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Abstract 

Aims: Given the increasing evidence supporting the association between telomere shortening 

and diabetes, the aim of the present work was to establish whether MODY patients suffer a 

reduction in TL due to oxidative stress produced by chronic hyperglycemia, despite not 

presenting insulin resistance or inflammation.  

Materials and Methods: We analyzed clinical and biochemical parameters in 35 MODY2 

and 12 MODY3 patients compared with 48 Control subjects. The absolute telomere length 

(aTL) of peripheral blood leukocytes was measured using the quantitative polymerase chain 

reaction (qPCR).  

Results: A significant negative correlation was observed between aTL and age in the whole 

population, among MODY patients and in each subtype studied, MODY2 and MODY3, 

which allowed us to validate the method. We found, for the first time, that MODY patients 

have shorter aTL with respect to non-diabetic Controls (6.49±3.31 Kbp vs 11.13±7.82 Kbp, 

p=0.006). However, no differences were found between MODY2 and MODY3.  Additionally, 

aTL showed a negative correlation with duration of the disease and FPG levels in MODY 

patients in general and also with HbA1c in MODY2 patients in particular.  

Conclusions: It can be thus inferred that both MODY types present telomere shortening, 

which, at least partly, responds to HbA1c and FPG levels. These findings suggest comparable 

mechanisms underlying the attrition of TL. Taken together, our results on aTL in MODY 

patients may provide a parameter relatively easy and inexpensive to quantify in order to 

measure the impact of high glucose levels and potentially carry out antidiabetic treatment with 

stricter targets. 
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1 | INTRODUCTION 

Maturity-onset diabetes of the young (MODY) is a monogenic disorder characterized by 

autosomal dominant inheritance which usually develops in childhood, adolescence or young 

adulthood.1,2 It has been established that MODY represents 1-5% of all cases of diabetes and 

is often misdiagnosed as type 1 diabetes (T1D) or type 2 diabetes (T2D).1,3,4 

MODY is caused by mutations in different genes resulting in pancreatic β-cell dysfunction.5,6 

There are 14 subtypes of MODY depending of the genes involved, MODY2 and MODY3 

being the most frequent genotypes. MODY2 is caused by mutations in the glucokinase (GCK) 

gene, while MODY3 is caused by mutations in the hepatic nuclear factor (HNF1A) gene.2 

The clinical characteristics of the different subtypes oscillate between a mild hyperglycemic 

state with good clinical prognosis (MODY2) to a more severe hyperglycemic state 

accompanied by early chronic complications (MODY3). Both subtypes present alterations in 

insulin secretion as a primary defect, without insulin resistance.7-9 

Telomeres are nucleic-protein complexes located at the end of eukaryotic chromosomes, 

composed of several tandem repeats of a non-coding DNA hexanucleotide (TTAGGG in 

mammals) and associated proteins. Telomeres play an essential role in the integrity and 

stability of the chromosome and cell survival.10 During DNA replication in the process of cell 

division, telomere length (TL) can undergo a reduction of about 20 to 40 kilobase pairs (kbp) 

per year in peripheral blood leukocytes. Due to this mechanism, a negative correlation was 

observed between age and TL.11-13 TL shortening is an important marker of the replicative 

capacity of the cell, which makes it a suitable marker of cellular aging.14 In a pathological 

context, inflammation and oxidative stress present a negative association with TL.15,16 

Hyperglycemia is one of the most important factors that determine the production of oxidative 

stress and its consequent reactive oxygen species (ROS), all of which produces chronic 

complications in diabetes, including the shortening of TL.17,18 

Although several studies have reported a negative correlation between TL and T1D or T2D,19 

no studies have been conducted so far on the possible association between TL and MODY 
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patients. Therefore, the hypothesis of the present work was that MODY patients may suffer a 

reduction in TL due to oxidative stress produced by chronic hyperglycemia, despite not 

presenting insulin resistance or inflammation. In reference to this, the promoter of the C-

reactive protein (CRP) gene requires hepatocyte nuclear factor 1 alpha (HNF1A) for its 

expression. Mutations present in the HNF1A gene (MODY3) are associated with reductions 

in CRP levels, an important marker of inflammation, compared to other types of diabetes and 

non-diabetic individuals.20,21 

To test this hypothesis, we evaluated absolute TL (aTL) in genetically diagnosed MODY2 

and MODY3 individuals and non-diabetics controls. We also assessed the correlation between 

aTL and other clinical or metabolic factors and possible differences in TL between MODY2 

and MODY3 patients. 

