1) Prieto Granodiorite; 2) Donosa Granite and muscovite-bearing aplite dikes; 124 

3) La Esperanza Monzogranite; and 4) Giménez Granite (Fig. 1b).  125 

 126 

Prieto Granodiorite 127 

This unit crops out to the north and south of the Estancia La Esperanza and its surrounding 128 

areas (Fig. 1b) and partially corresponds to Prieto Granodiorite of Llambías and Rapela (1984). The 129 



granodiorite dated at 273 ± 2 Ma by Pankhurst et al. (2006) belongs to this unit. The granodiorite 130 

bodies were emplaced as large horizontal layers in the border of the complex or as N-S aligned 131 

vertical feeders (magma conduits, see Martínez Dopico et al., 2017a). The Prieto Granodiorite is in 132 

fault contact with the Donosa Granite and is covered by younger volcanic and subvolcanic rocks to 133 

the east of Estancia La Esperanza. Biotite-amphibole granites, granodiorites and minor diorites 134 

(modal classification) displaying a wide range of textures and compositions make up the Prieto 135 

Granodiorite (63-70% SiO2; 3<K2O<4%; MgO>2%; 0.84<ASI<0.93; La/Yb N≈13). The rocks are 136 

dominantly dark grey, ferromagnetic (10-2 SI) and exhibit medium-grained equigranular textures with 137 

variable modal contents of mafic minerals (Fig. 2a). They are characterized by euhedral zoned 138 

plagioclase (cores An45–55 to rims An20-25; see details in Table 6 Supplementary data) (30-35% modal) 139 

together with magnesian hornblende (8-15%) and biotite (10%) clots, each of similar size, embedded 140 

in K-feldspar (20-30%) and anhedral quartz (20-25%) pools. Pyroxene was occasionally observed as 141 

cores of amphibole, particularly in coarse-grained microgranular mafic enclaves. Apatite, zircon, 142 

magnetite and titanite are accessory minerals.  143 

 144 

La Esperanza Monzogranite 145 

This is a composite pluton that covers half of the studied area. Based on its texture, type of 146 

magmatic enclaves, magnetic susceptibility and age, the monzogranites and granites are 147 

distinguished from the original “Prieto Granodiorite” of Llambías and Rapela (1984). Two granitoid 148 

facies with transitional contacts were recognised; the most extended facies is inequigranular, 149 

whereas the other encompasses porphyritic granites and crops out exclusively around puesto Calvo. 150 

The inequigranular facies crops out in the easternmost sector of La Esperanza as a subhorizontal 151 

layer or sill, whereas in the west, the spatial distribution of its outcrops reflects the NNW-SSE and 152 

NW-SE anisotropies of the basement (Martínez Dopico et al., 2017a). This facies comprises grey, 153 

variably ferromagnetic (10-3-10-2 SI), inequigranular granodiorites and monzogranites (63-68% SiO2; 154 

3<K2O<4%; MgO<2%; 0.90<ASI<1.13; 20<La/YbN<30) in which euhedral plagioclase (or K-feldspar) is 155 



embedded in a matrix of granitic composition. It is characterized by euhedral zoned plagioclase 156 

(cores An35–45 to rims An20-25; Table 6 Supplementary data, 30-45% modal), euhedral biotite and 157 

Mg-hornblende clots (color index<18%), poikilitic filiform perthitic K-feldspar (20-30%) and anhedral 158 

quartz (20-30%). Allanite, zircon and titanite are accessory minerals. In the Arroyo del Corral (Fig. 159 

1b), the inequigranular monzogranites of La Esperanza are observed intruding the Donosa Granite. 160 

Close to puesto Calvo, K-feldspar megacrysts are developed, amphibole disappears and the color 161 

index drops to <5% (porphyritic granite; 68-71% SiO2; 3<K2O<4%; MgO<1.2%; 0.9<ASI<1.0; K≈10-3 SI), 162 

and porphyritic microgranular mafic enclaves are also present (Fig. 2b). In the field, these granitoids 163 

are isotropic. However, in several localities north of puesto Donosa and to the east of puesto 164 

Linconao very fine-grained rocks exhibit macroscopic magmatic foliation due to a weak shape-165 

preferred orientation of ferrosilicates or plagioclase crystals: in such rocks, the color index rises to 166 

25%. Rounded mafic microgranular enclaves are very abundant and display two types: (i) up to 15 167 

cm long rounded and very dark, porphyritic (plagioclase) enclaves (Fig. 2b) and (ii) small fine-grained 168 

equigranular enclaves. The mineralogical composition of the enclaves is identical to that the host. 169 

The inequigranular monzogranite facies was dated as 255 ± 2 Ma using U-Pb SHRIMP methodology 170 

on magmatic zircons (Martínez Dopico et al., 2017a). This age agrees with K-Ar mica cooling ages and 171 

stratigraphic relations (Fig.1b); see Martínez Dopico et al., (2017b) for further discussion.  172 

 173 

Donosa Granite  174 

This unit is the core of the complex. It crystallized at 260 ± 2 Ma (Martínez Dopico et al., 175 

2017a) and comprises a pink euhedral K-feldspar megacrystic granite. Its discontinuous outcrops 176 

describe a large N-S elongated body with NW-SE and SW-NE, fault-related, rectilinear borders. 177 

Several E-W and SW-NE dextral faults dismember the pluton and there are isolated outcrops along 178 

the E-W and NE-SW valleys to the west of Estancia La Esperanza. The Donosa Granite is in fault 179 

contact with the Prieto Granodiorite in its northern and western margins and it is covered by the 180 

Collinao Dacite to the east. Donosa granites exhibit oversized pink euhedral K-feldspar megacrysts 181 



up to 15 x 4 cm. Field measurements indicate a dominant NNW-SSE orientation of megacrysts with a 182 

slight NW plunge. Excluding this magmatic lineation, the main N-S body is mostly isotropic. However, 183 

along the Arroyo del Corral valley, locally ductile magmatic shear bands and porphyritic 184 

synmagmatic dikes are common. These bands are defined by the alignment of biotite and 185 

pseudotachylite material that crosscut the rock and create areas of orthogneiss. Some K-feldspar 186 

megacrysts display a domino alignment when associated with shear band sense of movement. These 187 

deformational features were usually detected close to the contact with the more dioritic 188 

components of the Prieto Granodiorite. Other evidence of brittle and ductile deformation such as 189 

autobrecciation and development of decimetric zones of orthogneiss were found. Fine-grained pink 190 

muscovite-bearing leucogranite dikes are associated with this unit (e.g. sample DZ35a; Table 3). 191 

The most outstanding feature of the Donosa granites (K≈10-3 – 10-4 SI; 71-76% SiO2; 192 

3.4<K2O<4.3%; MgO<1%; 0.95<ASI<1.10) is the presence of oversized K-feldspar megacrysts.  They 193 

occur as euhedral perthitic microcline locally showing macroscopic Carlsbad twinning, sodium-rich 194 

rims and poikilitic inclusions of quartz.  The matrix is monzogranitic and displays equigranular 195 

coarse-to-medium grained texture that consists of quartz (20-30% modal), plagioclase (30-40%), 196 

perthitic microcline (25-35%) and biotite (<10% modal). Apatite, zircon, monazite, magnetite and 197 

muscovite (along borders and cleavage traces of biotite) are accessory minerals. Plagioclase crystals 198 

are mostly subhedral, complexly twinned, and show zoning from core (An30-20) to rim (An20-15) (Table 199 

6 Supplementary material). Quartz crystals are subhedral to anhedral, normally forming interstitial 200 

clusters and sometimes develop parallel subgrains and chessboard patterns. Biotite is subhedral and 201 

greenish-brown, locally intergrown with magnetite. Magnetite is mostly euhedral and free of 202 

alteration, although in some sampling sites hematite replacement is widespread. Tourmaline traces 203 

were found where decimetric magmatic shear zones develop. Except for local deformation along the 204 

E-W Arroyo del Corral, the overall magmatic texture remains unmodified. The transition to the 205 

dominant undeformed rock is sharp. In outcrop scale subrounded granite biotite-rich clots 206 

occasionally appear. Well- rounded microgranular granodiorite enclaves are rare.   207 



 208 

Giménez Granite 209 

This unit crops out to the north of the puesto Giménez area and shows transitional contacts 210 

with the inequigranular monzogranites of the La Esperanza Monzogranite.  It is typically a fine-211 

grained equigranular pink to pinkish grey granite (70-76% SiO2; 3<K2O<5%; MgO<1%; 0.90<ASI<1.15) 212 

(Fig. 2c). A geochemical transition between these two units was proposed by Rapela and Llambías 213 

(1985). Rocks are slightly ferromagnetic (K≈10-3 – 10-4 SI). Close to the puesto Giménez, the granite 214 

contains K-feldspar (30-40%), plagioclase (25-35%) and quartz (25-30%) with variable amounts of 215 

biotite (5-15%). Magnetite, apatite, zircon and scarce monazite are accessory minerals. K-feldspar is 216 

euhedral, characteristically zoned and perthitic. Plagioclase crystals are subhedral and zoned, with 217 

core composition ranging from An42 to An38 and strongly sodic rims (<An10), sometimes myrmekitic. 218 

Quartz is anhedral and exhibits low-to-medium temperature deformation features such as 219 

chessboard extinction, subgrain development and bulging structures. Biotite is subhedral, brown-220 

yellow colored. In the field, these granites are mostly isotropic, although NW-SE (130-150º) trending 221 

magmatic foliation with variable dip was observed in a few localities.  222 

Further north of the puesto Giménez, around Ruta Nacional 67, the granite develops a 223 

porphyritic texture with K-feldspar megacrysts up to 12 cm-long embedded in a granite matrix 224 

(megacrystic granite facies; Fig. 2d). The matrix is composed of K-feldspar, plagioclase, quartz, 225 

biotite, minor quantities of muscovite and accessories such as zircons, magnetite and apatite. The K-226 

feldspar megacrysts are euhedral and locally exhibit shadow tails. They are inhomogenously 227 

distributed but locally concentrated with their major axes defining steep lineations. K-feldspar 228 

megacrysts are thought to concentrate through mechanical accumulation during constricted magma 229 

flow in pipes (Paterson et al., 2005). Flattened equigranular biotite rich-schlieren and plagioclase 230 

aggregates up to 10 cm are abundant.  The schlieren consist mostly of biotite and andalusite (plus 231 

cordierite) surrounded (replaced) by muscovite (chlorite). Andalusite might be considered as a 232 

restitic or peritectic phase whereas individual crystals of euhedral biotite apparently crystallized 233 



from the melt. Foliated metamorphic enclaves are also observed.  Further northeast, these rocks are 234 

transitionally interfingered with a grey banded porphyritic muscovite-biotite granodiorite in 235 

synmagmatic folds. The attitude of these banded rocks is NNW-SSE, dipping to the west. The 236 

megacrystic granites are sharply interlayered and intruded by a grey biotite-bearing tonalite (herein 237 

named Álvarez Tonalite; 66-70% SiO2; 2<K2O<3%; MgO<2%; 1.03<ASI<1.12) in which magmatic 238 

foliation is depicted by the alignment of plagioclase crystals.  239 

 240 

Extrusive units 241 

Among (semi)extrusive rocks formerly known as the Dos Lomas plutonic-volcanic complex 242 

