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Abstract 

The Late Palaeozoic Ice Age (LPIA) has been well recorded in the uppermost 

Mississippian–Pennsylvanian of Gondwana. Nevertheless, little is known about the 

temporal and geographic dynamics, particularly during the early Mississippian. We re-

port on exceptional Tournaisian glaciomarine stratigraphic sections from central Argen-

tina (Río Blanco Basin). Encompassing ~1400 metres, these successions contain con-

spicuous glacigenic strata with age constraints provided by palaeontological data and 

U/Pb detrital zircon age spectra. A variety of marine, glaciomarine and fan-deltaic envi-

ronments indicate relative sea-level variations mainly associated with tectonism and 

repetitive cycles of glacial activity. Provenance analysis indicates a source from the 

Sierras Pampeanas basement located to the east. Fifteen sequences were grouped 

into three depositional models: 1) Transgressive Systems Tracts (TST) to Highstand 

Systems Tracts (HST) sequences unaffected by glacial ice; 2) Lowstand Systems 
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Tracts (LST) to TST and then to HST with glacial influence; and 3) non-glacial Falling-

Stage Systems Tract (FSST) to TST and HST. The glacial evidence indicates that the 

oldest Mississippian glacial stage of the LPIA in southwestern Gondwana is con-

strained to the middle Tournaisian. In contrast with previous descriptions of Gond-

wanan coeval glacial records, our sequence analysis confirms complex hierarchical 

climate variability, rather than a single episode of ice advance and retreat. 

 

Supplementary material: 

Supplementary Material 1: Detailed stratigraphic sections of the Agua de Lucho 

and Cerro Tres Cóndores Formations in the Agua Quemada Syncline, SW Sierra de 

Las Minitas (see Fig. 1 for location). 

Supplementary Material 2: Paleocurrents and conglomerate compositions of 

Cerro Tres Cóndores in different outcrops of the region (see Fig. 1 for location). 

Supplementary Material 3: U/Pb detrital zircon data at the top of the Cerro Tres 

Cóndores Formation (see Fig. 3 and Supplementary Materials 1 for stratigraphic loca-

tion). 

 

Keywords: Glaciomarine sequence analysis; Provenance analysis; middle to late 

Tournaisian; Late Palaeozoic Ice Age; SW Gondwana 

 

1. Introduction 

The Late Paleozoic stratigraphic records of South America offer clues in the at-

tempt to unravel the puzzle of palaeoclimatic and tectono-sedimentary processes that 

have been classically acknowledged as a hallmark of Gondwana. The onset of glacial 

influence in Gondwana has been recognised since the Late Devonian (Caputo et al., 

2008; Montañez and Poulsen, 2013), with noticeable records even at low palaeolati-

tudes of the Appalachian region, outside Gondwana (Brezinski et al., 2010, 2008). In 

contrast to earlier models suggesting a single and protracted glaciation stage (Veevers 
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and Powell, 1987), current evidence supports a complex pattern of alternating intervals 

with and without evidence of glaciation (Fielding et al 2008a), superimposed onto a 

long-term pattern of climate change from ice-house conditions during the Carbonifer-

ous, up to warm-temperature, arid environments in the Permian (Montañez and 

Poulsen, 2013). This palaeoclimatic trend is partially recorded in the foreland areas to 

intracratonic basins in South America and has been nourished by sedimentology, stra-

tigraphy, palaeontology and isotopic geology (Gulbranson et al., 2010, 2014; Limarino 

et al., 2014; Pazos, 2017; Gregori et al., 2019). 

From a stratigraphic point of view, great effort has been spent on correlating 

and temporally organising the different Gondwanan glacial/eustatic horizons occasion-

ally obscured by tectonic deformations (Limarino et al., 2014). In the Andean context of 

South America, a revised Carboniferous chronostratigraphic scheme based on western 

Argentinian basins shows diachronous alpine and continental glaciations (Gulbranson 

et al., 2010; Limarino et al., 2014). However, some critical intervals, such as the low-

ermost Carboniferous, are still poorly understood and strongly debated. This is partially 

due to the lack of complete and well-developed stratigraphic records and specific stud-

ies. The regional apex of the Gondwanan glaciation during the Pennsylvanian eroded 

most of the underlying Mississippian rocks in South America to different degrees, leav-

ing a scarce and patchy stratigraphic record. Based on this limited evidence, a middle 

Tournaisian and a middle Visean glaciation have been suggested as the oldest Missis-

sippian glacial events in Gondwana (Caputo et al., 2008; Lakin et al., 2016). In the last 

decade, the middle Visean glaciation has been widely recognised in outcrops and sub-

surface foreland areas and intracratonic basins, especially in South America (Caputo et 

al., 2008; Gulbranson et al., 2010; Rosa et al., 2019). However, the Tournaisian glacia-

tion is still highly controversial. Evidence is scarce and is mainly derived from the sub-

surface (Caputo et al., 2008; Lakin et al., 2016), while revisions based on described 

outcrops lack virtually any record of glacial activity (Limarino et al., 2014; López 

Gamundí et al., 1992; Niemeyer et al., 1997), despite some pre-Visean glacial evi-
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dence from Argentina, mainly from the Precordillera (Pazos, 2007) and central-western 

Patagonia (Taboada et al., 2019). In turn, some glacial records formerly considered as 

possibly lower Tournaisian have recently been re-assigned to the Strunian, the upper-

most Devonian (e.g. Wicander et al., 2011). This might indicate an important gap in the 

LPIA record across western Gondwana, particularly during the lowermost Mississippi-

an. Such a limited ice-proximal record hinders our understanding of Tournaisian cli-

mate and puts into question the nature and origin of pervasive ice-distal isotopic rec-

ords (Yao et al., 2015). 

In this contribution, we analyse a very thickness Tournaisian siliciclastic marine 

succession in the Río Blanco basin, exposed at Sierra de Las Minitas, western Argen-

tina, south-central Andes (see Fig. 1). With ~1400 metres thick, this succession consti-

tutes the first compelling evidence of glaciomarine lower Mississippian outcropping in 

South America, and at the same time the most significant record for the Tournaisian of 

this region. In addition to the interpretation of the tectono-stratigraphic development of 

the basin, this study allows us to improve our understanding of the earliest stages of 

the LPIA in southwestern Gondwana by filling in the above-mentioned stratigraphic 

gap. For local and regional correlations, we dealt with available biostratigraphic 

schemes (e.g. Limarino et al., 2014; Carrizo and Azcuy, 2015), whereas the basin 

provenance was addressed using detrital zircon ages. Our work combines different 

data sets (stratigraphic, palaeontological and geochronological) in order to assemble a 

logical sequence stratigraphic framework. All this information allows us to interpret the 

tectonostratigraphic setting of the basin and, in particular, the stratigraphic record indi-

cating relative sea-level changes (i.e. climatic versus tectonic controls) and their signifi-

cance for the initial development of the LPIA in western Gondwana. 

 

2. Geological setting 

For decades, the Mississippian geological history of southwestern Gondwana, 

particularly in western Argentina, has been intensely debated from palaeogeographic, 
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palaeoclimatic, basin evolution and tectonic and geodynamic scenarios (e.g. Limarino 

and Césari, 1993; López Gamundí et al., 1994; Fernández-Seveso and Tankard, 

1995). However, there has recently been some consensus on associating it with re-

gional extension to transtension along the margin (based on basin analysis: Fernandez 

Seveso and Tankard, 1995; Ezpeleta, 2009; Astini et al., 2011; Milana and Di Pasquo 

2019; volcanic geochemistry: Baez et al., 2014; Coira et al., 2016; and structural and 

geochemistry analysis of basic dykes: Martina et al., 2018). Other contributions, mainly 

based on studies of Upper Devonian-Mississippian calc-alkaline and A-type granites 

(Dahlquist et al., 2013), have suggested alternations of compression and extension 

(tectonic switching model, cf. Collins, 2002) as a consequence of episodic changes of 

the subduction angle. 