 

2 | MATERIALS AND METHODS 

2.1 Study population 

The size of the sample was calculated from a previous report which informed a 30% shorter 

mean telomere length in patients with type 1 diabetes when compared with controls.18 

Assuming a mean telomere length of 13 Kpb (highest mean value), with an effect size of 1.25 

(delta) ‒corresponding with a 50% shorter telomere length in MODY subjects, an alpha error 

of 0.05 and a power of 80%‒, a total sample size of 30 individuals was considered sufficient. 

We analyzed 35 patients with genetic diagnosis of MODY2, 12 with MODY3 and 48 

unrelated non-diabetic control individuals, matched by sex and age from the general 

population of the Autonomous City of Buenos Aires (BA) and its metropolitan area, 

Argentina. None of the controls had clinical components of MODY or a family history of 

MODY (self-reported). The individuals recruited had normal results in the medical 

examination and blood counts, and were not taking any medications. In this respect, the 
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diabetic status was ruled out in accordance with the American Diabetes Association 

recommendation.6 

Clinical characterization of MODY was done following the ADA (American Diabetes 

Association) recommendation.6 Genetic studies consisted in the purification of genomic DNA 

from peripheral blood by MagNA Pure system (Roche), PCR amplification of the coding 

regions of both genes was carried out as published by Kaisaki P. et al. and Stoffel M. et al,22,23 

followed by Sanger sequencing. Mutations present in all participants were analyzed by 

bioinformatic tools to determine the possible effect of the alterations found. Among them, the 

service provided by mutation taster was preferred for being more accurate. 

Glutamic acid decarboxylase autoantibodies (GADA), insulin autoantibodies (IAA) and anti-

phosphatase autoantibodies (IA2A) were measured by radioligand assays in all MODY 

patients, being in all cases negative. 

Demographic data including age and gender of the patients were collected. The 

anthropometric measures (height, weight and waist circumference [CC]) and systolic and 

diastolic blood pressure (SysBP and DiasBP, respectively) were determined using a 

standardized protocol. The body mass index (BMI) was calculated as weight (kg) / height 

(m)2. Fasting plasma glucose (FPG) and HA1c levels were performed by the usual 

standardized biochemical procedures. 

 

2.2 Measurement of leukocyte aTL 

The estimation of aTL was carried out using an optimized methodology based on real time 

polymerase chain reaction (qPCR), using a previously described protocol.24 Genomic DNA 

samples were purified from peripheral blood leukocytes and aTL was determined using SYBR 

green as an intercalating agent. This method allows us to determine the repetitive sequences 

of telomeres compared to a single copy gene using standard curves. For the PCR of the single-
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copy gene, a 75-bp oligonucleotide of the RPLP0 (ribosomal protein, large, subunit P0) gene 

was used as a standard and allowed the genome/reaction number (S) to be exported from the 

standard curve. The standard for telomere PCR is a synthetic oligonucleotide of 84 bp in 

length formed by the tandem repeats of telomeric DNA and the standard curve is used to 

measure the kbp of telomeric sequence/reaction (T). 

The calculation of the T/S ratio allows to determine the kbp of telomeric sequence per cell for 

each individual. The PCR reactions were performed in duplicate for all the study samples in 

a StepOne ™ Real-Time PCR System (Applied Biosystems). DNA (20ng) was amplified in a 

20µl reaction volume containing 10µl of SYBR Select Master Mix, and 250 nM of primers 

were added for the RPLP0 gene or 100 nM of primers for the telomeric sequence. 

The PCR conditions consisted of a denaturation of 10min at 95 °C followed by 40 cycles at 

95 °C for 15 seconds, 60 °C for 1 minute and the melting curve with 1 cycle of 15 seconds at 

95 °C, 1 minute at 60 °C and 15 seconds at 98 °C with a temperature ramp of 0.3 °C/second. 

2.3 Statistical analysis 

The statistical analysis was carried out through Statistical Package for Social Sciences 

software (SPSS version 20.0) with a level of significance of 0.05. Normal distribution of 

continuous variables was examined by Kolmogorov-Smirnov normality test.  

The relationship between aTL and clinical-biochemical and anthropometric characteristics in 

whole samples were assessed with partial correlation analysis using age and gender with 

covariates.  

Comparison of clinical-biochemical and anthropometric characteristics between groups is 

evaluated by univariate analysis of covariance adjusting for age and gender (ANCOVA), 

followed by Bonferroni post hoc test for multiple comparisons.  
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Among MODY patients the relationship between clinical-biochemical and anthropometric 

characteristics is evaluated by linear regression model or partial correlation analysis 

controlling for the effect of age, gender or type of MODY. 

 

3 | RESULTS 

The 95 participants of this study presented a mean age of 23.61 ± 13.11 years. Table 1 shows 

the mean clinical-biochemical and anthropometric characteristics of control, MODY2 and 

MODY3 patients. The groups differed significantly in weight and, in particular, MODY2 

patients showed significant differences in BMI, FPG levels and DiasBP compared to controls. 