(Llambías and Rapela, 1984), seven units have been distinguished: 1) Pailemán Rhyolite composed of 243 

rhyolite, ignimbritic rhyolite and vitrophyre, 2) Pailemán breccias, and 3) Llanquil Fm. making up the 244 

rhyolite dome; 4) andesite dikes; 5) Collinao Dacite made up of (a) ignimbritic dacite and rhyodacite, 245 

and (b) dacite; 6) Calvo Granite; and 7) Acidic dikes of (a) aplite and leucogranite and (b) porphyritic 246 

rhyolite (Fig. 1b).  247 

 248 

Pailemán Rhyolite and related lithologies 249 

The Pailemán Rhyolite crops out in the central to northern parts of a dome-shaped body (the 250 

“rhyolite dome” of Llambías and Rapela, 1984) ca. 8 km northeast of Estancia La Esperanza. The unit 251 

corresponds to the mid and upper sections of high-viscosity rhyolitic lava plugs and black and purple 252 

vitrophyres (Fig. 3a). The Pailemán rhyolites are porphyritic with a high proportion of phenocrysts to 253 

matrix. They consist of subhedral to anhedral quartz, subhedral and partially broken crystals of 254 

zoned plagioclase, variable amounts of K-feldspar, muscovite, ferromagnesian minerals (biotite) and 255 

opaque minerals set in a devitrified groundmass. Feldspar phenocrysts are perthitic and partially 256 

replaced by sericite and clay minerals whereas ferromagnesian minerals are replaced by chlorite 257 

aggregates. A representative rock of the rhyolite dome, a muscovite-bearing rhyolite was dated with 258 

U-Pb SHRIMP zircon data at 264 ± 2 Ma (Pankhurst et al., 2006).  259 



The Llanquil Formation is an epiclastic volcanic microbreccia (Fig. 3b) associated with the 260 

volcanic dome that comprises a series of very small outcrops in the western slope of the 261 

southernmost part of a SSE-NNW valley that dissects the Pailemán dome. It is crosscut by felsic 262 

microgranite dikes. 263 

In the eastern part of the rhyolite dome, an autoclastic rhyodacitic breccia (herein called 264 

Pailemán Breccia) overlies the Prieto Granodiorite.  It is a porphyroclastic rock with a high proportion 265 

of phenoclasts to matrix (>60%) which shows several episodes of brecciation. Phenoclasts show 266 

great variation in size, reaching up to a centimetre; the phenoclastic fraction is composed of mainly 267 

subhedral rounded and partially broken quartz and subhedral non-zoned plagioclase, biotite (their 268 

proportions are widely variable) and very minor amount of opaque minerals. Alteration is pervasive 269 

and mainly affects plagioclase and biotite. Secondary muscovite was seen. The groundmass is 270 

inhomogeneous showing different degrees of crystallinity with perlitic, felsitic and microgranular 271 

textures. There are amphibole bearing-xenoliths with pilotaxic groundmass textures. 272 

 273 

Collinao Dacite  274 

This comprises a mainly greenish-grey porphyritic dacite with occasional eutaxitic textures 275 

(62-69% SiO2; K2O<4%; 5<MgO+Fe2O3t<8%; 0.8<ASI<1.1) (Fig. 3c). The original name of the unit given 276 

by Llambías and Rapela (1984) was Collinao dacitic ignimbrite. However, examination in more than 277 

15 localities only revealed one with ignimbritic texture, so we consider it more accurately referred to 278 

as a lava rather than an ignimbrite. The phenocryst mineral assemblage is dominated by plagioclase 279 

(up 50 vol. % in the coarser grained types), amphibole, biotite, Fe–Ti oxides, quartz and apatite 280 

(trace). The groundmass varies from fine-grained micropoikilitic crystalline with the development of 281 

snowflake textures and interstitial quartz to felsitic–microgranular in the subvolcanic types. 282 

Groundmass minerals are feldspar and quartz with small grains of amphibole, biotite and opaque 283 

minerals, titanite and apatite microlites. Amphibole is the dominant ferromagnesian mineral in the 284 

quartz-poor dacites. Close to the puesto Collinao (Fig. 1b), the groundmass comprises plagioclase 285 



microlites set in the poikilitic groundmass and the only ferromagnesian phase is biotite. Apatite is 286 

abundant and appears either as stubby prisms when associated with amphibole or as acicular 287 

crystals in the groundmass. The unit is dated at 253 ± 2 Ma (U-Pb SHRIMP in zircon; Luppo et al., 288 

2019). In the southernmost outcrops of the Collinao Dacite, a subvolcanic facies is exposed 289 

comprising a light grey equigranular felsic rock (74-77% SiO2; K2O<5%; 5<MgO+Fe2O3t<2%), in which 290 

tourmaline aggregates are present. Biotite microgranite dikes with localized coarse-grained pods 291 

with quartz-tourmaline miaroles are observed intruding the Collinao Dacite. 292 

 293 

Andesitic dikes 294 

All the pre-253 Ma magmatic units are crosscut by <1 m thick, porphyritic to aphyric, dark 295 

grey mafic dikes (49-55% SiO2; K2O<2%; Fe2O3t+MgO<15%) which, in turn, are crosscut by acid 296 

microgranite dikes (Luppo et al., 2019). Mafic dikes with a preferred NE-SW trend (Fig.1b) intrude 297 

the Prieto Granodiorite, Donosa Granite and the base of the rhyolite dome.  Most are aphyric and 298 

composed of euhedral plagioclase in a widely altered fine-grained hornblende and biotite bearing 299 

matrix. Other mafic dikes show E-W trends, such as those that intrude the La Esperanza 300 

monzogranites and exhibit up to 1 cm euhedral hornblende crystals embedded in pilotaxic to 301 

intersertal matrix (lamprophyres).    302 

 303 

Calvo Granite and acidic dike swarms.  304 

The Calvo Granite is a silica-rich granite (U-Pb SHRIMP zircon age of 250±2 Ma, Pankhurst et 305 

al., 2006) associated with aplite and concentric and radial leucogranitic dikes that constitute the last 306 

plutonic activity exposed in the area (246 ± 2 Ma; 244 ± 2 Ma U-Pb SHRIMP zircon ages in Pankhurst 307 

et al., 2006; Luppo et al., 2019). The granite crops out as rounded plugs in the surroundings of La 308 

Esperanza. It is a medium to coarse grained equigranular pink leucogranite (75-80% SiO2; 4<K2O<5%; 309 

MgO+Fe2O3t<3%; ASI<1.1) (Fig.3d). In the southern N-S trending outcrop, the granite contains 310 

occasional K-feldspar megacrysts and/or the amount of biotite increases, sometimes resembling the 311 



Donosa granites. It contains quartz, K-feldspar and plagioclase, minor amounts of biotite and 312 

magnetite (<5%). Garnet has been described to the northeast of Estancia La Esperanza but was not 313 

seen by us. 314 

Fine- to very fine-grained granite and banded and/or porphyritic rhyolite dikes intrude all 315 

the previous units of this complex (either plutonic or volcanic). In the easternmost sector they are 316 

mostly E-W, but in the surrounding of puesto Calvo they radiate following a NE-SW and E-W trend 317 

(Fig. 1b). In most cases their length is more than 5 km long and their width between 1-2 m, but 318 

porphyritic rhyolite dikes are thicker than the rest and normally form fold hinges in the field. (Fig. 319 

1b).  The crosscutting relations between dikes of different orientations are not clear since they 320 

change trend imitating a ring structure around the subvolcanic Calvo Granite and thus seem to be 321 

related to its emplacement. 322 

 323 

GEOCHRONOLOGY 324 

We selected three samples to complete the geochronological framework already published 325 

in Pankhurst et al. (2006), Martínez Dopico et al. (2017b) and Luppo et al. (2019) (Table 1). 326 

 327 

U-Pb SHRIMP zircon dating 328 

A sample of porphyritic biotite granite 10 km west of Estancia La Esperanza (megacrystic 329 

facies of the Giménez Granite) (Z9; 19G 534600 m. E 5525900 m. S) was collected for U-Pb dating on 330 

zircons (Fig. 1). Once extracted, zircons were mounted in epoxy together with chips of the Temora 331 

standard zircon (Black et al., 2003). Cathodoluminescence (CL) images were used to reveal the 332 

internal structures of the polished grains (Fig. 4a). Most zircons were euhedral to subhedral, 333 

predominantly translucent and exhibited magmatic zonation (Fig. 4a). Analyses were performed in 334 

the SHRIMP RG (Sensitive High-Resolution Ion Microprobe) at the Research School of Earth Sciences 335 

of the Australian National University in Canberra according to the protocol outlined in Williams 336 

(1998). Data were reduced, statistically analysed and plotted with Isoplot 4.1 (Ludwig, 2003). 337 



Common Pb corrections were made using 207Pb (Williams, 1998). Most zircons were largely euhedral 338 

to subhedral, predominantly translucent and exhibit magmatic zonation (Fig. 4a). Twenty-two 339 

zircons (27 pits in total) were studied in detail, concentrating on rims but testing potential 340 

inheritance in some core–rim pairs (grains #2, 14, 17, 18 and 20; Table 2). We only found Middle 341 

Devonian inheritance in only one core of zircon grains. The rest of the cores have shown to have 342 

ages between 250 and ca. 260 Ma, produced during the same magmatic event. One result (for 343 

#14.1) was discarded due to high f206Pb (>5%). The other zircons frequently exhibited parallel zoning 344 

and all had Th/U ratios >0.1 and were attributed to a magmatic origin as proposed by Maas et al. 345 

(1992). In the Tera-Wasserburg diagram, a tight coherent group on Concordia indicates the 346 

crystallization age of this facies of the pluton: 21 238U/206Pb ages gave a weighted mean of 251± 2 Ma 347 

(95% confidence level) with a MSWD of 1.4 (Fig. 4b, c). Six zircons ages were ignored because they 348 

were either isolated younger (i.e., grain #6 242 Ma) or somewhat older ages (i.e., grains #3, 20 ≈260 349 

Ma), or they had high common lead (i.e., grain #14).  350 

 351 

K-Ar white mica dating 352 

Two samples were selected for K-Ar mineral dating from fresh and well exposed areas of 353 

acidic and basic dikes from the La Esperanza area. These were Z67b, a coarse-grained variety of the 354 