The Mississippian record exposed at Sierra de Las Minitas (Fig. 1) corresponds 

to the proto-Andean Río Blanco Basin (Limarino and Spalletti, 2006), west-central Ar-

gentina. Of the western Argentinian Mississippian proto-Andean basins, the Río Blanco 

Basin (Amos, 1964) is the most northern, while the Calingasta-Uspallata basin is locat-

ed further south. However, both basins have also been considered as depocentres of a 

single larger basin, the Uspallata-Iglesia Basin (Carrizo and Azcuy, 2015; González, 

1985). To the east, the Río Blanco Basin exhibits complex magmatism and a noticea-

ble variability in subsidence and sedimentation rates (e.g. Báez et al., 2014). These 

depocentres developed at a very high, southern latitudinal position (see Carrizo and 

Azcuy, 2015), but the tectonically driven stratigraphic patterns hinder the interpretation 

and correlation of the climatic stratigraphic signal, usually including ice influence. The 

Mississippian deposits in the Río Blanco Basin have been attracting attention since the 

mid-twentieth century, but the main focus has been on the southern part of the basin, 

while northern regions have been poorly addressed (e.g. Borrello, 1955; Scalabrini 

Ortiz and Arrondo, 1973; González and Bossi, 1986; Fauqué and Limarino, 1991; 

Coughlin, 2000; Gutiérrez and Limarino, 2006; Ezpeleta and Astini, 2008; Astini et al., 

2011; Carrizo and Azcuy, 2015; Prestianni et al., 2015, among others). 
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The structural style of the Sierra de Las Minitas is characterised by basement 

thrusts that displace metamorphic and igneous lower Palaeozoic rocks (western Sier-

ras Pampeanas) onto Upper Palaeozoic, Mesozoic and Cenozoic units. The mid-upper 

Palaeozoic units developed localised low-grade metamorphism and intense folding, 

and are intruded by uppermost Devonian to Mississippian igneous dikes (Ar-Ar ages, 

ca. 346-364 Ma, Coughlin, 2000). Evidence of these Palaeozoic deformations can also 

be seen in the different stratigraphic truncations and angular unconformities which 

separate the transgressive-regressive marine successions described below (Astini et 

al., 2005; Coughlin, 2000; Ezpeleta, 2009). 

On a regional scale, Mississippian stratigraphic units outcropping at Sierra de 

Las Minitas have traditionally been correlated with units from the Angualasto Group 

(which originally included the Malimán and Cortaderas formations in the type section, 

Limarino and Césari, 1993), exposed further south in San Juan province (Río Blanco 

and Calingasta-Uspallata basins). Figure 2 summarises the different local to regional 

lithostratigraphic nomenclatures previously used (e.g. Limarino et al., 2006, 2017). The 

bulk of the Mississippian record from Sierra de Las Minitas was originally referred to 

the poorly defined Jagüel Formation (González and Bossi, 1986), attributed to the Mis-

sissippian sensu lato (Fauqué and Limarino, 1991). Although the use of this formational 

name has persisted in the literature (e.g. Gulbranson et al., 2010), Carrizo and Azcuy 

(1998, 2015) argued that it is devoid of any stratigraphic meaning and is therefore inva-

lid and should be abandoned. An updated stratigraphic scheme for this region was pro-

vided by Azcuy et al. (1999) and Carrizo and Azcuy (2015). Three main Mississippian 

units can be identified in the study area, from the base to the top: (1) the Tournaisian 

Agua de Lucho Formation, mainly composed of shales and sandstones interbedded 

with glacial diamictites; (2) the Visean Cerro Tres Cóndores Formation, essentially 

formed of sandstones and thick polymictic conglomerates, some indicating the pres-

ence of ice; and (3) the Visean Punta del Agua Formation, consisting of coarse volca-

no-sedimentary deposits interbedded with glacial diamictites. The Pennsylvanian Río 
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del Peñón Formation unconformably covers these Mississippian successions and also 

the Lower to Middle Devonian successions that are attributed to the Talacasto and 

Chigua formations (Carrizo and Azcuy, 2015; Rustán et al., 2011). 

In the southwestern area of Sierra de Las Minitas, the stratigraphic units are ex-

posed along a slightly north-east-plunging and east-vergent asymmetrical syncline, 

known as the Agua Quemada syncline (Fig. 1). The Agua de Lucho and Cerro Tres 

Cóndores formations show a continuous exposure ~1400 metres thick in this area. We 

studied two detailed stratigraphic sections separated by 2.5 km (Supplementary Mate-

rial 1). The base of the Agua de Lucho Formation is not exposed since it is in tectonic 

contact with younger, folded Mississippian successions, while the upper limit is repre-

sented by a progressive, concordant passage to conglomeratic successions in the 

Cerro Tres Cóndores Formation. In these outcrops, the top of the Cerro Tres Cóndores 

Formation is eroded, and only 200 metres are preserved. 

It is worth mentioning that the glacial diamictites reported by Fauqué and Lima-

rino (1991) and Limarino et al. (2017) in this area are not the same as those that we 

describe here for the Agua de Lucho Formation. Diamictites previously recognised by 

these authors crop-out in a different tectonic block towards the north-west and, based 

on our field observations, probably belong to a different, undescribed, younger strati-

graphic unit. 

 

2.1 Palaeontological content and age constraints 

The sedimentary successions studied contain a rich fossiliferous record, mainly 

represented by marine invertebrates and plants. Fossil assemblages are usually domi-

nated by brachiopods and bivalves (González, 1994; Sterren et al., 2013), with subor-

dinate crinoids, cephalopods, gastropods, hyoliths, conulariids and corals. Scarce rec-

ords of bryozoans, fishes, sponges (Carrera et al., 2018) and trilobites (Vaccari et al., 

2013) are restricted to a few specific intervals (Fig. 3 and Supplementary Materials 1). 
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Plant remains have been studied by Azcuy and Carrizo (1995), Carrizo and Azcuy 

(1998, 2015) and Prestianni et al. (2015). 

Deposits herein assigned to the Agua de Lucho Formation are considered 

Tournaisian in age due to the occurrence of the index miospore Waltzispora lanzonii 

Daemon 1974, studied by Prestianni et al. (2015). This index spore was reported about 

50 m above the base of the uppermost diamictite bed in the Agua Quemada syncline 

(S6 in Fig. 3 and Supplementary Materials 1) and probably supports a middle to late 

Tournaisian age for the bearing layers (but see Playford and Melo, 2010; Lakin et al., 

2016). There is no evidence for Devonian sediments in the Agua de Lucho Formation 

in this locality, and preliminary palynological reports suggesting such an age are cur-

rently considered reworked material (see Prestianni et al., 2015). 

Records of the brachiopod Azurduya chavelensis (Amos) below and above the 

level yielding W. lanzonii (Sterren et al., 2013) support a Tournaisian age for the whole 

section of the Agua de Lucho Formation. Azurduya is a key element of the probably 

late Tournaisian Michiganites scalabrinii-Azurduya chavelensis zone (Sabattini et al., 

2001), defined in the Malimán Formation (further south of the studied region) and rec-

orded in other coeval southwestern Gondwanan basins (Cisterna, 2011; Cisterna and 

Isaacson, 2003; Isaacson and Dutro, 1999; Niemeyer et al., 1997; Rubinstein et al., 

2017; Sterren and Cisterna, 2010). 

The Cerro Tres Cóndores Formation has been considered as Visean by Carrizo 

and Azcuy (2015) based on plant assemblages attributed to the Frenguellia-

Paulophyton zone. This unit underlies the volcaniclastic Punta del Agua Formation, 

which is dated at 336–337 Myr (Baez et al., 2014; Gulbranson et al., 2010). 

 

3. Methodology 

3.1 Facies analysis and palaeoenvironmental interpretation 

Fieldwork observations consisted of the recognition of lithology, texture, colour, 

fabric and sedimentary structures, and a description of the fossil content. The smaller 
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scale architectural elements and fabric (metrics) were defined according to the terms 

outlined by Dalrymple et al. (2012) and Fielding (2018), while larger scale geometries 

(10–100 metres) were analysed according to the characteristics defined by DeCelles et 

al. (1991) and McCarthy and Plint (1998). 

 

3.2 Sequence stratigraphy 

We interpreted the vertical and lateral variation of facies associations following 

Catuneanu (2017) and Catuneanu et al. (2011, 2009). This allowed us to interpret not 

only the different types of sequence boundaries and sequences, but also their relative 

depositional systems tracts. It is important to note that the sequence stratigraphy ter-

minology has been proposed for low-latitude sequences and, therefore, might not be 

suitable to describe high-latitude glacial-influenced deposits. Considering that the stud-

ied area shows recurrent glacial records, particularly in the lower section, we also fol-

lowed the Fielding (2018) sequence stratigraphic model, proposed mainly for glacial 

environments. This sequence stratigraphy model is essentially an adaption of the clas-

sical sequence stratigraphic approaches to glacial systems (e.g. Catuneanu et al., 

2009).  

 

3.3 Provenance 

The provenance analysis was based on a compositional analysis of gravel in 

conglomerates, sandy matrix in gravelly beds and sandstones (Howard, 1993). We 

also used palaeocurrent data to interpret the location of potential source areas (cf. Pot-

ter and Pettijohn, 1977; DeCelles et al., 1983). The palaeocurrent directions were com-

puted using rose diagrams in Stereonet software (Cardozo and Allmendinger, 2013). 

Conglomerate composition and palaeocurrent measurements and their statistical anal-

yses are available in Supplementary Material 2. This stratigraphic methodology of 

provenance analysis was carried out on different outcrops of the Sierra de Las Minitas 

and nearby hills. At the top of the Cerro Tres Cóndores Formation in southern Sierra 
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Las Minitas, we complemented sedimentological techniques with U-Pb detrital zircon 

dating (see geochronological methodology in Supplementary Material 3 for further de-

tails). 