MODY3 patients, instead, differed significantly in FPG levels and TG_HDL respect to 

controls. 

The complete sample showed a negative correlation between aTL and age (r=-0.311, p=0.002, 

Figure 1A). Among the different clinical biochemical variables analyzed in the complete 

sample, aTL only showed a significant negative correlation with FPG (r=-0.241, p=0.026). 

This correlation remained significant even when age and gender were used as covariates (r=-

0.347, p=0.001). 

Most important, MODY patients had significantly shorter mean aTL than controls (6.49±3.31 

Kpb vs 11.13±7.82 Kpb, p=0.006, Figure 1B), a difference which remained significant even 

after adjustment for non-modifiable factors gender and age (p<0.001). 

Among MODY patients, a significant negative correlation was observed between aTL and 

age (r=-0.447, p=0.009, covariate=gender), FPG levels (r=-0.586, p=0.008, covariates=age, 

gender, and type of MODY) and duration of the disease (r=-0.385, p=0.027, 

covariates=gender and type of MODY). Furthermore, we found a significant positive 

correlation between disease duration and weight (r=0.504, p=0.005) and BMI (r=0.504, 
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p=0.001) using gender and MODY type as covariates. No significant correlations were found 

with metabolic parameters. 

Regarding the characteristics of each MODY type, MODY3 patients exhibited significantly 

higher weight (p<0.001), BMI (p<0.001), SysBP (p=0.008) and DiasBP (p =0.021) than 

MODY2 patients (Table 1). In turn, no significant differences were found between MODY2 

and MODY3 individuals in terms of aTL (Figure 2A), whereas a negative correlation was 

observed between aTL and age in both MODY2 (r=-0.369 p=0.029) and MODY3 (r=-0.754, 

p=0.023) individuals (Figure 2B). Worth highlighting, MODY2 patients revealed a 

significant negative correlation between aTL and HbA1c (r=-0.388, p=0.030) with gender and 

age as covariates (Figure 3), while MODY3 patients showed a trend toward lower aTL at 

higher HbA1c levels (r=-0.760, p=0.07) with gender as a covariate. 

 

4 | DISCUSSION 

TL is an important parameter which has increasingly gained importance due to its proven 

relationship to a variety of diseases, among them metabolic diseases such as diabetes. Given 

their chemical composition, telomeres are highly vulnerable to oxidative damage and 

inflammation, which might accelerate telomere shortening.25 In addition, hyperglycemia 

induces high oxidative stress, and consequent telomere shortening.26 Therefore, telomere 

shortening mechanisms may vary depending on the pathogenicity of diabetes. 

Previous studies have shown more significant mononuclear cell telomere shortening in T1D 

than in T2D patients.27 In this context, the hypothesis of the present work was that MODY 

patients may suffer a reduction in TL due to oxidative stress produced by chronic 

hyperglycemia, despite not presenting insulin resistance or inflammation. To test this 

hypothesis, we evaluated aTL in MODY2 and MODY3 patients compared with Control 

subjects. 
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We observed a negative correlation between aTL and age in the whole population. This result 

was expected, considering that age is the main factor involved in the shortening of telomeres 

and allowed us to validate the method. Furthermore, we found that aTL was negatively 

correlated with FPG levels. In agreement, TL was recently shown to be negatively associated 

with glucose concentrations and HbA1c within the normal non-diabetic range,28 which shows 

an important contribution of hyperglycemia to telomere shortening. 

We found, for the first time, that MODY patients have shorter aTL with respect to non-diabetic 

Controls, which may be a consequence of MODY-associated hyperglycemia. We also 

observed a significant negative association between aTL and age among MODY patients, and 

in both subtypes studied, MODY2 and MODY3. 

Additionally, aTL showed a negative correlation with duration of the disease and FPG levels 

in MODY patients in general and also with HbA1c in MODY2 patients in particular, after 

adjustment for age, gender and type of MODY. On the one hand, the absence of correlation 

between aTL and HbA1c in MODY3 patients may explained by small cohort size. On the 

other hand, these results find support in studies by Rosa et al., who recently showed that 

relative telomere length was inversely associated with FPG and HbA1c levels in patients 

newly diagnosed with T2D, after adjustment for age, gender and BMI, and also with duration 

of the disease.29 In addition, a study by Januszewski et al. revealed shorter TL in 199 T1D 

patients as compared to controls and a negative correlation between TL and duration of the 

disease and age.30 On the whole, our findings show a significant contribution of hyperglycemia 

and disease duration to telomere shortening even in the absence of insulin resistance or 

inflammation. 