Donosa Granite in Estancia La Esperanza (5443311m E 55527092 mS) and D35a, a medium-grained 355 

muscovite-bearing leucogranite dike intruding Prieto Granodiorite 4 km southeast of Puesto Llanquil 356 

(554280m E 5531743m S) (Table3). 357 

The samples were crushed in a steel jaw crusher and sieved to isolate the 300–400 μm size 358 

fractions. After magnetic separation, muscovite grains from each sample were handpicked under a 359 

binocular microscope to obtain homogeneous microcrystalline separates. The purity of the mineral 360 

separates is >99%. Clean micas were ground in pure alcohol to remove the possible altered rims that 361 

might have suffered a loss of potassium or argon. The K-Ar methodology used is described in Solé 362 



(2009). For potassium analysis X-ray fluorescence with high-dilution fused pearls was used to 363 

minimize the matrix effects (Solé and Enrique, 2001). For argon determination a CO2 laser system 364 

was used for sample fusion, followed by gas purification (Solé, 2009). Measurements were 365 

performed in a MM1200B noble gas mass spectrometer (Instituto de Geologia, UNAM). Age errors 366 

are reported at the 2−σ level (Table 3).  367 

Both samples yielded muscovite-cooling ages of 260±6 Ma, showing rapid cooling of the 368 

Donosa Granite, which has a U-Pb zircon crystallization age of 260±2 Ma (Martínez Dopico et al., 369 

2017b). 370 

 371 

GEOCHEMISTRY 372 

 We present the first complete comparative WR chemical analysis of major, minor and trace 373 

elements for the Prieto Granodiorite, La Esperanza Monzogranite, Donosa Granite, Collinao Dacite, 374 

Paileman Rhyolite, Calvo Granite, and two acidic dikes from the area of La Esperanza (Table 4). The 375 

chemical analyses were conducted at ActLabs, Ontario, Canada under their WRA + trace 376 

4Lithoresearch program. Determinations were performed on samples of up to 5 kg that were 377 

screened for alteration in hand specimen and thin sections. Samples were broken using an iron 378 

hammer and reduced using an iron-plated jaw crusher and agate mills. X-ray fluorescence 379 

spectrometry (XRF) was used for major elements and ICP-MS for trace elements. The precision is 380 

better than 1% for major elements and better than 5% for trace elements. The collection was 381 

complemented with previous major and some minor elementary data of Rapela and Llambías (1985). 382 

Information was processed using GCDKit 5.0 (Janoušek et al., 2006) and the scripts of 383 

Janoušek et al. (2016). In the following text, compositions are expressed recalculated to 100% 384 

anhydrous to minimize the effect of alteration on the samples. However, because samples show 385 

scatter in alkali contents, we tested the potential effect of secondary processes using the chemical 386 

weathering index of Ohta and Arai (2007) (not shown). The great majority of samples follow the 387 



predicted igneous trend, except those of the Las Pampas rhyolite and some of the rhyolite dome of 388 

Rapela and Llambías (1985), which follow the linear trends for weathering of rhyolites.  389 

Four unpublished Sr isotopic determinations were taken from the data repository of the 390 

Instituto de Geocronología y Geología Isotópica (INGEIS): analytical procedures for these were 391 

described in Caminos et al. (1988). Initial 87Sr/86Sr ratios from the INGEIS data repository, Cingolani 392 

et al. (1991) and Pankhurst et al. (1992, 2006) have been recalculated at their respective zircon U-Pb 393 

crystallization age and using the 87Rb decay constant of Rotenberg et al. (2012) (Table 5). Whole-rock 394 

Nd data from Pankhurst et al. (2006) and zircon-Hf isotopic parameters from Fanning et al. (2011) 395 

and Castillo et al. (2017) were recalculated using Sm–Nd CHUR of 147Sm/144Nd = 0.1960 ± 4 and 396 

143Nd/144Nd = 0.512630 ± 11, and for Lu–Hf CHUR of 176Lu/177Hf = 0.0336 ± 1 and 176Hf/177Hf = 397 

0.282785 ± 11 of Bouvier et al. (2008). 398 

 399 

Geochemical variations 400 

Using the TAS diagram of Middlemost (1994), the Prieto Granodiorite and most of the rocks 401 

of the La Esperanza Monzogranite are classified as granodiorites whereas rocks of the base of 402 

Collinao Dacite plot as dacites, and andesites. The remaining intrusions and volcanic rocks are 403 

compositionally granites or rhyolites.  404 

In the SiO2-K2O diagram of Peccerillo and Taylor (1976), most units follow a wide high K- calc-405 

alkaline trend (Fig. 5a) and overlap with that of the partial melts derived from tonalites (Roberts and 406 

Clemens, 1993). Basic dikes show a transitional character to the medium-K calc-alkaline series (Fig. 407 

5a). In the granite classification of Frost et al. (2001) all the samples belong to the magnesian series. 408 

In the modified alkali-lime index diagram (Fig. 5b) the majority of the rocks (Prieto, La Esperanza, 409 

Giménez, Donosa and Collinao units) span the calc-alkalic spectrum with most of them between calc-410 

alkalic and calcic fields.  On the other hand, the granites of Calvo intrusion and some acidic dikes are 411 

alkali-calcic to calc-alkalic. According to Frost et al. (2001), plutons that are genetically related should 412 

plot within the same series. In figure 5b rocks of Calvo Granite seem to be independent from the rest 413 



because at the same SiO2 values, there is a difference in the alkaline-lime ratio. In both bivariate 414 

plots is clear that the trends of Prieto Granodiorite, La Esperanza Monzogranite and Collinao Dacite 415 

are not subparallel to the proposed lines of chemical differentiation through fractional crystallization 416 

within a series (Roberts and Clemens, 1993). Therefore, a significant open-system process such as 417 

magma mixing or multiple magma sources may be invoked to explain the variability in the 418 

composition of the units. The rocks are mostly metaluminous to slightly peraluminous (ASI ≈1.1) and 419 

show variable degrees of alumina saturation within the same unit (Fig. 5c). Minor elements 420 

important for granites are Ba, Sr and Rb since they replace Ca and K in feldspars. Comparing the Ba-421 

Sr-Rb compositions of the units (Fig. 5d), two groups can be traced: a group characterized by 422 

Ba/Sr>>1, Rb/Ba≥1 and Ce/Sr>1 consisting of the Calvo Granite and the fine-grained acidic dikes 423 

(“Low Ba-Sr granites”), and another with Rb/Ba<1, Ba/Sr≥1 Sr/Rb>1 and Ce/Sr<1 or high Ba-Sr 424 

granites (Tarney and Jones, 1994). The high Ba-Sr rocks can be further divided by their CaO/K2O 425 

ratio: the Prieto Granodiorite, La Esperanza Monzogranite, Giménez Granite, Collinao Dacite and 426 

porphyritic rhyolite dikes have CaO/K2O>0.5, in contrast with the Donosa Granite and Pailemán 427 

Rhyolite.  428 

Harker diagrams show that TiO2, Al2O3, CaO, MgO, FeOt, and P2O5 describe inverse 429 

relationships relative to SiO2 for the plutonic-volcanic suite, whereas K2O and Na2O increase or show 430 

no correlation with SiO2 (Fig. 6).  Al2O3 shows a decoupled behaviour of the high and low Sr-Ba 431 

groups with a sudden change in the negative slope, a change replicated in the rest of major element 432 

trends, particularly in Na2O and K2O the trending slope is inverted between the high and low Sr-Ba 433 

groups. The different trends seen with alkali-lime index (Fig. 5b) and the sudden change in the slope 434 

of the SiO2-major elements trends (Fig. 6) suggests that the low and high Ba-Sr groups are not 435 

related to each other by fractional crystallization and might have been sourced from different 436 

protoliths. The variation of Sr versus SiO2 (Fig. 7) shows a clockwise-trend that also illustrates the 437 

behaviour of Ba, Zr, La and Cerium. It is clear from these bivariate diagrams that there are two 438 

different segments within each trajectory and a large scatter in the values. In the Prieto 439 



Granodiorite, the La Esperanza Monzogranite and the Collinao Dacite they have a crude positive 440 

correlation with SiO2, while the granites of Donosa and Calvo and the rhyolite dikes show a vertical 441 

scatter. Rb and K/Ba plots vs SiO2 portray anti-clockwise pattern compared to Sr. The variation of Ba, 442 

K, Rb within the low-Ba-Sr series (Calvo Granite and fine-grained acidic dikes) suggests K-feldspar 443 

fractionation. It is clear from Figure 7 that there is large scatter of Sr and Ba contents in Donosa 444 

granites (385-680; 400-1500 ppm, respectively) within a very restricted range of SiO2 values (73.4- 445 

76.0 % weight). The variance of these elements is also large within Giménez granites (265-580; 840-446 

1850 ppm) but within a larger silica range, and with negative correlation between the variables that 447 

is not seen in the Donosa Granite. In granites, alkaline earth elements like Sr and Ba are usually 448 

mostly contained in feldspars replacing Ca in plagioclase and K in K-feldspar. In both cases, there are 449 

rough positive correlations between Sr and atomic Ca but not between Ba and atomic K, suggesting 450 

fractionation of Ca-plagioclase. In both cases the span of values in trace elements is rather large to 451 

be explained solely by this process. According to Clemens et al. (2010) and Villaros et al. (2009) some 452 

alkaline-earth elements, such as Sr, in S-type granites are decoupled from the related major 453 

elements because their concentrations in the melts are controlled by local variations in the trace-454 

element contents of the source rocks. Moreover, Sr content and its isotopic composition in the 455 

different batches of melt would also depend whether equilibrium melting occurs (see Bea et al., 456 

1996; Farina et al., 2014, among others). As pointed out by Clemens et al. (2009), melts that escape 457 

rapidly from the source have less chance to attain equilibrium and may result in lower trace element 458 

concentrations compared to those that remain in contact with the source for a long time.  459 

Rare earth element (REE) contents decrease from La to Lu decrease with SiO2, yielding very 460 

low values for the Calvo and Donosa granites and the fine-grained rhyolite dikes (<150 ppm). All 461 

units are enriched in light rare earth elements (LREE) and display negatively sloping chondrite-462 

normalized REE patterns (Boynton, 1984) (Fig. 8). The La Esperanza Monzogranite, Collinao Dacite 463 

and porphyritic rhyolite dikes (Z19) show very similar patterns with La/YbN = 12.2–17.2 and weak 464 

negative Eu anomalies (Eu/Eu*=0.70–0.76), whereas the older Donosa Granite and the rhyolite 465 



dome have more fractionated patterns with La/YbN =20.7-27.7 and weak Eu depletion 466 

(Eu/Eu*=0.69–0.76). In contrast, the low Ba-Sr rocks (the Calvo Granite and acid dikes) show ‘wing-467 

shaped’ chondrite-normalized REE patterns with large Eu negative anomalies (Eu/Eu*=0.36–0.39).  468 