 

4. Facies Analysis, Sequence Stratigraphy and Provenance 

4.1 Facies Analysis and palaeoenvironmental interpretation 

For the study region (see Fig. 1 for location), we described and interpreted six-

teen lithofacies and seven facies associations (see details in Tables 1 and 2, Fig. 4 and 

5). Figure 3 and Supplementary Material 1 show the vertical distribution of facies and 

facies associations; together with the facies analysis, this information helped us to ana-

lyse the sequence stratigraphy. 

The Agua de Lucho Formation and the basal successions of the Cerro Tres 

Cóndores Formation contain a high-resolution record which can be used to reconstruct 

the depositional processes and palaeoenvironment of a highly complex glaciomarine 

setting, driven by autocyclic and allocyclic controls. The vertical succession and geom-

etry of the depositional units allow the reconstruction of a complex facies mosaic for the 

basal interval, where glacial influence is observed (800 metres in section A and 230 

metres in section B, see Supplementary Materials 1). The proximal glaciomarine envi-

ronment is characterised by mass flow deposits and subaqueous channels in a fan 

delta, deposited by low-temperature, highly sediment-laden underflows (see FA A in 

Table 2) with subsequent wave reworking in a shoreface (FA B). Closely associated 

with the proximal glaciomarine environment are proglacial deltaic deposits and 

rhythmites (FA C). Siltstones and mudstones with sandy beds indicate suspension 

which is cyclically interrupted by tractive currents (cf. Dalrymple et al., 2012). Locally, 

intervals with dropstones suggest a floating ice sheet (Fig. 6). The influence of icebergs 

is more pronounced in the distal glaciomarine environment (outer to inner shelf). Distal 

glaciomarine deposits include subtidal channels with glacial features (FA D). Shallow-

ing-upward successions develop from the outer-shelf to shoreface profile (FA E, F and 
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G) after glacial retreat. These coastal deposits are then overridden by the next glacial 

advance. The evidence of variations in meltwater streams and short-term advances 

and retreats of the ice front suggest temperate glaciers (cf. Powell and Cooper, 2002; 

Fielding, 2018). 

The facies associations present in the upper successions of the Agua de Lucho 

Formation (from 800 to 1260 metres in section A, and 230 to 730 metres in section B) 

suggest that this interval was deposited in a shallow coastal environment without gla-

cial influence. It is a repetitive coastal-deltaic or shelf-margin progradation, from outer–

inner shelf (FA C) to shoreface facies association (FA E, F and G). 

The deposition of the Cerro Tres Cóndores Formation is represented by an ab-

rupt coarsening-upward succession that is interpreted as a shallow water to shelf-type 

fan delta (Lønne, 1995, see FA G and H in Table 2). Internally, this unit shows moder-

ate fluctuation in relative sea level as suggested by the intermittence of fluviatile to 

shoreface conditions. 

4.2 Sequence stratigraphy 

Vertical and lateral variation of facies associations (FA) allow us to define, de-

scribe and interpret different types of sequence boundaries and depositional systems 

tracts. Figure 3 illustrates the fifteen stratigraphic sequences defined in this work, inter-

nally divided into different systems tracts (see details in Supplementary Materials 1). 

Even though successive sequences may preserve slightly different combinations 

of facies and facies associations, there is rather good consistency in the facies compo-

sition of sequences, and an idealised sequence or motif can be deduced (cf. Fielding, 

2018). The subaqueous channels (FA A) and shoreface proximal to ice front deposits 

(FA B) were interpreted as Lowstand Systems Tracts (LST) during glacial maximum. 

Fining-upward succession dominated by sandy levels with occasional subtidal chan-

nels (FA D) represents Transgressive Systems Tract (TST) deposits or glacial retreat, 

and fine-grained facies (FA C) indicate a glacial minimum or maximum flooding zone 

(MFZ). The shoreface facies associations E, F and G indicate marine to coastal shal-
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lowing-upward successions, which are typical elements of Highstand Systems Tracts 

(HST). Locally, these HST present glacial features suggesting episodic glacial advanc-

es. It is important to note that Falling Stage Systems Tract (FSST) deposits, represent-

ed by subaerial to shallow water fan deltas (FA G and H), develop above basal forced 

regression surfaces (BSFR), particularly when Lowstand Systems Tracts (LST) are 

poorly represented. 

Each stratigraphic sequence, from bottom to top, is described below (see details 

in Supplementary Materials 1). The basal boundary is not recorded and lower section 

of Sequence 1 (S1, ~200 m thick) is partially recorded. S1 is tectonically deformed and 

covered by younger deposits, so its thickness is approximated. The preserved fine-

grained basal deposits (FA C) represent a TST, where numerous dropstones suggest a 

glacial minimum. This succession is followed by shoreface deposits (FA E, F and G) 

without glacial records, representing an HST. This monotonous interval >100 m thick 

indicates relative sea-level stability as aggradation dominates over progradation. 

The erosive base of Sequence 2 (S2, ~170 m thick) is defined at a point, where 

there is an abrupt upwards transition from fine- to coarse-grained lithologies. This sur-

face is interpreted as a glacial surface of erosion. Facies directly overlying the se-

quence boundary are the coarsest in the sequence and represent the LST. Diamictites 

are interbedded with conglomerates and sandstones (FA A) fining upwards to sand-

stones with dropstones (FA B), and are interpreted as a glacial advance stage followed 

by a period of ice retraction. Overlying these facies develop thin, fine-grained biotur-

bated siltstones (FA C) that represent the MFZ. Mudrocks coarsen upwards into a 

sandstone-dominated interval showing extensive preservation of current and wave-

generated sedimentary structures containing several levels with marine invertebrate 

and plant fossils (Fig. 3 and Supplementary Materials 1). The lower to middle 

shoreface deposits (FA E and F) suggest a shallowing-upward progradation during an 

HST stage, and dropstones at the base of this interval would indicate a contemporary 

glacial advance. 
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Sequence 3 (S3, ~130 m thick) starts with an erosive surface and shows an ar-

rangement similar to S2, but without (or poor) evidences of glacial features. Above the 

basal erosive surface are thick, coarse sandstone beds with trough cross-bedding, in-

terpreted as upper shoreface facies without glacial facies (FA G) and representing the 

LST. This coarser interval is overlain by a thin fining-upward succession dominated 

locally by pelitic successions with scattered dropstones (FA C), and is interpreted as 

the final stage of the TST during glacial retreat. A progradating shallowing-upward 

trend is indicated by a transition from mid-shelf to shoreface facies (FA F and G). A 

monotonous shoreface succession up section suggests aggradation during a relatively 

stable HST stage. 

An abrupt upward transition from coarse-grained to finer lithologies represents the 

basal boundary of Sequence 4 (S4, from 95 to 110 m thick). Glaciomarine features, 

such as mudstones and fine sandstone with dropstones, are present at the base of S4. 

Profuse synsedimentary deformation is also common (FA C). The basal surface is in-

terpreted as an erosional ravinement surface (cf. Clifton, 2007) or a transgressive sur-

face of erosion (TSE, cf. Catuneanu et al., 2009). Diamictites and conglomerate lenses, 

with numerous striated and faceted clasts, carve the muddy succession (FA D), sug-

gesting the formation of subtidal channels where glacigenic sediments were transport-

ed over long distances. A shallowing-upward progradation is indicated by a progressive 

passage from inner shelf (FA C) to shoreface deposits (FA E, F and G). This succes-

sion is a stacked progradational sequence, where lower hierarchy sequences are sepa-

rated by minor erosional surfaces formed during episodic flooding events (stacked par-

asequences from 570 to 610 m, see Supplementary Materials 1). 

Sequence 5 (S5, from 40 to 115 m thick) starts with an upward transition from 

coarse-grained to finer lithologies interpreted as the beginning of the TST. The base of 

S5 is dominated by shally facies with dropstones and synsedimentary deformation that 

suggest ice rafting and iceberg grounding. However, we cannot rule out that this de-

formation is the result of mass transport (slumping and sliding) in lower shoreface to 
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inner shelf environments (FA E and C). A thin pelitic interval without dropstones indi-

cates an MFZ without glacial influence before the development of the next systems 

tract. This MFZ contains a diverse fossiliferous association (Fig. 3 and Supplementary 

Materials 1). The increase of typical lower shoreface, thick sandstone beds with drop-

stones and synsedimentary deformation towards the top (FA E) indicates an HST un-

der glacial conditions that would represent an episodic glacial advance. The difference 

in thickness of this sequence between the studied localities (sections A and B, see 

Supplementary Materials 1) may be due to differential erosion of the regional erosive 

surface of the subsequent sequence (S6). 

Sequence 6 (S6, ~70 m thick) starts with a regional (km-scale) erosive surface 

developed between the top of S5 (deep-subtidal storm-bedded facies, FA E) and the 

bottom of S6. It is represented by amalgamated conglomerates and diamictites with 

numerous striated and faceted clasts that suggest density flows in ice-proximal glacio-

marine to ice-contact proglacial environments. This surface is interpreted as a forced 

regression surface covered by proglacial subaqueous fan-deltaic facies that pass later-

ally into subtidal channels in deeper environments (FA A and B). This LST is followed 

by a fining-upward trend dominated by shally facies with progressively thinner-bedded 

and finer-grained sandstones (FA E and C), evidence of the development of the TST. 