As opposed to what may have been expected in newly diagnosed MODY patients that have 

significant differences in the glucose level,31 we found no differences in aTL between our 

MODY2 and MODY3 patients, whose glucose levels were controlled through treatment. It 

can be thus inferred that both MODY types present telomere shortening which, at least partly, 
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responds to HbA1c and FPG levels, which suggests comparable mechanisms underlying the 

attrition of TL. 

The main limitation is that the sample size was relatively small; therefore, the results of this 

study should be verified using a larger sample size. We cannot exclude that some clinical 

characteristics such as inflammation or lifestyle markers that were not available for analysis 

could affect aTL. Furthermore, being a cross-sectional study, the present work cannot address 

the rate of telomere attrition in MODY patients. 

Taken together, our findings on aTL in MODY patients may provide a parameter relatively 

easy and inexpensive to quantify the impact of the high glucose level, in order to carry out 

antidiabetic treatments with strict targets. 
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Table1. Clinical-biochemical and anthropometric characteristics of Control and patients with MODY2 and MODY3. 

Values are expressed as mean ±standard deviation (SD). P and p values were obtained from univariate analysis adjusted by age and 

gender (ANCOVA). Data with significant differences within groups (p<0.05) are in bold. aTL: absolute telomere length, WC: waist 

circumference, BMI: body mass index, FPG: fasting plasma glucose, TG: triglycerides, TC: total cholesterol, LDL-C: low density 

 
Control MODY2 MODY3 P 

p  
Control vs. 

MODY2 

p  
Control vs. 

MODY3 

p 
MODY2 vs. 

MODY3 
n 48 35 12     
Age (years) 24±9.66 20.11±14.43 30.25±18.42 0.035 0.028 0.049 0.161 
aTL (Kpb) 11.13±7.82 6.64±3.50 6.05±2.78 <0.001 <0.001 0.002 0.645 
Weight (kg) 65.43±12.00 45.38±17.52 67.19±14.49 <0.001 <0.001 0.029 <0.001 
WC (cm) 77.38±10.42 68±23.42 86.33±22.05 0.180 0.343 0.156 0.634 
BMI (kg/m2) 23.45±3.93 19.82±3.34 24.02±3.56 <0.001 <0.001 0.687 <0.001 
FPG (mg/dl) 85.3617±8.98 117.40±11.59 129.37±14.12 <0.001 <0.001 <0.001 0.095 
TG(mg/dl) 77.15±34.17 87.31±62.26 125.62±93.22 0.046 0.446 0.050 0.181 
TC (mg/dl) 157.58±29.03 170.35±52.24 178.5±27.52 0.222 0.144 0.179 0.318 
LDL-C (mg/dl) 87.04±22.81 98.37±39.34 101.37±22.63 0.150 0.125 0.131 0.423 
HDL-C (mg/dl) 56.50±14.53 53.32±12.62 60.25±12.57 0.383 0.432 0.309 0.451 
TG/HDL 1.44±0.78 1.75±1.27 2.25±1.85 0.031 0.186 0.004 0.270 
HbA1c (%)  6.32±0.42 6.92±1.56 - - - 0.139 
SysBP (mmHg) 113.18±8.53 107.42±8.39 118.50±11.36 0.049 0.105 0.567 0.008 
DiasBP (mmHg) 70.68±6.78 60.33±6.21 77±12.49 0.001 0.001 0.350 0.021 
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cholesterol, HDL-C: high density cholesterol, HbA1c: glycated hemoglobin A1c, SysBP: systolic blood pressure, DiasBP: diastolic 

blood pressure. 
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Figure 1: Relationship of absolute telomere length with age and MODY. (A) Distribution of Absolute 
Telomere length according to age in Control and MODY groups. The linear regression between age and the 

aTL in the whole samples (R2=0.120, Pearson correlation coefficients r=-0.320, p=0.002) is shown. (B) Bar 
graphs illustrating mean ± standard error of mean (SEM) of aTL in controland type MODY patients. p<0.05 

was considered as significant. aTL: Absolute telomere length 
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Figure 2: Relationship of absolute telomere length with MODY type and age. (A) Bar graphs 
illustrating mean ± standard error of mean (SEM) of aTL in MODY 2 (n=35) and MODY 3 (n=12).aTL: 

Absolute telomere length. NS: no significate. (B) Distribution of aTL according to age. Linear regression 
model between aTL and age in MODY2 (R2=0.136, p=0.035) and MODY3 (R2=0.569, p=0.023). p<0.05 

was considered significant. 
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FOR REVIEW
 ONLY

 

Figure 3: Relationship of absolute telomere length with HbA1c in MODY2 patients. Linear 
correlation between aTL and HbA1c (%) in MODY2 patients (r=-0.388, p=0.030, covariates= age and 

gender). 
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