On multi-element diagrams normalised to primitive-mantle-concentrations, the main rocks 469 

of the suite exhibit high contents of LILE such as Cs, Rb, Ba, Pb, Th, U and LREE but negative Nb, Ta 470 

and Ti, P anomalies. Coupled with the overall high-K character, this suggests a strong crustal 471 

characteristic of the magmas, with some mafic to intermediate compositions that should have been 472 

derived from lower crustal sources (see below isotopic compositions). The low Ba-Sr acidic granites 473 

and rhyolite dikes (75-80 SiO2 wt%) have a markedly different pattern with larger negative anomalies 474 

in Ba, Sr, P, and positive anomalies in HREE (Dy, Y, Yb, Lu). Compared to the upper Continental Crust 475 

(Taylor and Mc Lennan, 1995), the low Sr-Ba granites and dikes exhibit dramatically lower contents 476 

of Ba, Sr, P and Ti in comparison with the high Ba-Sr rocks. Another thing to note in Fig 8 is that 477 

Donosa granites and the rhyolites of the dome have low values of HREE in comparison to the low Ba-478 

Sr rocks at similar SiO2 contents (i.e. 75% wt). This also suggests that the high and low Sr-Rb rocks 479 

cannot be derived from a single parental magma. 480 

 481 

Isotope compositions 482 

The ’High Ba-Sr’ suite shows a narrow range of mean initial 87Sr/86Sr values from 0.7065 483 

(Prieto Granodiorite) and 0.7071 (La Esperanza Monzogranite) to 0.7076 (Donosa Granite). The 484 

initial 87Sr/86Sr ratios of the volcanic rocks of the rhyolite dome and Collinao Dacite are slightly higher 485 

than the plutonic rocks, ranging from 0.7070 to 0.7084, possibly indicating a more crustal (or 486 

hybridized) component than the Prieto Granodiorite (Table 5).  Similarly, εNdt values for Calvo 487 

Granite and volcanic rocks are largely more negative (-7.5<εNdt< -5.8) than those of Prieto 488 

Granodiorite (-4.8). Zircon εHft values for the `High Ba-Sr` rocks (-2.9 to -4.6; Prieto Granodiorite) are 489 

lower than those of Calvo Granite (-5.6 to -9.0) or rhyolite dikes (-7.4 to -8.7). The initial 87Sr/86Sr 490 

ratios of the Calvo Granite at 250 Ma are variable (0.6921 to 0.7064) ranging to impossibly low 491 



values that could indicate post-crystallization open system behaviour. Only initial 87Sr/86Sr ratio of 492 

one sample LE132 seems more realistic with values of 0.7064.  493 

Figure 9 shows the initial 87Sr/86Sr ratio plotted against SiO2 for the studied rocks.  The main 494 

rocks of the high Ba-Sr series, the La Esperanza Monzogranite and Giménez Granite, define a 495 

horizontal array, suggesting differentiation from a single parent magma, or at least a common 496 

source. The initial 87Sr/86Sr ratios of the Donosa Granite are also coincident with this array, but the 497 

age difference between the granites of Giménez (ca. 250 Ma) and Donosa (260 Ma) precludes a 498 

comagmatic relationship, although again a similar source would be possible. Another observation is 499 

that the span of initial 87Sr/86Sr ratios of the rhyolite dome is similar to that of Donosa Granite (at 500 

identical wt % SiO2) but unrelated to that of the low Sr-Ba series (considering initial 87Sr/86Sr values 501 

of ca. 0.7064). Epsilon Ndt values of Donosa Granite are very negative (-9.8), indicating that the 502 

crustal component would be more important than that of the Prieto Granodiorite and the rhyolite 503 

dome. However, given the wide spread of εHft zircon values of the rhyolite dome (-3.8 to -8.7), more 504 

data is necessary to extract a conclusion out of this unit.  505 

 506 

DISCUSSION 507 

 508 

Temporal and spatial evolution of the magmatic system 509 

The oldest unit of the area, the Prieto Granodiorite, crystallized at 273 ± 2 Ma (mid Permian, 510 

Cissuralian/Guadalupian) according to a U-Pb SHRIMP zircon dating (Pankhurst et al., 2006) for a 511 

sample located less than 1 km north of the fault contact with the Donosa Granite (Fig. 4, 10). The 512 

crystallization age of the La Esperanza Monzogranite (formerly part of Prieto Granodiorite) is 255 ± 2 513 

Ma (late Permian, Wuchiapingian/Changhsingian), with biotite cooling ages of 248 ± 4 Ma and 251 ± 514 

6 Ma (to the east and west of study area) which reinforce this age (Martínez Dopico et al., 2017b). 515 

Initial Sr and Hf isotope ratios and geochemical features suggest a lower crustal source for both 516 

units, consistent with their compositional and textural similarities (Martínez Dopico et al., 2017a). 517 



However, the degree of hybridization of the La Esperanza Monzogranite is less than that of the 518 

Prieto Granodiorite: it exhibits abundant evidence for mingling whereas the latter is much more 519 

homogeneous suggesting less viscosity contrast (i.e. similar temperatures) between interacting 520 

melts. On the other hand, emplacement depth differences between them were negligible according 521 

to Al-in-hornblende pressure estimates of <2 Kbar (Martínez Dopico et al., 2013a). The Prieto 522 

Granodiorite is exposed as the host of the rhyolite dome whose basal unit (i.e. crystaloclastic 523 

rhyolite) was dated at 264 ± 2 Ma. However, the rhyolite dome is a complex subvolcanic/volcanic 524 

edifice whose age range has not yet been accurately constrained and could extend to Lower Triassic 525 

times. Crystallization and cooling of the Donosa Granite in the central part of the main body have 526 

been dated as 260 ± 2 Ma (late Permian, Wuchiapingian/Capitanian, U-Pb on zircon age) with a very 527 

fast cooling from 400 to 350°C to at 259 ± 6 Ma (K-Ar on muscovite age presented here, Table 3, Fig. 528 

10). Textural evidence of near-surface cooling is seen in the 1-2 cm euhedral crystals of quartz in 529 

localities around Arroyo del Corral (Fig.1b), which indicate very fast cooling of the unit and its very 530 

shallow character. Muscovite-bearing microgranite dikes (Table 3; sample D35b) could be associated 531 

either with the Pailemán Rhyolite or with the Donosa Granite (both rocks contain primary 532 

muscovite), and they intrude the Prieto Granodiorite.  533 

Slightly after intrusion of the La Esperanza Monzogranite, the Collinao Dacite was extruded 534 

at 253 ± 2 Ma (Luppo et al., 2019) along a N-S trending ridge.  The Collinao Dacite clearly overlies the 535 

main body of Donosa granites, but contact with the La Esperanza Monzogranite occurs where the 536 

granite is highly fractured and altered (Fig.1b). The following event is the intrusion of Calvo Granite, 537 

dated at 250 ± 2 Ma by Pankhurst et al. (2006). Although there are no available geochronological 538 

constraints on the mafic NW-SE dyke swarm, these dikes intrude the La Esperanza Monzogranite and 539 

the Giménez Granite. Therefore, these dikes are constrained as close in time to the extrusion of 540 

Collinao Dacite, after the intrusion of Giménez Granite at 251 ± 2 Ma (Figure 1b), but before the 541 

≈244 Ma acid dikes (Luppo et al., 2019).  The ≈244 Ma acidic dikes clearly crosscut all the units of the 542 



LEPVC, following E-W, NE-SW and NW-SE trends and are geochemically related to the Calvo Granite 543 

(250 ± 2 Ma, Pankhurst et al., 2006).  544 

 545 

The unconformity between the La Esperanza plutonic and volcanic rocks 546 

 547 

In the first approach to the geology of the La Esperanza magmatic system, Llambías and 548 

Rapela (1984) and Rapela and Llambías (1985) divided the rocks around Estancia La Esperanza in two 549 

cycles, the first entirely plutonic and the second volcanic and subvolcanic including the Calvo Granite 550 

and acidic dikes. Llambías and Rapela (1984) claim “The second Cycle begins after a short erosive 551 

period that uncovers the plutonic rocks of the first Cycle and on which in almost horizontal surfaces 552 

the first ignimbritic eruptions of dacitic composition (Collinao) were deposited.” In the light of the 553 

new stratigraphic arrangement (Fig. 10), this simple subdivision does not hold anymore. There is an 554 

erosion surface between the Donosa Granite and the Collinao Dacite which is easily seen around 555 

Estancia La Esperanza. A second erosion surface might occur between the Permian rocks and the 556 

Calvo Granite and associated dikes (<250 Ma). In any case, in the La Esperanza area none of these 557 

erosion surfaces seem to represent more than minor adjustments associated with the evolution of 558 

the caldera rather than substantial discordances. Further south, rhyolitic ignimbrites, dacite lavas 559 

and rhyolitic tuffs at the base and middle sections of the coeval Los Menucos Group (252-258 Ma) 560 

were tilted (30º to the east) and intruded by a felsic rhyolite dike swarm equivalent to the group of 561 

acidic dikes in La Esperanza. The acidic dikes of the La Esperanza area (Fig. 1) were dated as old as 562 

244 ± 2 Ma (crystallization age of a fine-grained rhyolite dike; Luppo et al., 2019), suggesting that 563 

regional uplift and erosion occurred between the emplacement of Calvo Granite (250 ± 2 Ma 564 

crystallization age of the northern plug of the Calvo Granite; Pankhurst et al., 2006) and the diking.  565 

 566 

Petrogenesis and magmatic kinships  567 



The early Permian Prieto Granodiorite (273 ± 2 Ma) shares major and trace element 568 

geochemical characteristics with the late Permian monzogranites and granites of the La Esperanza 569 

Monzogranite (255 ± 2 Ma) and its extrusive counterpart, the Collinao Dacite (253±2 Ma). All these 570 

rocks contain early crystallizing phases such as orthopyroxene, magnesian clinoamphibole and 571 

plagioclase, followed by late hornblende and biotite, titanite and allanite, but lack peraluminous 572 

minerals, suggesting that their parental magmas were hydrated and metaluminous. According to  573 

the amphibole chemistry of the granodiorites and monzogranites (data in Martínez Dopico et al., 574 

2013) and following the equations of Ridolfi et al. (2010) and Ridolfi and Renzulli (2012), 575 

crystallization occurred in similar oxidizing (fO2 ≈NNO) and hydrous conditions (4>H2O>5% wt). 576 

Minimum crystallization temperatures estimated using the zircon saturation thermometer (TZr, 577 

Watson and Harrison, 1983) yielded temperatures of ca. 760 ºC for Prieto and La Esperanza 578 

granodiorites and ca. 800ºC for the later porphyritic granite facies of La Esperanza Monzogranite and 579 

Collinao dacites, indicating that magma temperature increased with time. The lack of inherited 580 

zircon ages (see Martínez Dopico et al., 2017a; Luppo et al., 2019 and Table 2) and the absence of 581 

correlation between Zr and SiO2 suggest that these are minimum temperatures for the magmas.  582 