The presence of sporadic channels, filled with amalgamated conglomerates and dia-

mictites, is interpreted as delta-front slides and slumps, reworking glacial deposits de-

rived from an onshore or tidewater ice front in deep waters (FA D). The HST at the top 

of S6 is represented by lower to upper shoreface deposits (FA E, F and G). This is the 

uppermost sequence with unequivocal glacial evidence. Spores of middle to late Tour-

naisian age were described by Prestianni et al. (2015) in the HST of this sequence 

(Fig. 3 and Supplementary Materials 1). 

Sequences 7 to 13 (S7 to S13, from 25 to ~120 m thick, see details in Supple-

mentary Materials 1) are formed of progradational systems with no glacial records and 

successive TST-HST. Facies are mainly characterised by offshore (FA C) to 
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shoreface/deltaic facies (FA E, F, G and H), indicating a shallowing-upward trend (also 

coarsening-upward). Stacked sets of shoreline successions consist of progradational 

sequences separated by erosional surfaces formed during intervening transgressions 

(TSE). The subsequent highstand normal regressive shorelines typically show a pro-

gressive reduction in accommodation rates following the maximum flooding at the end 

of transgression. The topsets show a progressive increase in conglomerate and dia-

mictite facies interpreted as shallow subaerial fan deltas to shoreface environments. 

The thickening and coarsening-upward trend with cross-bedding structures along the 

shoreface successions suggest an upward increase in depositional energy. Normal 

regressions are typically accompanied by increasing aggradation, with progradation 

rates being inversely proportional to the rates of topset aggradation (e.g. Catuneanu et 

al., 2009). The topset aggradation rates would be related to the rates of relative in-

crease in coastal elevation. Progradation rates therefore tend to increase with time 

during highstand normal regressions (cf. Catuneanu and Zecchin, 2013). This trend is 

reflected in the thickness of the beds composing the topset units. 

Sequence 14 (S14, ~140 m thick) represents a coarsening-upward succession 

and the beginning of the deposition of the Cerro Tres Cóndores Formation. S14 devel-

oped over a subaerial unconformity interpreted as a basal forced regression surface 

(BSFR). Basal deposits are dominated by lenticular and coarse conglomerates inter-

bedded with coarse diamictites and occasional greenish lithic sandstones (FA H). The 

gravelly beds show rounded clasts but sorting is very poor. The maximum clast size is 

0.25 m, suggesting a substantial increase with respect to the granulometry of previous 

successions. The presence of coarse sandstones with cross-stratification interbedded 

with imbricated coarse, poorly sorted conglomerates is a common association of shelf-

margin fan deltas (Lønne, 1995). The presence of occasionally striated and faceted 

clasts suggests that these conglomeratic systems could have developed as lateral pro-

glacial environments, probably associated with glacial retractions or the result of re-

worked glacial deposits. The existence of subaerial and subaqueous deposits indicates 
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a regressive trend after the generation of the BSFR, associated with a major base-level 

fall (falling-stage systems tract, FSST, cf. Catuneanu et al., 2017). The progressive 

decrease in the coarse fan-deltaic channel facies in relation to the psamitic shoreface 

facies (FA G) is interpreted as a transition to an LST. Thin intervals of wave-rippled 

sandstones intercalated with mudstones (FA F) suggest moderate to low energy condi-

tions in a middle shoreface, and are interpreted as the MFZ. This TST developed in 

response to periods of decreasing low-clastic input to the shoreline or increasing ac-

commodation. The overlying regressive HST records a renewed, increasingly high-

clastic input (FA H) or decreasing accommodation, resulting in fan delta progradation. 

S15 is poorly preserved and could only be reconstructed in the eastern section B 

of Agua Quemada syncline (Fig. 1 and Supplementary Materials 1). It is partially cov-

ered and its base is not exposed. The studied sections contain a TST followed by a 

regressive HST, similar to the S14 arrangement. The detrital zircon sample (MIN-190, 

see below) was taken in the HST interval. 

 

4.3 Provenance analysis of the Cerro Tres Cóndores Formation 

4.3.1 Conglomerate composition and palaeocurrents 

On the Cerro Tres Cóndores hill (Fig. 1), this formation is dominated by lenticular, 

coarse lithic sandstone (> 50% lithic fragments) and conglomerates, with clast compo-

sition dominated by coarse subarkosic sandstones and dark grey greywackes to meta-

greywackes (~72%), granites (~15%), green shales (~8%) and volcanics (~5%). In the-

se outcrops, scarce palaeocurrent data (n=8) show a SW flow direction (mean vec-

tor=233°) with little dispersion. On the Punta Negra hill (~5 km E of the stratotype, Fig. 

1), clast composition is dark sandstones (~57%), felsic volcanics and granites (~25%), 

gabbros and pillow basalts (~12%) and marble and phyllites (~6%). The predominant 

SSE palaeocurrents (mean vector 171°, n = 34) show high dispersion of data (see 

Supplementary Materials 2) consistent with braided channels in fan systems. 
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On Mudadero hill (~10 km S of the stratotype, Fig. 1), the Agua de Lucho For-

mation (upsection) shows a progressive and concordant passage to the coarser suc-

cessions of the Cerro Tres Cóndores Formation, which consists mainly of a sandy suc-

cession with scarce, interspersed conglomeratic facies. These conglomeratic lenses 

record abundant pelitic clasts (~87%) recycled from the lower unit. Palaeocurrents 

show an average SW direction (226º mean vector, n=18). 

In the southern part of Sierras de Las Minitas (~25 km SW of the stratotype), the 

conglomerate clasts are represented by quartz-rich fragments (~53%), granites (~25%) 

and metamorphic rocks (~9%). It is important to highlight that in numerous conglomer-

atic beds, the compositional distribution corresponds to quartz clasts (~80%), granites 

(~10%), volcanics (~5%) and metamorphic rocks (~5%). The matrix content is 

quartzose sandstone/quartzite. Palaeocurrent data indicate multiple flow directions 

towards the SW and W (248° mean vector, n=22). 

 

4.3.2 U–Pb detrital zircon data from the Cerro Tres Cóndores Formation 

The sample (MIN-190) is a quartzite-clast and quartzose matrix conglomerate 

collected at the uppermost outcrop of the Cerro Tres Cóndores Formation at section B 

(S15, ~200 m above the bottom of this unit, see Supplementary Materials 1). A total of 

76 zircon grains were dated, and further information on values and methodology, to-

gether with photographs, can be found in Supplementary Material 3. The analysed zir-

cons have the following variable morphologies, recognised in decreasing abundance 

(Fig. 7a): i) euhedral and subhedral prismatic; ii) fragmented prismatic; and iii) rounded 

grains. The zircons mainly display oscillatory zoning. 

The Concordia diagrams indicate that most of the analysed zircons plot on the 

Concordia line, bracketing the interval 358–1865 Ma (Fig. 7a, 7b and 7c). The detrital 

zircon distribution pattern (Fig. 7d) shows a small group of Neoproterozoic ages, with 

Ediacaran (n = 2) and Cryogenian (n = 2) ages, respectively. The large Mesoproterozo-

ic spectrum shows a peak at 1030 Ma (n = 7) and two subordinate peaks at 1232 (n = 
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5) and 1375 Ma (n = 5). The largest group is made up of early Ordovician (Tremadoci-

an) ages with a peak at 480 Ma (n = 22). Three grains define an early Silurian subordi-

nate peak (427 Ma), while two grains at 1847 and 1893 Ma (Palaeoproterozoic) define 

the complete population (Fig. 7a–d). The youngest zircon age is 358 Ma (Fig. 7a–d), 

which represents the Devonian–Carboniferous boundary (358.9 ± 0.4 Ma, Ogg et al., 

2016). Although this age was obtained from a single zircon grain, it is strongly con-

sistent with palaeontological data. 

 

5. Discussion 

5.1 Provenance analysis and basin implications of the detrital zircon age 

data 

Provenance analysis suggests that the main source of the Cerro Tres Cóndores 

Formation was mainly the Sierras Pampeanas and locally northern Precordillera base-

ments, located to the east and north of the study area. The composition of the clasts in 

different conglomeratic facies shows a high proportion of Lower–Middle Palaeozoic 

rocks exposed near the study region (e.g. Collo et al., 2008). 

The detrital zircon age spectra of the bottom section of the Cerro Tres Cóndores 

Formation (Fig. 7d) suggests a clear input from the Proterozoic to Lower Palaeozoic 

basement of the Sierras Pampeanas, mostly exposed to the east. Mesoproterozoic and 

Neoproterozoic ages are recognised in the ―Pampean‖ basement exposed in the Sier-

ras de Córdoba, Sierra Brava and Sierra de Ancasti (Rapela et al., 2016, 2007). Never-

theless, Mesoproterozoic ages ranging from ~ 1.0 to 1.4 Ga similar to those reported in 

Fig. 7d were recognised in the western Sierras Pampeanas (Sierra de Maz, see 

Rapela et al., 2016 and references therein), to the SE of the study region. Similar Mes-

oproterozoic age ranges, together with Neoproterozoic ages (peak in 620 Ma), as 

shown in Fig. 7d, were reported in the south-eastern basement of the Sierra de Pie de 

Palo (SE of the Sierra de Las Minitas), known as Difunta Correa Metasedimentary Se-

quence (Rapela et al., 2016). The age peak at 480 Ma is typical of the Ordovician ig-
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neous rocks exposed at Sierras Pampeanas and the Famatina area, supporting an 

eastward provenance (e.g. Dahlquist et al., 2013 and references therein). Ages around 

430 Ma have also been recognised in the Sierras Pampeanas (e.g. Casquet et al., 

2005). 

It is important to note the lack of zircon ages in the ranges of 2.02–2.26 Ga (Río 

de La Plata Craton, Rapela et al., 2007), 540–515 Ma (Pampean magmatism, Ianniz-

zotto et al., 2013; Von Gosen et al., 2014 and references therein) and 379–366 Ma 

(middle-late Devonian batholiths of the eastern Sierras Pampeanas such as the Achala 

batholith, Dahlquist et al. 2013). It is also important to highlight the absence of late 

Tournaisian-Visean zircon ages representative of local igneous rocks. This includes the 

range from 348–342 Ma (rhyolitic successions of the Cazadero Grande Formation ex-

posed <100 km to the NE, Martina et al., 2011; Coira et al., 2016), the nearby Potrerillo 

pluton (353 Ma, see location in Fig. 1) and the Veladero and Río Bonete stocks, with 

ages of 347 and 342 Ma, respectively (Dahlquist et al., 2018a). 

Most of these ages are probable sources exposed in pericratonic areas in the 

easternmost Sierras Pampeanas, suggesting distance control or, in the case of the 

potential Lower Carboniferous source, no exhumation or detrital damming. 

Detrital zircon ages of the Cerro Tres Cóndores Formation are roughly similar to 

those reported for the overlain Punta del Agua Formation (Baez et al., 2014) and the 

Huasco metamorphic complex (Álvarez et al., 2011). The most significant difference is 

that these units show ages of 337 Ma and 342 Ma respectively, indicating a Visean 

maximum depositional age for these formations. Recently, Dahlquist et al. (2018a) de-

scribed ages from metasedimentary and igneous rocks from the Cerro Veladero area 

(40 km to the south of Sierra de Las Minitas), reporting detrital zircon age patterns 

ranging from 342 ± 2 to 347 ± 4 Ma. This age range is similar to the volcaniclastic Ca-

zadero Grande Formation (342–348 Ma, Coira et al., 2016), located 100 km to the 

north. In turn, Gallastegui Suárez et al. (2014) reported an age of 348 ± 2 Ma for a gra-

nitic clast (retro-arc A-type granitic rocks, cf. Dahlquist et al., 2013) included in the 
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Lower Carboniferous Del Ratón Formation in the Precordillera of Argentina, 150 km to 

the SW of the study region. This igneous clast might have originated from the Sierras 

Pampeanas, or from small Carboniferous bodies exposed in the Cordillera to the SW of 

the study area. 

The Early Carboniferous ages absent from the Cerro Tres Cóndores Formation 

therefore suggest that this unit is older than the Visean volcanism of the Punta del 

Agua and Cazadero Grande Formations, and also precedes the Del Ratón and the 

Huasco Formations. Notably, detrital zircon age patterns from the Punta del Agua For-

mation (Baez et al., 2014) are very similar to those reported for MIN-190, leading us to 

hypothesise that the source area was continuous during the deposit of the Agua de 

Lucho, Cerro Tres Cóndores and Punta del Agua Formations. 

In synthesis, the composition of clast conglomerates, together with palaeocurrent 

measurements and detrital zircon age spectra, suggest a source area in the Sierras 

Pampeanas basement indicating relief formation and sediment supply from the East. 

Limarino and Spalletti (2006) defined for this region the presence of an important oro-

genic relief, known as the Proto-Precordillera, whose uplifting would have occurred 

between the Late Devonian and Mississippian. However, the provenance analysis on 

the Cerro Tres Cóndores Formation suggests that this topographic high would not have 

been a relevant source by this time. On the contrary, it would have constituted a by-

pass zone for sediments coming from the east. This is contrary to the hypothesis that 

the Agua de Lucho and Cerro Tres Cóndores Formations represent synorogenic de-

posits sourced from the Proto-Precordillera (Limarino et al., 2017). 

 

 

5.2 What driving mechanisms controlled the evolution of the Mississippian 

sequence? 

The palaeontological and geochronological data analysed herein indicate that the 

~1400-metre-thick studied section was deposited between the middle to late Tournaisi-
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an (~ 5 My). The 15 stratigraphic sequences described above can be grouped into 

three sequential models (Fig. 8): 

1) Non-glacial TST–HST sequences. This model is represented by S7 to S13 

(Fig. 8a and Supplementary Material 1). The vertical arrangement starts with fine de-

posits at the base, overlying a flooding surface, which are the product of rapid subsid-

ence and consequent transgression (TST). These relatively deep-water deposits char-

acterise the underfilled phase in the evolution of the basin. Then the succession begins 

to progradate basinward, developing upwards to shallow-water and coastal systems 

(filled phase), which could grade to fluvial facies atop (overfilled phase) (HST). The 

general change from underfilled to overfilled conditions is attributed to a shift in the 

balance between the processes that generate basin accommodation and the ability of 

sedimentary systems to fill the available space. The TST includes retrogradational faci-

es that accumulated during a tectonically driven pulse of subsidence and flooding. The 

HST forms the bulk of the sequence, and includes the progradational coarsening-

upward succession that overlies the maximum flooding surface. Due to the asymmet-

rical shape of the base-level (accommodation) curve, with fast rise (pulse of tectonic 

subsidence) followed by prolonged stillstand (tectonic quiescence), the LST tends to be 

poorly developed or absent. This marks a significant difference between extensional 

settings and tectonically stable basins such as those represented by continental 

shelves in passive margin settings (Martins-Neto and Catuneanu, 2010). However, the 

absence of indicators of local ice does not necessarily mean than a relative sea-level 

change, unconnected of glacial processes; could be related to initiation and growth of 

ice sheets remotely. Thus, it cannot be ruled out that glacio-eustacy could have played 

a complementary role in the generation of accommodation space (cf. Zecchin et al., 

2010). 

The tectonically-controlled stratigraphic framework of depositional sequences in 

extensional settings, bounded by flooding surfaces and arranged internally in several 

dominantly coarsening-upward successions, characterises the architecture of se-
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quences that develop at different hierarchical levels (Catuneanu et al., 2009; Dalrymple 

et al., 2012). Higher-frequency sequences (less than 10 metres) can be recognised, 

where smaller-scale sequences display the same coarsening-upward character. Such 

higher-frequency sequences could be attributed to smaller-scale tectonic pulses of fault 

reactivation that occur between the major tectonic events, during a time of long-term 

tectonic quiescence. A renewed subsidence pulse leads to drowning the previous de-

posits and starts a new depositional sequence (Catuneanu et al., 2009; Martins-Neto 

and Catuneanu, 2010). It cannot be ruled out that these higher-frequency sequences 

could be related to increases in sediment supplies associated with climatic variations. 

The lack of chronostratigraphic precision in these intervals goes against better defini-

tion. 

2) Glacial-influenced sequences. Variations from the typical TST–HST sequence 

can occur due to global and local factors. The overprint of climate-driven sea-level fluc-

tuations is critical. In temperate glacial environments, the maximum glacial advance is 

reflected as forced regressions followed by an LST stage (Fielding, 2018). This se-

quential model represents S2, S3 and S6 (Fig. 8b and Supplementary Material 1). The-

se sequences start with a basal erosive boundary defined by an increase in coarse-

grained and gravelly lithologies. These deposits could be interpreted as an LST asso-

ciated with a glacial maximum. They are proximal to distal glacial diamictites, some-

times interbedded with conglomerates and sandstones. A fining-upward sequence, 

formed of sandy levels to muddy beds with dropstones, laps onto the previous tract. 

This could be interpreted as a TST associated with a glacial retreat during a progres-

sive relative sea-level rise. Overlying this, bioturbated siltstones with marine inverte-

brate fossils are common. Generally, no oversized clasts are observed in this level, 

which is interpreted as a MFZ with no glacial indicators (ice minimum). A coarsening-

upward trend is indicated by a transition to a sandstone-dominated interval with current 

and wave-generated sedimentary structures. During glacial retreat, the systems tracts 

prograde due to high sediment flux with deltaic sedimentation, exceeding the creation 
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rates of accommodation spaces. This results in the formation of a HST. This section is 

truncated by the following sequence boundary. 