Initial 87Sr/86Sr ratios, mineralogy as well as crystallization ages suggest that the Giménez 583 

Granite is an evolved magma batch (>70% SiO2) derived from the fractionation of La Esperanza 584 

Monzogranite magmas. Major element trends show that it was formed after extensive amphibole 585 

and Ca-plagioclase fractionation. All rocks with <70% SiO2 show coherent Sm/Yb ratios from 3.0 to 586 

4.5, indicating that pyroxene and mainly amphibole were present in the source. This would suggest 587 

that the first batch of melt had left hornblende and pyroxene as major residual phases at high T and 588 

low P melting conditions of a mafic metaigneous source. Whole-rock initial 87Sr/86Sr (0.7064-0.7067; 589 

Table 5), Nd (εNd=-4.8)-and zircon Hf isotope compositions (εHf of -2.9 to -4.6; Castillo et al., 2017) 590 

for the intermediate rocks of the Prieto Granodiorite are compatible with the interpretation that 591 

these magmas were extracted from a mafic or intermediate source with long-term crustal residence. 592 

Even though there is a 20 Ma gap between the pulses, the La Esperanza Monzogranite and Giménez 593 



Granite seem to share a common ancestry with the Prieto Granodiorite at the same crustal level. 594 

However, the higher initial 87Sr/86Sr of the more evolved members of the La Esperanza Monzogranite 595 

(porphyritic facies; 0.7070-0.7072) and Giménez Granite (0.7072-0.7075; Table 5) suggest that the 596 

felsic component increased with time. The higher abundance of mafic microgranular enclaves in the 597 

monzogranites and granites of La Esperanza in comparison with the older rocks indicates that 598 

magma hybridization was inefficient. Low zircon δ18O values for the whole series of rocks of La 599 

Esperanza (4.4‰–7.3‰; Castillo et al., 2017) confirm an I-type origin (Valley, 2003). Trace element-600 

based granite tectonic discrimination diagrams (Pearce et al., 1984, 1996; Harris et al., 1986) also 601 

point to I-type volcanic arc sources (syn to post-collisional fields) (not shown; see Martínez Dopico et 602 

al., 2014). 603 

Granodiorite/dacite, monzogranite and granite of the La Esperanza area yield a wide range 604 

of major and trace element concentrations, suggesting variable degrees of partial melting and 605 

probably a rapid escape of the magma that prevented further chemical equilibration with the 606 

source. The rough negative correlation between SiO2 and FeOt, MgO, MnO and TiO2, and La/YbN, Sr, 607 

Ba, K, Y and Zr indicates that the fractionation of amphibole and plagioclase might have operated for 608 

the crystallization of the Prieto Granodiorite, La Esperanza Monzogranite and Collinao Dacite 609 

intermediate magmas, as well as the Giménez Granite. In turn, biotite does not seem to have had an 610 

important role since Rb and Ba (both compatible elements in biotite but not in amphibole) do not 611 

decrease with SiO2 or K2O (Fig.7). The decrease in the Ba content within Donosa would be related to 612 

the grain size of the K-feldspar crystals, and, perhaps, related to K-feldspar fractionation. Minor 613 

phases that might have controlled the REE fractionation are allanite or monazite.  In turn, the 614 

middle-Permian Donosa Granite, Ms-bearing leucogranites and the rhyolites of the dome are high-615 

SiO2 I-type magmas that contain plagioclase as an early crystallizing phase. The growth of muscovite, 616 

acid plagioclase and subhedral quartz as well as a disharmonic growth of K-feldspar megacrysts 617 

occurred during low-nucleation high-growth rate episode at high-temperature conditions. Hf data in 618 

zircons of the rhyolite dome aged between 260-269 Ma show a large variability (-4<εHf-<11; Castillo 619 



et al., 2017; Table 5), suggesting either a mixing of sources (mid crustal vs lower crustal) or isotopic 620 

disequilibrium melting. Three arguments would preclude a potential derivation of the felsic magmas 621 

of the granites of Donosa and rhyolites of the dome from the same source as the Prieto 622 

Granodiorite. First, the large REE decoupling between the felsic Donosa Granite (average 73 wt% 623 

SiO2) and the rocks of the rhyolite dome (74 wt% SiO2) and the intermediate rocks of the La 624 

Esperanza Monzogranite and Giménez Granite (72-75 wt% SiO2). Second, the different whole-rock 625 

trace element compositions (high vs low Ba-Sr) with similar initial Sr ratios (Table 5). And third, the 626 

Nd isotope difference between Prieto Granodiorite (εNd = -4.8) and Donosa Granite (εNd = -9.8). 627 

Thus, the Prieto Granodiorite and the La Esperanza Monzogranite could have a mixed crustal - mafic 628 

source whereas the Donosa Granite and the Pailemán Rhyolite have a stronger crustal signature. On 629 

the other hand, there is no overlap in Sr, Nd and scant overlap in Hf isotopic composition between 630 

the <250Ma units, the Calvo Granite and rhyolite dikes, and any other group of rocks. The non-631 

disturbed initial 87Sr/86Sr ratios for the early Triassic rocks (<250 Ma) are low (0.7052-0.7064 at 75% 632 

SiO2), coupled with mantle-like O18 values (4.4-6.6‰) for zircon with -5.6<εHf <-9.0 units giving the 633 

rocks a distinctive signature compared to the older rocks.  634 

 635 

Inferences for the tectonic setting and connections with other plutonic or plutonic-volcanic 636 

complexes in Patagonia and surroundings 637 

Pankhurst et al. (2006) proposed that the genesis of these calc-alkaline high-K rocks was 638 

related to a crustal thickening in the upper plate that following ca 320-305 Ma continental collision 639 

of the Deseado Massif and the North Patagonian Massif. The high-K character should not be 640 

interpreted as indicating a particular tectonic environment, but rather as a product of the 641 

mineralogical and elementary content of mafic sources combined with different degrees of 642 

hybridization with felsic materials (e.g., mixing and mingling processes). A primary interpretation of 643 

the chemical and isotopic features of these rocks would be that the suitable protoliths for I-type 644 

granitic magmas could be related to a previous nearby subduction. Although the volume of mafic 645 



rocks within the age range of La Esperanza plutonic-volcanic complex related to the high-K rocks is 646 

not significant (e.g., mafic microgranular enclaves and basic dikes), mafic underplating could be 647 

invoked as a source of the heat responsible for the magma generation. An alternative process 648 

allowing heat in the lower crust is the juxtaposition of the asthenospheric mantle against the base of 649 

the crust (i.e. detachment of a subducting slab) and does not require a continental collision. An 650 

element that we should start looking at when further isotopic data becomes available is the Hf-651 

isotopic compositions of the inherited zircons aged between 300 and 280 Ma.  The εHf values of two 652 

zircon rims (inherited) aged 302 and 290 Ma (grains 3.2 and 11.2 of Fanning et al., 2011) of the Calvo 653 

Granite (low crystallization TZr ≈ 725 Ma) are -3.7 and -3.8 (recalculated after Fanning et al., 2011) 654 

whereas those of igneous zircon in the Prieto Granodiorite vary between -2.9 to -4.6 units. This 655 

suggests that zircons aged between 300 and 270 Ma are showing magmas with more positive Hf 656 

signatures than those of the latest Permian. At this age, c. 300 Ma, massive diorite bodies were 657 

dated in the proto-Andean open margin of Gondwana at the same latitude of Estancia La Esperanza, 658 

such as the Rahue diorite (WR-mineral Rb-Sr composite isochrons 296±2 Ma, 300±3 Ma; Lucassen et 659 

al., 2004) and, further west, the Coastal Batholith (Dekart et al., 2014). Whole-rock initial 143Nd/144Nd 660 

and zircon initial 177Hf/178Hf ratios also point towards a common origin for the Prieto Granodiorite 661 

and other older-than-260 Ma plutonic complexes such as Quintuleu Granodiorite in the Mamil 662 

Choique complex (281 ± 2 Ma; -3.6<εHft <-4.2, recalculated after Fanning et al., 2011) in the 663 

southwest of the North Patagonian Massif and the granodiorites of the Navarrete plutonic complex 664 

(282 ± 2 Ma, Pankhurst et al. (2006); -3.5<εHft <2.9, recalculated after Fanning et al. (2011); see 665 

discussion in Martínez Dopico et al. (2011, 2017a) and Castillo et al. (2017)) (Fig. 10). In turn, for the 666 

magmatism after 260 Ma in La Esperanza area, represented by Donosa Granite, La Esperanza 667 

Monzogranite and Calvo Granite, isotope data show that the felsic component is higher in the 668 

magmatic precursors than those previously molten. The volume of this second stage is larger than 669 

the first and corresponds to a major tectonic change with respect to the older conditions. Recent 670 

dating and stratigraphic studies (Luppo et al., 2018, 2019) suggest that the plutonic-volcanic event in 671 



La Esperanza area is synchronous and geochemically comparable with the dacites, rhyolites and 672 

rhyolitic and dacitic ignimbrites represented by the northernmost expression of the Los Menucos 673 

Group (258-252 Ma) (Fig. 10). We propose that La Esperanza-Los Menucos magmatic system meets 674 

the criteria proposed by Bryan et al. (2002) to consider it as a "Silicic Large Igneous Province" (SLIP): 675 

1) its bulk magmatism would have reached at least 4000 km2; 2) extrusive volumes are larger than 676 

8000 km3; 3) it is volumetrically dominated (>75%) by dacite to rhyolite igneous rock that have calc-677 

alkaline I-type signatures; 4) it is lithologically dominated by silicic ignimbrites; 5) igneous activity 678 

over long periods (> 30 Ma); and 6) a spatial and temporal relationship to continental rifting, plate 679 

break-up and potentially, other mafic large igneous provinces.  The La Esperanza-Los Menucos 680 

magmatic system is not only temporally related to the Choiyoi magmatic province in western 681 

Argentina (Strazzere et al., 2006; Kleiman and Japas, 2009; Rocha Campos et al., 2011; Sato et al., 682 

2015; Rocher et al., 2016), but also spatially associated with other late Permian to Triassic magmatic 683 

igneous complexes in Patagonia such as the Mamil Choique complex, Navarrete plutonic complex, 684 

Ramos Mejía and Yaminué igneous complexes (see Pankhurst et al., 2006, 2014; Martínez Dopico et 685 

al., 2011, 2017a). Further studies of the plutonic connections of the Choiyoi magmatic event and 686 

contemporaries should be focused on isotope, whole-rock and mineral geochemistry in order to 687 

understand the triggering factors for this regional magmatism. 688 

 689 

FINAL REMARKS 690 

La Esperanza plutonic-volcanic complex (LEPVC) and its temporal-lithological eruptive 691 

counterpart, the Los Menucos Group, meet the requirements for a Silicic Large Igneous Province 692 