In this model, each sequence represents relative sea-level changes associated 

with the advance-retreat events of glaciers, with the influence of ice activity. These se-

quences coincide with the idealised glacial sequence model proposed by Fielding 

(2018). It is important to note that this model explains the intermittent glacial records in 

an extensional basins context, in which sea-level fluctuations result from the combina-

tion of autocyclic, palaeoclimatic and tectonic activity. However, unlike Fielding (2018), 

our model includes lower fining-upward and upper coarsening-upward sets quite similar 

to that described for sequences that represent a progressive removal of ice and a con-

sequent glacio-isostatic effect (Dietrich et al., 2018). This suggests that the sequences 

described here might be (at least partially) a consequence of a relative sea-level fall, 

related to the glacial-driven isostacy rather than a glacial-driven palaeo-eustatic fall 

associated with an ice sheet growth, or a highstand progradation during an interglacial 

episode. After an event of glacial unloading, the Earth deforms viscously on time scales 

of 103–105 yr. as the mantle flows back into the depressed region (Conrad, 2013). This 

triggers uplift in the region near the former ice sheet, causing (at least locally) a relative 

drop in sea level (Farrell and Clark, 1976; Clark et al., 1978; Davis and Mitrovica, 

1996). On time scales of 106 yr., and longer, sea-level changes are mainly controlled 

by plate tectonics and mantle dynamics (Harrison, 1990; Miller et al., 2005). 

In S1, S4 and S5 there are no records of a basal LST (see Supplementary Mate-

rial 1). These TST–HST sequences contained dropstones and occasional thin con-

glomerates with striated clasts in a delta-front landslide, suggesting ice rafting and re-

working of glacial deposits. This indicates an interaction of stages in which the accom-

modation space progressively diminished, with the sporadic glacial record suggesting 

an ice-distal position. These shallow-marine transgressive–regressive cycles with the 

presence of glacial features could be linked to glacio-eustatic changes (cf. Zecchin et 

al., 2010). 
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3) Non-glacial forced regression sequence. Another model of sequence strati-

graphic architecture is defined by S14, which represents a relative sea-level fall asso-

ciated with a forced regression (falling stage systems tract, FSST, cf. Catuneanu et al., 

2017, Fig. 8c and Supplementary Material 1). It refers to a stratal stacking pattern de-

fined as a downstepping of the shoreline. The absence of glacial evidence suggests 

that this fall in relative sea level is not associated with a local glacial stage. In S14, 

forced regression accompanied by the formation of a basal subaerial unconformity im-

ply that previous marine deposits were subject to erosion or sediment bypass. The 

normal regression that follows this forced regression is designated as a lowstand nor-

mal regression (LST) in response to the increase in accommodation rates followed by a 

relative sea-level rise (TST). The normal regression that follows the TST is designated 

as a highstand normal regression (HST), where the rates of accommodation decrease 

following the MFZ at the end of transgression. 

The development of very proximal conglomerates with large boulders, as well as 

the provenance of the Cerro Tres Cóndores Formation (clast conglomerate composi-

tion, palaeocurrents and detrital zircon ages), suggest exhumation and relief formation 

to the East since ~350 Ma. We disregard a local glacio-isostatic adjustment to explain 

this regional uplift, since this unit is deposited 500 m (and six sequences) above the 

last glacial record (see Supplementary Materials 1) and is not consistent with the re-

sponse time of this post-glacial rebound, which has a duration on timescales of thou-

sands to hundreds of thousands of years (cf. Milne and Mitrovica, 2008; Dietrich et al., 

2018). Glacial isostatic adjustment would have been over long before Sequence 14 

was deposited (105 to 106 Ma later). It is important to remember that the next glacial 

event in this region occurred ~12 Myr later (Limarino et al., 2014; Milana and Di 

Pasquo, 2019, Fig. 9), thereby ruling out a glacio-isostatic origin. However, an im-

portant drop in sea level in northern Gondwana at the Tournaisian–Visean boundary is 

considered to record the development of an ice-cap and to herald a change to the Car-

boniferous climate with glaciations (Lees, 1997; Bábek et al., 2013; Poty, 2016). Never-
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theless, the lack of temporal accuracy of the FSST at the base of the Cerro Tres 

Cóndores Formation (late Tournaisian to early Visean) does not allow us to establish 

with exactitude this global sea-level fall as the main cause of the generation of this sur-

face. On the other hand, according to the regional setting, an alternative is related to an 

isostatic rebound by crustal/lithospheric thinning, as suggested by palaeotopographic 

analysis and mafic rock geochemistry (cf. Dávila et al., 2016; Martina et al., 2011). 

 

5.3.1 Glacial extent during the middle Tournaisian 

It is widely acknowledged that the Late Palaeozoic Ice Age began at the end of 

the Famennian and lasted until the middle Permian (Isaacson et al., 2008; Caputo et 

al., 2008; McGhee, 2018; Montañez and Poulsen, 2013). However, little is known about 

the temporal and geographic extent of ice centres during most of the Mississippian 

(Caputo et al., 2008; Lakin et al., 2016). Although the Tournaisian has usually been 

regarded as an interval where cold climates prevailed (Rygel et al., 2008), there is am-

biguous evidence for the presence of ice centres (Frank et al., 2008; Lakin et al., 2016; 

Saltzman, 2002). 

Ice-distal isotopic and stratigraphic data suggest the presence of ice centres in 

Gondwana. Tropical brachiopod calcite δ18O values indicate a short but important 

cooling event in the middle Tournaisian, with tropical sea temperature lower than the 

last glacial maximum (Giles, 2012). Conodont apatite δ18O values also point to a cli-

matic cooling comparable to the transition to the last glacial maximum (Buggisch et al., 

2008). Moreover, a short, global mid-Tournaisian δ13C excursion occurring at the 

same time also underscores glaciation across Gondwana (Buggisch et al., 2008; 

Saltzman, 2003, 2002; Yao et al., 2015). The bulk of these data agree with stratigraph-

ic information that suggests glacial eustasy close to the Kinderhookian-Osagean 

boundary (Kammer and Matchen, 2008; Matchen and Kammer, 2006; Wallace and 

Elrick, 2014). 
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Although the Tournaisian regularly experienced intermediate eustatic changes 

(20–25 m), such fluctuations cannot be unquestionably regarded as evidence for gla-

cial eustasy (Rygel et al., 2008). However, high frequency stratigraphic cycles coupled 

to shifts in conodont apatite δ18O in the latest Kinderhookian do attest to sea-level 

changes of approximately 40 m, which were most probably caused by the waxing and 

waning of glaciers (Wallace and Elrick, 2014). In addition, an extensive unconformity at 

the Kinderhookian-Osagean boundary across North America, recording a ~60 m sea-

level drop, further supports the growth of ice centres in the Southern Hemisphere 

(Kammer and Matchen, 2008; Matchen and Kammer, 2006). These eustatic fluctua-

tions suggest ice volumes ranging from ~15*10^6 km3 to ~28*10^6 km3 and a mini-

mum glaciated area of approximately 6.5*10^6 km2 (following Crowley and Baum, 

1991; Isbell et al., 2003). 

Such expected ice volume and glaciated areas based on records from North 

America contrast with the scarce record of mid-Tournaisian glacigenic sedimentary 

deposits in Gondwana (Caputo et al., 2008; Lakin et al., 2016; Playford et al., 2012). 

Positively identified mid-Tournaisian diamictites in South America are currently limited 

to the subsurface of northern Brazil (Caputo et al., 2008; Playford et al., 2012). Alt-

hough both Caputo et al. (2008) and Playford et al. (2012) indicated that these diamic-

tites extend throughout the Solimões, Amazon and Parnaíba basins (Fig. 9), Lakin et 

al. (2016) pointed out that only Parnaíba diamictites have been described and biostrat-

igraphically constrained. Glacial records in the Valle Chico Formation from Tepuel 

Genoa Basin in Patagonia recently assigned to the Tournaisian (Taboada et. al 2018, 

2019), and  dropstones and glacially influenced soft-sediment deformation in the mid-

Tournaisian Waaipoort Formation of South Africa (Evans, 2005, 1999; Lakin et al., 

2016; Streel and Theron, 1999) indicate further glacigenic deposits elsewhere in 

Gondwana. 

The record of glacial diamictites in the Agua de Lucho Formation increases the 

number of positively identified glacial records and extents the glaciated area in Gond-
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wana. However, it is difficult to consider that these three regions were related to a sin-

gle ice sheet, since the Argentinian glacial records were ~3500 km away from the Bra-

zilian, and ~2500 km from those in South Africa (Fig. 10), and a single ice sheet would 

imply a much larger glaciated area than expected based on glacial eustacy (Rygel et 

al., 2008). It is more probable that at least a few glacial caps were present during this 

glacial interval. Despite being a distance apart, all three glaciated regions occurred at a 

minimum of 60º S palaeolatitude (Van Hinsbergen et al., 2015). This could suggest that 

ice caps were restricted to high latitude regions, in contrast to later Pennsylvanian–

Permian ice caps which were usually located away from the south pole (Montañez and 

Poulsen, 2013). 

 

5.3.2 The hierarchical structure of Mississippian climatic variability in west-

ern Argentina 

In the last ten years, the Late Palaeozoic Ice Age has been interpreted as nu-

merous ice centres of variable size that waxed and waned diachronically across 

Gondwana (e.g. Montañez and Poulsen, 2013), causing a complex temporal dynamic 

characterised by the development of asynchronous glacial intervals (1–8 Myr long) 

separated by non-glacial intervals (Fielding et al., 2008a, 2008b). Further shorter cli-

matic fluctuations are present within glacial intervals, indicating short-term advances 

and retreats of local glaciers and generating a stratigraphic pattern termed nested cy-

clicity by Birgenheier et al. (2009).  

For the Mississippian of South America, Caputo et al. (2008) put forward a 

framework with two distinct glacial intervals, one in the middle Tournaisian and the oth-

er in the middle Visean. A mid-Visean glaciation has already been confirmed in western 

Argentina after diamictites from the top of the Cortaderas Formation were biostrati-

graphically constrained (Perez Loinaze, 2007; Perez Loinaze et al., 2010), and glacial 

deposits from the Punta del Agua Formation (Baez et al., 2014) have been radiometri-

cally dated at 335.9 ±0.06 Ma (Gulbranson et al., 2010). However, this glaciation has 
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been related to the classical late Serpukhovian–early Bashkirian glacial event recorded 

across the basin (Dykstra et al., 2006; Henry et al., 2008; López Gamundí and Mar-

tínez, 2000) as a single protracted glacial episode lasting > 10 Myr and punctuated by 

an interglacial event (Limarino et al., 2014). 

The glacial record in S1 to S6 in the Agua de Lucho Formation underscores the 

development of at least one other glacial event in western Argentina. This glacial event 

can probably be recognised in other localities, since putative Tournaisian diamictites 

have previously been described by Pazos (2007) in the Malimán Formation. The lack of 

evidence of ice activity in sequences 7–15 suggests the demise of glacial conditions. 

The presence of occasionally striated and faceted clasts in the conglomerate sequenc-

es of Cerro Tres Cóndores Formation (S14 and S15) suggests that they could be the 

result of reworked glacial deposits. Similarly, at the base of the Del Ratón Formation 

(late Tournaisian–early Visean), Milana and di Pasquo (2019) observed striated clasts 

which they interpreted as being inherited from a previous glacial cycle which is not pre-

served in this Formation. 

It could be argued that a single, protracted glacial stage developed in western 

Argentina, starting at the Tournaisian and lasting until the Bashkirian, with records of 

several internal interglacial episodes. However, given the temporal scale involved in 

such climatic cyclicity (>20 Myr), it is more reasonable to interpret an alternation of gla-

cial-non-glacial intervals, similar to those developed during the Pennsylvanian–Permian 

of eastern Australia (Fielding et al., 2008a, 2008b). 

Following this model, our data suggest the development of two glacial intervals in 

the Mississippian (middle Tournaisian and middle Visean, Fig. 9), in addition to the 

well-known late Serpukhovian–early Bashkirian. Each of these are separated by strati-

graphic intervals that lack proximal ice evidence, interpreted as non-glacial intervals. 

This result implies the recognition, in western Argentina, of the Mississippian glacial 

events described by Caputo et al. (2008) in northern Brazil. 

ACCEPTED M
ANUSCRIPT

 by guest on June 12, 2020http://jgs.lyellcollection.org/Downloaded from 

http://jgs.lyellcollection.org/


Previous descriptions of the mid-Tournaisian glacial records did not focus on in-

ternal variability, related to the waxing and waning of glaciers (Caputo et al., 2008; 

Playford et al., 2012). Sequence stratigraphic analyses have also failed to recognise 

internal cyclicity within these deposits (Lobato and Borghi, 2014). Consequently, the 

idea of a single advance and retreat of glaciers was implicit for this interval. However, 

the sequence stratigraphic analysis of the Agua de Lucho Formation showed the pres-

ence of several glaciomarine cycles responding to the local advance and retreat of 

glaciers. Such stratigraphic cyclicity indicates several episodes of glacial maxima and 

minima within a single Myr-scale glacial interval. This suggests that a complex hierar-

chy of climatic variability occurred during the Tournaisian of western Argentina, from 

Myr glacial to non-glacial cycles to sub-Myr cycles of glacial advance and retreat. 

Short-frequency climatic variability within longer glacial to non-glacial alterations con-

forms to the idea of nested cyclicity described by Birgenheier et al. (2009). Thus, the 

glacial to non-glacial framework and the nested cyclicity pattern defined by Birgenheier 

et al. (2009) and Fielding et al. (2008a, 2008b) can now be extended temporally to the 

early stages of the LPIA, and geographically to the western margin of Gondwana.  

 

6. Conclusions 

The ~1400-metre-thick succession of the Angualasto Gp in the Río Blanco Basin, 

Argentina, is one of the best stratigraphic records of the Tournaisian in southwestern 

Gondwana, and reflects the regional palaeoclimatic evolution during this period of the 

Late Palaeozoic Ice Age. 

In southern Sierra de Las Minitas, studied here for the first time, two detailed 

stratigraphic sections were carried out, including the basal glaciomarine Agua de Lucho 

Formation and the basal deposits of the overlying fan-deltaic Cerro Tres Cóndores 

Formation. 

Sixteen siliciclastic lithofacies are recognised, ranging from diamictites, conglom-

erates, texturally mature sandstones, mixed sandstones and mudstones with dispersed 
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gravel, through to bioturbated and fossiliferous mudstones and associated lithologies. 

Seven facies associations are interpreted, recording a variety of marine, glaciomarine 

and at times fan-deltaic environments. Lithofacies are arranged in depositional se-

quences that record relative sea-level variations associated to tectonism and glacial 

advance–retreat cycles. Three types of depositional sequences are recognised, and 

although the trend is not monotonic, these are interpreted as recording extensional 

settings with varying degrees of glacial influence at the base of the section, to no gla-

cial influence at the top. Clast conglomerate composition, palaeocurrent measurements 

and detrital zircon age spectra suggest a source area in the Sierras Pampeanas base-

ment, indicating relief formation and sediment supply from the east. Palaeontological 

and geochronological data indicate that the ~1400-metre-thick studied section was de-

posited from the middle to late Tournaisian. 

Glacial sequences in the basal half of the Agua de Lucho Formation highlight the 

development of at least one other Mississippian (Tournaisian) glacial event located in 

western Argentina. It could be argued that it was part of a single protracted glacial 

stage (Tournaisian to Bashkirian), with records of internal interglacial episodes. How-

ever, given the temporal climatic cyclicity involved (> 10 Myr), we suggest that it is an 

alternation of glacial to non-glacial intervals, similar to those developed during the 

Pennsylvanian–Permian of eastern Australia (Fielding et al., 2008a, 2008b). Current 

data for this region of Gondwana support the development of three glacial intervals, 

namely a middle Tournaisian, a middle Visean and a late Serpukhovian–Bashkirian. 

Each of these glacial episodes is limited by stratigraphic intervals that lack any evi-

dence of proximal ice. This result implies the recognition, in western Argentina, of the 

Mississippian glacial events described by Caputo et al. (2008) for northern Brazil. 

Previous descriptions of mid-Tournaisian glacial records in other regions of 

Gondwana did not recognise internal cyclicity within these deposits (Caputo et al., 

2008; Lobato and Borghi, 2014; Playford et al., 2012), suggesting a single episode of 

ice advance and retreat for this glacial period. However, our sequence stratigraphic 
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analysis shows a complex hierarchical climatic variability with local advance and retreat 

of ice within a single Myr scale, to sub-Myr cycles. This indicates that the nested cy-

clicity pattern suggested for glacial records from other regions of Gondwana (Birgen-

heier et al., 2009; Fielding et al., 2008a, 2008b) could be extended temporally and ge-

ographically to the early stages of the LPIA and to the western margin of this supercon-

tinent. 

The shallowing-upward succession at the top of this section suggests the exhu-

mation and development of local relief to the east from 350 Ma, and two alternatives 

could be considered as the trigger: the first is related to a global sea-level fall associat-

ed with the development of an ice-cap in northern Gondwana at the Tournaisian–

Visean boundary (Lees, 1997; Bábek et al., 2013; Poty, 2016); and the second is an 

isostatic rebound by lithospheric/crustal thinning in line with geological evidence and 

models reported or proposed for this region of Gondwana (Dávila et al., 2016; Martina 

et al., 2018).  