(albeit rather smaller than most global examples) that is bracketed in age between 273 and 244 Ma. 693 

Several compositionally and isotopically distinct, high-K, magnesian, calc-alkaline series were 694 

distinguished: High Ba-Sr (i) metaluminous amphibole-biotite bearing granodiorites (273 ± 2 Ma); (ii) 695 

biotite and muscovite-bearing rhyolites and granites (265 ± 2 Ma; 260±2 Ma) and (iv) and 696 

metaluminous  mafic microgranular enclave-bearing amphibole-biotite monzogranites (255 ± 2 Ma), 697 



dacites (253 ± 2 Ma), and slightly peraluminous granites; and, finally, Low Ba-Sr high silica 698 

metaluminous rocks (granites and acid dike swarms 250 ±2 Ma and ≈244 ± 2 Ma represented by the 699 

subvolcanic Calvo Granite and the acidic dike swarm. The episode of shallow intermediate to acidic 700 

granite magmatism in LEPVC is now dated with the new U-Pb SHRIMP zircon data for the Giménez 701 

Granite as old as 251 ± 2 Ma.  Geochemistry revealed a multi-sourced open magmatic system 702 

evidenced by rocks with very different major and trace element contents and initial Sr and Nd ratios 703 

at equivalent SiO2 intervals. The magmatic system underwent mafic magma replenishment (shown 704 

by the La Esperanza granodiorites and their mafic microgranular enclaves and the Collinao dacites) 705 

following an episode of crust-derived magmas represented by the Donosa granites and the Pailemán 706 

rhyolites. Available crystallization ages suggest the magmatism spanned in time over 30 Ma with two 707 

magmatic lulls (Fig. 10) that coincided with exhumation in upper crustal levels.  708 

The new temporal, lithological, isotopic and geochemical features allow correlation of the La 709 

Esperanza plutonic-volcanic complex with the Los Menucos Group, encompassing a volume of 710 

magmatism comparable to a small-sized Silicic Large Igneous Province (Fig. 10). The mid–late 711 

Permian to Middle Triassic rocks in northern Patagonia record a transition between subduction-712 

related magmatism (>273 Ma) associated with mafic magmatic sources with limited interaction with 713 

a felsic component, to post-orogenic extensional, mostly felsic hybridized sources (<260 Ma) in the 714 

Gondwana margin. Even though La Esperanza – Los Menucos magmatism would be coeval with the 715 

collision of the Patagonia terrane, syn-collisional magmatism or associated deformation were not 716 

found in upper crustal levels, as expected. However, the different nature and melting conditions of 717 

the inferred sources of the magmas that crystallized before 270 Ma, between 265 and 260 Ma, and 718 

from 255 to 245 Ma, suggest that the La Esperanza plutonic-volcanic complex was assembled during 719 

a 30 Ma period of major plate reorganization. 720 
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CAPTIONS 928 

Figure 1 a) Location of the North Patagonian Massif in Northern Patagonia; b) Geological map of the 929 

La Esperanza area and surroundings. The yellow stars indicate the localities that were dated, as 930 

either U-Pb zircon SHRIMP dates or mica K-Ar cooling ages, whereas the black stars show the 931 

localities dated in this paper. 932 

 933 

Figure 2 Plutonic units of the LEPVC a) Prieto Granodiorite at locality 19G 539094 m E, 5524100 m S, 934 

note the absence of enclaves; b) Plagioclase porphyritic magmatic microgranular enclave in La 935 

Esperanza granodiorites at 539934 m E, 5521493 m S; c) Giménez Granite (equigranular texture) 936 

in the locality type, nearby puesto Giménez  (536362 m E, 5519878 m S); d) Megacrystic facies of 937 

Giménez granites in the locality dated herein (534601 m E, 5525913 m S). Donosa Granite and 938 

Calvo Granite are not shown here; the reader is referred to Martínez Dopico et al. (2017a). 939 

 940 

Figure 3 a) Banded rhyolite from the top of the of the rhyolite dome; b) Syn-sedimentary folding in 941 

the Llanquil Formation; c) Collinao porphyritic dacite; d) Coarse-grained leucocratic Calvo granites 942 

in the sourroundings of puesto Calvo (see figure 1b). 943 

 944 

Figure 4 U-Pb zircon dating of the Giménez Granite a) Cathodoluminescence images of the dated 945 

zircons. Note the inherited crystal-cores and dissolved areas; b) U-Pb concordia plot; c) Weighted 946 

average U238-Pb206 (SHRIMP) crystallization age for Giménez Granite. A summary of the analytical 947 

data is in Table 2.  948 

 949 

Figure 5 Major element geochemistry of the La Esperanza plutonic-volcanic complex (this paper; 950 

Rapela and Llambías, 1985). a) Binary diagram of (K2O+Na2O) vs SiO2 (Middlemost, 1994) shows 951 

that most units follow a wide high K- calc-alkaline trend. The black and white stars represent 952 

average I- and S-type granite compositions reported by Chappell and White (1983) whereas fields 953 



a, b and c show the trends of differentiation of three examples of plutonic magma series: 954 

transitional, calc-alkaline and high-K rocks, respectively shown as in Roberts and Clemens (1983); 955 

b) Binary modified-alkali-lime index (Frost et al., 2011) vs SiO2; note that the Prieto, La Esperanza, 956 

Giménez, Donosa and Collinao units extend over the calc-alkalic and calcic fields whereas Calvo 957 

Granite and some acidic dikes belong to the alkali-calcic to calc-alkalic domains; c) Alumina 958 

saturation indexes Al2O3/[(CaO+Na2O+K2O)- (1.67*CaO)] vs. Al2O3/(Na2O+K2O) (mol. %); and d) Sr-959 

Rb-Ba Ternary diagram showing high and low Ba-Sr groups. 960 

 961 

Figure 6. Major element (wt%) variation diagrams versus SiO2 for entire chemical data set of the 962 

granitoid and volcanic groups. Yellow and pink lines indicate suggested evolutionary trends of low 963 

and high Sr-Ba groups, respectively.  964 

 965 

Figure 7 Selected trace elements (Sr, Y, Rb, Ba, Ce, Zr; ppm) versus SiO2 variation diagrams for the 966 

entire chemical data set of the granitoid and volcanic groups. 967 

 968 

Figure 8 Chondrite-normalized REE patterns normalized to values of Boynton (1984) (left) and Spider 969 

plot of values normalized to the Upper Continental Crust of Taylor and McLennan (1995) (right).  970 

 971 

Figure 9 Initial 87Sr/86Sr ratio vs SiO2 of the units of the La Esperanza plutonic-volcanic complex. Data 972 

from the INGEIS data repository, Pankhurst et al. (1992, 2006), and Cingolani et al. (1991) were 973 

recalculated at the crystallization ages using the 87Rb decay constant of Rotenberg et al. (2012). 974 

Data table as supplementary material and symbols as in figure 7. 975 

 976 

Figure 10. Chronostratigraphic chart of the intrusive and extrusive rocks of La Esperanza, Los 977 

Menucos (25 km to the south of La Esperanza), Yaminué (100 km to the East) and Sierra Grande 978 

areas (250 km to the East), showing crystallization (U-Pb zircon) and cooling (K-Ar and Ar-Ar mica) 979 



ages (Pankhurst et al., 2006, 2014; Chernicoff et al., 2013; Martínez Dopico, 2017a,b,c; Luppo et 980 

al., 2018, 2019; González et al., 2014, this paper), and isotope parameters (Pankhurst et al., 2006; 981 

Castillo et al., 2017). Note the similarity of the crystallization-time intervals of the plutonic rocks.  982 

 983 

 984 

Table 1. Summary of zircon crystallization ages (U-Pb SHRIMP) and biotite/white mica cooling ages in 985 

the La Esperanza area. References: P92, P06- Pankhurst et al. (1992, 2006); C13, C17, C19- 986 

Martínez Dopico et al. (2013, 2017a, c); L18, L19 -Luppo et al. (2018, 2019). 987 

 988 

Table 2. Summary of the U-Pb SHRIMP results of sample Z9 of Giménez Granite. 989 

 990 

Table 3. Summary of the K-Ar results of muscovite of samples Z67 (Donosa Granite) and D35 (Ms-991 

bearing leucogranite dike). 992 

 993 

Table 4. Typical whole-rock major and trace elements geochemical data of several units of the La 994 

Esperanza plutonic-volcanic complex. 995 

 996 

Table 5. Initial 87Sr/86Sr ratios from the IR INGEIS data repository, P92 Pankhurst et al. (1992, 2006) 997 

and C92 Cingolani et al. (1991) have been recalculated at their respective zircon U-Pb 998 

crystallization age and using the 87Rb decay constant of Rotenberg et al. (2012). 999 

 1000 

Supplementary material  1001 

Table 6 Chemical composition of plagioclase crystals of Prieto Granodiorite, La Esperanza 1002 

Monzogranite, and Donosa Granite. EPMA measurement conditions and procedures are 1003 

explained in Martínez Dopico et al. (2013). 1004 

 1005 



PETROGRAPHIC APPENDIX 1006 

Sample Z9 (biotite-bearing megacrystic granite): Location: 40 ° 25.011'S 68 ° 35.536'W  1007 

Macroscopically, it is an orange pink color rock with a banded structure and fine to very fine texture 1008 

very inhomogeneous in which eventual larger crystals of potassium feldspar of tabular pink color 1009 

that can reach very sporadically up to 12 cm (0.4 cm average) and to a lesser extent and size, tabular 1010 

crystals of white plagioclase of somewhat larger size over a granite composition matrix with biotite. 1011 

The textural inhomogeneity is given by the presence of laminar sectors of up to 6 cm of maximum 1012 

thickness composed macroscopically by black biotite crystals. 1013 

The rock has a banded structure where lighter bands of granitic composition dominate over irregular 1014 

dark bands (schlieren). The dark schlierens are coherent bands composed of aggregates of 1015 

pleochroic biotite lamellae of dark yellow chestnut of different sizes and riddled with zircon 1016 

inclusions with pleochroic halo development. Within these bands, large euhedral crystals of 1017 

pleochroic andalusite with a thin crown of imbalance of muscovite, which is in contact with the 1018 

biotite, can be distinguished. Another mineral that is inside the schlieren is cordierite. It exhibits 1019 

equidimensional shapes completely replaced by a radial aggregate of green chlorite and clays. 1020 

Interstitially in these minerals, there are quartz crystals. The lightest sector of the rock is of granitic 1021 

composition with an equigranular subidiomorphic texture to a slightly unequal shape given by the 1022 

presence of sporadic crystals of somewhat larger size of K-feldspar associated with somewhat 1023 

smaller crystals also of k-feldspar, plagioclase, quartz, biotite, muscovite, apatite and zircon. 1024 

The biotite strips or schlieren are composed of biotite, andalusite, muscovite, opaque minerals, 1025 

quartz, cordierite and plagioclase. The sub to euhedral biotite lamellae are the most abundant 1026 

component of the fringes, surround the andalusite crystals and generate a mosaic in which the 1027 

interstices are arranged in subhedral crystals to anhedral crystals of plagioclase and quartz. Opaque 1028 

minerals are very scarce (<1%) and are represented by magnetite incipiently replaced by hematite 1029 

(martitization). 1030 



Crystal Area SiO2 Al2O3 CaO BaO Na2O K2O FeO Total %An

Prieto Granodiorite

Pl1 Inner core 57.2 27.45 9.68 0.0953 6.59 0.1532 0.1225 101.29 45

Pl1 Outer core 57.39 27.02 9.25 6.76 0.1169 0.1057 100.64 44

Pl1 Rim 62.51 24.27 5.43 0 8.66 0.2026 0.1803 101.26 24

Pl1 Rim 61.96 24.22 5.46 0.0017 8.44 0.2833 0.1803 100.54 26

Pl2 Inner core 54.58 28.96 10.38 0.0381 5.51 0.196 0.1814 99.85 55

Pl2 Inner core 57.62 27.04 8.71 0.0347 6.51 0.2029 0.167 100.29 43

Pl2 Outer core 59.03 25.94 8.06 0.0277 7.25 0.2248 0.113 100.65 38

Pl2 Rim 62.89 23.92 5 0 8.93 0.1649 0.0529 100.96 22

Donosa Granite

Pl1 Inner core 63.25 22.11 3.36 9.85 0.12 0.018 98.71 21

Pl1 Outer core 62.27 23.64 4.86 0.119 9.06 0.1591 0.0504 100.16 25

Pl1 Rim 64.16 22.77 3.3 0.0207 9.71 0.2436 0.024 100.24 18

Pl2 Core 61.64 23.89 4.89 0.0138 8.75 0.3343 99.52 28

Pl2 Core 61.76 23.57 4.85 0.045 8.54 0.3221 0.0288 99.12 27

Pl2 Rim 64.68 22.88 3.4 9.96 0.1722 0.3329 101.43 16

La Esperanza Monzogranite

Pl1 Core 58.27 26.38 8.04 0.0572 6.78 0.2229 0.2235 99.97 41

Pl1 Core 59.12 26.03 7.51 0.0537 7.36 0.2278 0.215 100.53 38

Pl1 Core 57.1 26.34 8.35 0.1178 6.76 0.3255 0.2775 99.29 46

Pl1 Rim 62.61 22.95 4.95 0 8.93 0.3287 0.1082 99.87 24

Pl1 Rim 63.16 22.93 4.15 0 9.1 0.4261 0.1335 99.9 22

Pl2 Core 59.6 25.7 8.17 0 7.07 0.1637 0.1671 100.88 36

Pl3 Core 59.37 25.33 7 0.0104 7.78 0.3021 0.2129 100.01 37

Pl3 Core 59.7 26.01 7.17 0 7.37 0.1627 0.1694 100.58 35

Pl3 Rim 62.41 23.01 5.05 0 8.94 0.3274 0.1092 99.85 25

Pl3 Core 59.27 25.53 7 0.0104 7.68 0.3032 0.2119 100.01 37



Sample Lithology Method Material Reference Interpretation Observation

Cambrian Metamorphic Basement

MDA

Colo Niyeu Fm Z316

Sandstone, Quartzite 

Mb U-Pb SHRIMP Zrc C19 MDA 530  Depo age 528+-2 Ma

La Esperanza Plutono- Volcanic Complex Age (Ma) ±

LES-118

Equigranular Bt-Amp 

Granodiorite U-Pb SHRIMP Zrc P06 Crystallization 273 2

Z6

Equigranular Bt-Amp 

Granodiorite K-Ar Bio C13 Cooling at 300ºC 259 6

LES-125 Rhyolite U-Pb SHRIMP Zrc P06 Crystallization 265 2

Z67 Megacrystic Granite U-Pb SHRIMP Zrc C17 Crystallization 260 2

- Megacrystic Granite Rb-Sr WR P92 Cooling at 500ªC 259 15

Z67-b Megacrystic Granite K-Ar Ms C17 Cooling at 450ªC 265 3

Z12 Megacrystic Granite K-Ar Bio C13 Cooling at 300ªC 237 3

Z20 Inequigranular Bt-Amp MonzograniteU-Pb SHRIMP Zrc C17 Crystallization 255 2

Z20 Inequigranular Bt-Amp MonzograniteK-Ar Bio C17 Cooling at 300ºC 248 4

Z287 Inequigranular Bt-Amp MonzograniteK-Ar Bio C17 Cooling at 300ºC 251 6

E5 Rhyodacite U-Pb SHRIMP Zrc L19 Crystallization 253 2

Z9 Metatexite U-Pb SHRIMP Zrc this study Crystallization 251 2

- Bt-Granite Rb-Sr WR P92 Cooling at 500ªC 258 8

Z305b Banded Granite K-Ar Bio C17 Cooling at 300ªC 232 4

LES-119 Leucogranite U-Pb SHRIMP Zrc P06 Crystallization 250 2 260 290

- Leucogranites Rb-Sr WR P92 Cooling at 500ºC 239 5

D35a Ms-granite K-Ar Ms this study Crystallization 260 6

LES-122 Volcanic rock with devitrified pumiceU-Pb SHRIMP Zrc P06 Crystallization 246 2

DZ3 Fine grained Granite U-Pb SHRIMP Zrc L19 Crystallization 244 2

Collinao Dacite

Giménez Granite

Calvo Granite

Acidic dike

Acidic dike

Prieto  Granodiorite
Next to the contact 

with Donosa Granite

Pailemán Rhyolite

Donosa Granite

Next to the contact 

with Calvo Granite

La Esperanza 

Monzogranite



Table 2 . Summary of SHRIMP U-Pb results for zircon from sample Z9

Grain. U Th Th/U
206Pb* 204Pb/ f206

238U/ 1-s
207Pb/ 1-s

206Pb/ 1-s
206Pb/

spot (ppm) (ppm) (ppm)
206Pb %

206Pb ±
206Pb ±

238U ±
238U ±

1.1 456 170 0.37 15.7  - 0.01 24.90 0.27 0.0514 0.0008 0.0402 0.0004 253.8 2.8 *

2.1 513 230 0.45 17.3 0.000054 0.03 25.44 0.28 0.0514 0.0006 0.0393 0.0004 248.5 2.7 *

2.2 147 90 0.61 5.1 0.000436 0.94 24.59 0.32 0.0588 0.0022 0.0403 0.0005 254.6 3.3 *

3.1 694 348 0.50 24.3 0.000058 <0.01 24.48 0.27 0.0513 0.0005 0.0408 0.0004 258.1 2.8

4.1 639 264 0.41 21.8 0.000059 0.08 25.18 0.27 0.0519 0.0005 0.0397 0.0004 250.9 2.7 *

5.1 423 419 0.99 14.2  - <0.01 25.63 0.28 0.0510 0.0006 0.0390 0.0004 246.7 2.7 *

6.1 433 202 0.47 14.3 0.000101 <0.01 26.09 0.29 0.0510 0.0006 0.0383 0.0004 242.5 2.7

7.1 443 284 0.64 15.0  - <0.01 25.36 0.28 0.0512 0.0006 0.0394 0.0004 249.3 2.7 *

8.1 253 106 0.42 8.6 0.000277 <0.01 25.35 0.30 0.0505 0.0008 0.0395 0.0005 249.6 2.9 *

9.1 452 196 0.43 15.1  - 0.05 25.66 0.29 0.0515 0.0006 0.0390 0.0004 246.3 2.8 *

10.1 684 341 0.50 22.9 0.000008 0.10 25.66 0.28 0.0519 0.0005 0.0389 0.0004 246.2 2.7 *

11.1 718 511 0.71 24.2  - 0.04 25.44 0.27 0.0515 0.0005 0.0393 0.0004 248.4 2.6 *

12.1 585 251 0.43 20.4 0.000065 0.01 24.67 0.27 0.0514 0.0005 0.0405 0.0004 256.1 2.7 *

13.1 653 334 0.51 22.4  - <0.01 25.03 0.27 0.0512 0.0005 0.0400 0.0004 252.6 2.7 *

14.1 2412 95 0.04 101.7 0.005337 9.93 20.38 0.21 0.1315 0.0011 0.0442 0.0005 278.8 2.9

14.2 28 24 0.84 1.5  - 0.04 16.33 0.31 0.0546 0.0020 0.0612 0.0012 383 7 Inheritance

15.1 518 242 0.47 17.3  - 0.10 25.65 0.28 0.0519 0.0007 0.0390 0.0004 246.3 2.7 *

16.1 253 88 0.35 8.7 0.000008 <0.01 25.08 0.30 0.0506 0.0008 0.0399 0.0005 252.2 3.0 *

17.1 441 189 0.43 15.1  - <0.01 25.03 0.28 0.0512 0.0006 0.0400 0.0004 252.6 2.8 *

17.2 288 150 0.52 9.8  - 0.02 25.15 0.29 0.0514 0.0007 0.0397 0.0005 251.3 2.9 *

18.1 438 163 0.37 15.0  - <0.01 25.10 0.28 0.0509 0.0006 0.0399 0.0004 252.0 2.8 *

18.2 164 93 0.57 5.6 0.000113 0.28 25.08 0.32 0.0535 0.0010 0.0398 0.0005 251.3 3.1 *

19.1 802 669 0.83 27.6  - <0.01 24.93 0.26 0.0510 0.0004 0.0401 0.0004 253.7 2.7 *

20.1 601 254 0.42 21.5 0.000024 <0.01 24.05 0.26 0.0512 0.0005 0.0416 0.0005 262.7 2.8

20.2 198 149 0.75 7.0  - <0.01 24.36 0.30 0.0507 0.0009 0.0411 0.0005 259.5 3.1

21.1 353 145 0.41 12.3 0.000088 <0.01 24.63 0.28 0.0507 0.0008 0.0406 0.0005 256.8 2.9 *

22.1 736 364 0.50 25.7 0.000126 0.23 24.62 0.27 0.0532 0.0005 0.0405 0.0004 256.0 2.8 *

Age ± internal ± include std: ie external

            Total         Radiogenic  Age (Ma)  



wtd ave dominant 251.1 1.5 0.72 1.8 MSWD = 1.4 for 21 of 27 areas analysed

Notes: 1.  Uncertainties given at the one σ level.

2. Error in Temora reference zircon calibration was 0.41% for the analytical session.

 ( not included in above errors but required when comparing data from different mounts).

3.  f206 % denotes the percentage of common Pb (206Pb)

4.  Correction for common Pb for the U/Pb data has been made using the measured 238U/206Pb  and 207Pb/206Pb ratios 

 following Tera and Wasserburg (1972) as outlined in Williams (1998).

* Used for age calculation



Sample Unit Mineral K2O
40

Ar * Age 2s-Error

[ Wt. % ] [ % ] [ Ma ] [ Ma ]

Z67b Donosa Granite Ms 8.41 98.3 259.6 5.8

D35a Ms-Acid Dike Ms 8.18 98.7 259.8 6.2



Sample Z19 DZ3 LZ13 D55 D39 Z302 Z67 Z1
Locality 555273 E 552708 E 547571 E 552755 E 552977 E 546643 E 544311 E 549840 E

(UTM  m 19G) 5506688 S 5523514 S 5535526 S 5521004 S 5532826 S 5525866 S 5527092 S 5515478 S

Lithology

porphyritic 
rhyolite aphyric rhyolite leucogranite hb- bt Granite rhyolite dacite

megacrystic 
granite bt-hb granodiorite

Unit

acidic dike acidic dike Calvo Granite La Esperanza 
Monzogranite

Paileman 
dome

Collinao 
Dacite

Donosa 
Granite

Prieto  
Granodiorite

SiO2 69.52 78.60 75.89 69.20 74.20 60.06 74 64.08

Al2O3 14.42 12.00 12.28 14.70 14.10 16.88 14.29 15.09

Fe2O3t 3.56 2.15 0.73 3.97 1.97 6.02 1.89 5.41

MnO 0.06 0.02 0.08 0.07 0.03 0.05 0.029 0.075

MgO 1.20 0.02 0.11 1.21 0.37 2.41 0.43 2.22

CaO 2.41 0.26 0.62 2.85 1.31 4.78 1.72 3.73

Na2O 3.74 3.27 3.87 3.52 3.34 3.73 3.99 3.42

K2O 4.03 4.97 5.04 3.83 3.89 2.04 3.77 4.83

TiO2 0.42 0.09 0.10 0.42 0.18 0.84 0.23 0.57

P2O5 0.13 0.01 0.01 0.13 0.03 0.23 0.09 0.15

LOI 1.10 0.12 0.46 0.58 0.89 2.16 0.7 0.86

Total 100.60 101.51 99.19 100.48 100.31 99.19 101.14 100.44

Sc 7 2 4 7 2 13 3 10

Be 2 6 n.d. n.d. 3 3 3

V 62 57 9 64 19 137 20 99

Cr 20 20 20 20 10 20 20 30

Co 7 1 1 9 2 10 2 11

Ni 20 7 20 7 5 20 20 20

Cu 60 15 10 14 4 10 10 10

Zn 40 9 30 40 31 40 30 60

Ga 17 13.9 19 17.5 18 23 20 19

Ge 1 5 3 5 5 2 1 1

As 5 1.9 5 0.9 1.9 31 5 5

Rb 140 256 348 171.5 158 90 144 225

Sr 402 49.1 35 388 450 593 476 392

Y 14 17.9 17 18.6 8.7 24 6 18

Zr 146 88 80 136 109 204 112 173

Nb 12 18.5 29 15.8 9.4 14 9 11

Mo 2 2 2 1 1 2 2 2

Ag 0.5  0.5 0.5  0.5  0.5 1.1 0.5 0.5

In 0.2 0.006 0.2 0.014  0.005 0.2 0.2 0.2

Sn 3 3 4 3 2 5 2 4

Sb 0.5 0.2 0.5 0.14 0.71 1.3 0.5 0.5

Cs 2.2 1.71 6.9 8.33 9.12 4.5 3.1 9.1

Ba 1102 102.5 110 808 1110 542 913 800

La 38.4 32 22.4 42 24.6 41.9 24.4 50.3

Ce 73.6 59.2 42.3 77.5 46.1 87 47.4 99.1

Pr 7.47 5.42 3.87 8.17 4.91 9.76 4.95 10.1

Nd 26.1 15.8 11.4 27.7 17.7 36.7 17.2 34.8

Sm 4.5 2.58 1.9 4.66 2.66 6.8 3 6

Eu 0.93 0.29 0.2 0.95 0.49 1.35 0.58 1.13

Gd 3.1 2.05 1.5 3.34 1.79 5 1.8 4.2

Tb 0.5 0.4 0.3 0.54 0.29 0.8 0.3 0.6

Dy 2.7 2.24 1.9 3.02 1.48 4.3 1.3 3.3

Ho 0.5 0.56 0.4 0.61 0.29 0.8 0.2 0.6

Er 1.5 1.69 1.5 1.71 0.76 2.3 0.7 1.8

Tm 0.22 0.28 0.31 0.26 0.12 0.34 0.1 0.28



Yb 1.5 2.13 2.6 1.71 0.8 2.3 0.6 1.9

Lu 0.25 0.32 0.48 0.25 0.12 0.36 0.1 0.3

Hf 4.5 3.6 4 3.9 3.2 5.4 3.3 5.5

Ta 1.3 1.5 2.9 1.6 0.9 1.3 1.1 1.2

W 2 2 1 3 7 1 1 5

Tl 0.9 0.08 1.7 0.3 0.13 0.5 0.6 1.2

Pb 18 16 37 21 14 14 22 29

Bi 0.4 0.17 0.4 0.19 0.06 0.5 0.4 0.6

Th 14.6 25.6 33.3 19.1 9.11 23.6 8 28.5

U 4.6 2.28 5.5 3.28 2.11 5.8 1.9 7.6

Eu/Eu* 0.76 0.39 0.36 0.74 0.69 0.71 0.76 0.69

La/YbN 17.26 10.13 5.81 16.56 20.73 12.28 27.42 17.85

La/SmN 5.37 7.8 7.42 5.67 5.82 3.88 5.12 5.27

Sum REE 161.27 124.96 91.06 172.42 102.11 199.71 102.63 214.41



bt-hb granodiorite



Sample Unit Lithology
Crystalli
za- tion 

Age
SiO2 Sr Rb 87Rb/86Sr 87Sr/86Sr 2S εSr (WR)

Initial 
87Sr/86Sr

Refer
ence εNd (WR)

Initial 
143Nd/144Nd

Refer
ence εHf (Zrc) δ18O‰

Refer
ence 

LES-125 Rhyolite dome rhyolite 264 73.0 123 427 6.500 0.731292 n.d. 3.8 0.707275 P06 -5.8 0.511992 P06 `-3.8 to -8.7 `6.6 to 7.0 Ca17
LE 101 Rhyolite dome rhyolite 264 70.9 167 394 6.8300 0.73450 .050 4.3 0.709264 IR
LE 102 Rhyolite dome rhyolite 264 70.8 171 473 6.4600 0.73230 .050 3.9 0.708431 IR
LE 146 Rhyolite dome rhyolite 264 73.0 193 171 2.4600 0.71610 .050 1.6 0.707011 IR
LES-118 Calvo Granite leucogranite 250 75.9 35 377 29.096 0.807041 n.d. 14.6 0.705246 P06 -7.5 0.511922 P06 `-5.6 to -9.0 `4.4 to 5.8 Ca17
LE 185 Calvo Granite leucogranite 250 78.2 13.4 228 50.0800 0.87735 .015 24.5 0.702135 P92 *
LE 126A Calvo Granite leucogranite 250 76.8 7.4 232 93.1900 1.01821 .020 44.5 0.692178 P92 *
LE 126B Calvo Granite leucogranite 250 76.8 7.4 225 91.0400 1.01775 .020 44.5 0.699238 P92 *
LE 127 Calvo Granite leucogranite 250 77.3 15.8 241 44.6900 0.85906 .015 21.9 0.702704 P92 *
LE 131 Calvo Granite leucogranite 250 75.0 12.9 224 51.0300 0.88252 0.0150 25.3 0.703990 P92 *
LE 132A Calvo Granite leucogranite 250 74.9 90.5 256 8.1990 0.73505 .010 4.3 0.706365 P92
LE 132B Calvo Granite leucogranite 250 74.9 88.8 250 8.1680 0.73503 .010 4.3 0.706454 P92
LES-120 Donosa Granite granite 260 73.0 480 139 0.698 0.710168 n.d. 0.8 0.707628 P06 -9.8 0.511794 P06
LE 120 Donosa Granite granite 260 73.1 532 133 0.7249 0.71022 .010 0.8 0.707582 P92
LE 121 Donosa Granite granite 260 74.3 377 137 1.0554 0.71149 .010 1.0 0.707646 P92
LE 134 Donosa Granite granite 260 75.2 321 186 1.6788 0.71374 .010 1.3 0.707627 P92
LE 137A Gimenez Granite granite 251 75.3 239 209 2.5378 0.71645 .010 1.7 0.707535 P92
LE 137B Gimenez Granite granite 251 75.3 233 204 2.5420 0.71646 .010 1.7 0.707526 P92
LE 139 Gimenez Granite granite 251 71.4 475 153 0.9351 0.71056 .010 0.9 0.707275 P92
LES-119 Prieto Granodiorite granodiorite 273 67.0 440 161 1.065 0.710794 n.d. 0.9 0.706725 P06 -4.8 0.512033 P06 `-2.9 to -4.6 `6.0 to 7.3 Ca17
CON-88.48 Prieto Granodiorite granodiorite 273 67.0 445 175 1.1390 0.71084 .010 0.9 0.706488 C91
LE 165 Prieto Granodiorite granodiorite 273 66.8 421 183 1.2570 0.71145 .010 1.0 0.706649 P92
LE 169 Prieto Granodiorite granodiorite 273 67.3 418 179 1.2384 0.71122 .010 1.0 0.706487 P92
LE 152 Collinao Dacite dacite 252 65.5 445 206 1.3000 0.71310 .050 1.2 0.708515 IR
LE 99 A La Esperanza Monzogranitegranodiorite 255 68.1 542 179 0.8688 0.71028 .010 0.8 0.707179 P92
LE 99 B La Esperanza Monzogranitegranodiorite 255 68.1 426 129 0.8731 0.71024 .010 0.8 0.707122 P92
LE 130 La Esperanza Monzogranitegranite 255 71.8 323 164 1.4651 0.71224 .010 1.1 0.707006 P92
LE 136 La Esperanza Monzogranitemonzogranite 255 70.9 429 102 0.6905 0.70969 .010 0.7 0.707226 P92
465 La Esperanza Monzogranitegranodiorite 255 67.0 394 195 1.4333 0.71193 .010 1.1 0.706814 P92 *
LES-122 Rhyolite dike rhyolite 245 ? `-7.4 to -8.7 `5.1 to 6.6 Ca17
* not considered























HIGHLIGHTS 

 

• High and low Ba-Sr high-K magnesian calc-alkaline series in La Esperanza plutonic-volcanic 

complex 

• U-Pb zircon dating of Giménez Granite yielded 251 ± 2 Ma 

• La Esperanza plutonic-volcanic complex and Los Menucos Group make a up a 273-245 Ma 

medium-sized silicic large igneous province  

 