The provenance analysis of the Cerro Tres Cóndores Formation suggests that 

Protoprecordillera would not have been a relevant source at this time, at least in this 

region. On the contrary, it would have constituted a bypass zone for sediments coming 

from the east. This is contrary to the hypothesis that the Agua de Lucho and Cerro Tres 

Cóndores Formations represent synorogenic deposits as a result of the uplifting of the 

Protoprecordillera (Limarino et al., 2017). 
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Fig. 1. Location map and regional geological information of the studied area: Sierra de Las Mini-

tas northern Precordillera, north-west of La Rioja Province, Argentina. A and B are the two sections stud-

ied in this work (Supplementary Material 1). 

 

Fig. 2. Chronostratigraphy of the Río Blanco Basin. Columns 1 to 8 document the established 

stratigraphy by previous authors and the far-right column represents the redefined stratigraphy presented 

here. 1) González and Bossi (1986), 2) González and Bossi (1987), 3) Caminos et al. (1990), 4) Fauqué 

and Limarino (1991), 5) Carrizo and Azcuy (1998), 6) Gulbranson et al. (2010), 7) Astini et al. (2011) and 

Baez et al. (2014), 8) Carrizo and Azcuy (2015). 

 

Fig. 3. Synthetic stratigraphic section of southern Sierra de Las Minitas (for more details of facies 

and palaeoenvironmental interpretation see Tables 1 and 2, and Supplementary Material 1). S1 to S15, 

number of sequences (see below). LST, lowstand systems tract; TST, transgressive systems tract; HST, 

highstand systems tract; FSST, falling-stage systems tract; bsfr, basal surface of forced regression; mfs, 

maximum flooding surface; tse, transgressive surface of erosion. (a) and (b) Azurduya chavelensis 

(Amos). PULR-I 7; PULR-I 8; Scale bar = 5 mm. (c) Palaeoneilo subquadratum González, PULR-I 6 Scale 

bar = 5 mm. (d) Minitaspongia parvis Carrera et al. PULR-I 4 Scale bar = 10 mm. (e) Waltzispora lanzonii 

Prestianni et al., PULR-166 Scale bar = 5 µm. (f) Panoramic photo of sequences 4, 5 and 6. 

 

Fig. 4. Photographs representative of lithofacies listed in Table 1. See Supplementary Materials 1 

for location of the photographs in the stratigraphic sections. (a) Facies 1, laminated mudstones with dis-

persed gravel and an impact depression beneath the outsized clast, indicating that the mud has been 

deformed beneath ice-rafted dropstones. (b) Facies 2, interbedded mudstones and fine-grained sand-

stones, with dispersed extraformational gravel of granite composition (arrow). (c) Facies 3, sandy siltstone 

with dispersed gravel. (d) Facies 4 and 7, massive, well-sorted sandy beds interbedded with stratified 

diamictites with outsized clasts. (e) Facies 5, cohesive debris-flow lenses (diamictitic, with outsized clasts) 

intercalated with synsedimentary-folded sandy wedge. (f) Facies 6, faceted and striated clast observed in 

tabular diamictite. White arrows indicate some of these striations. (g) Facies 7, stratified thin diamictites 

with outsized clasts. (h) Facies 8, lenticular, massive, polymictic and poorly sorted bed in the clast-

supported conglomerate. 
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Fig. 5. Photographs representative of lithofacies listed in Table 1. See Supplementary Materials 1 

for location of the photographs in the stratigraphic sections. (a) Facies 9, tabular sandstones with hum-

mocky cross-stratification. (b) Facies 10 is a coquinite, a limestone formed almost entirely of sorted and 

cemented fossil debris, most commonly coarse brachiopod shells and shell fragments. (c) Facies 11, a 

coarse-grained quartz sandstone with high-angle cross-stratification. (d) Facies 12, medium to fine sand-

stones with low-angle to parallel stratification and often wavy-bedded structures. (e) Facies 13 (F13), 

lenses of coarse and yellowish sandstone, with trough cross-bedding structures; and facies 14 (F14), tabu-

lar and amalgamated, fine to very fine massive sandstones. Both facies are interpreted as high-energy 

flows in foreshore to upper shoreface environments. (f) Facies 15, > 30 m of a continuous succession of 

irregular lenses of coarse to fine quartz conglomerates. (g) Facies 15, details of clast-supported, poorly 

sorted, well-rounded and quartzitic conglomerates. Normally these are massive lenticular beds with mark-

edly erosive bases. (h) Facies 16, tabular diamictites, with inverse gradation, from Mx-supported in the 

base to clast-supported (plug) at the top. Note the angular clasts. Mx of fangolites. 

 

Fig. 6. (a) and (b) Dropstones in heterolithic facies. Note basal lamination folding, drape structure of 

the laminated sediments over the clasts and the characteristic morphology of bullet-nose facet of pebble. 

 

Fig. 7. (a) Wetherill-type and (b) Tera–Wasserburg plots for detrital zircon U–Pb LA-MC-ICP-MS 

data of the Cerro Tres Cóndores Formation, sample MIN-190. Analyses with an error greater than 10% 

were rejected. The youngest zircon age is in red colour. (c) Tera–Wasserburg plots and calculated ages 

for detrital zircon U–Pb LA-MC-ICP-MS data of the Cerro Tres Cóndores Formation, sample MIN-190. n = 

number of analyses used in the calculation (data in Supplementary Materials 3). (d) Zircon probability 

density plots from Cerro Tres Cóndores Formation, sample MIN-190. Representative zircon morphology is 

shown in (a), where number of spot (e.g. 57.1) and ages in Ma (e.g. 477) are reported. All the analysed 

zircon grains are displayed in Supplementary Material 3. 

 

Fig. 8. Graphic logs summarising the three sequential models and their location in a synoptic 

transect from on-shore to off-shore (red rectangle). (a) Graphic log of S9 showing a non-glacial TST–HST 

sequence model, with a basal transgressive surface of erosion (TSE) in which the accommodation space 

is mainly conditioned by tectonic subsidence. (b) S6 an example of the advance and retreat of glaciers. 

GSFR (glacial surface forced regression) represents the basal sequence boundary. Glacial Lowstand 

Systems Tract (LST) is formed of diamictites and conglomerates with glacial imprint. In the transgressive 

stage (TST), dropstones and soft-sediment deformation structures are characteristic of ice rafting. Maxi-
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mum flooding zone (mfs) usually has a high fossil content. The Highstand Systems Tract (HST) does not 

normally have glacial records. (c) Graphic log of S14 as a non-glacial FSST–TST–HST sequence model, 

which shows a marked basal surface forced regression (BSFR) interpreted as a relative sea-level fall as-

sociated with a source area uplift. 

 

Fig. 9. Summarised overview of confirmed and putative Tournaisian diamictes in Gondwana and 

their stratigraphic context. Modified from Lakin et al. (2015) based on Evans (2005), Pazos (2007), Perez 

Loinaze et al. (2010), Baez et al. (2014) and Milana and Di pasquo (2019). 

 

Fig. 10. Palaeogeographic map for the studied interval (~350 Ma) showing the location of glaciat-

ed regions during the middle Tournaisian across Gondwana. A) Agua de Lucho Formation (Río Blanco 

Basin, Argentina), B) Poti Formation (Parnaíba Basin, Brazil) and C) Waaiport Formation, Witteberg Group 

(Karoo Basin, South Africa). Modified from the plate motion model of Torsvik et al. (2012). 
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Table 1. Summary of lithofacies recognised in southern Sierra de Las Minitas, with process interpretations. 

Lithofacies classification scheme (after Miall 1996). In the second column are the photographs correspond-

ing to each facies (Figures 4 and 5). 

 

Facies Description  Interpretation of processes 

1 Fl  

(Fig. 4a)  

Laminated to massive green to black 

mudstones (1-10 cm thick). Stringers of 

coarser-grained sands are common. 

Slightly wavy lamination is sometimes 

present. Extraformational dropstones 

(granitic, metamorphic and limestones) of 

1 to 15 cm and intense bioturbation are 

common. 

Deposition from suspension or low ener-

gy currents (Bann and Fielding, 2004; 

MacEachern and Bann, 2008). Drop-

stones represent supply of clasts from 

ice rafting.  

2 Fl + Sr 

(Fig. 4b 

and 6a and 

b)  

Intervals of 1 to 10 m of interstratified 

mudstones, siltstones and very fine yel-

lowish tabular sandstones (2 to 5 cm 

thick). Bioturbation and ripple structures 

are common. Intense soft-sediment de-

formation interbedded between non-

deformed horizons are frequent. Drop-

stones under 5 cm are common. 

Alternation of siltstones and mudstones 

with sandy beds indicate suspension in-

terrupted by tractive currents (cf. Dal-

rymple et al., 2012). Soft-sediment de-

formation, indicating high-gradient 

slopes, and dropstones suggest ice raft-

ing. 

3 Sg-Flg 

(Fig. 4c) 

Sandy siltstones with outsized clasts, fin-

ing-upward graded bedding and sharp-

bounded. Dropstones are common. 

Soft-sediment deformation between 

poorly or non-laminated/stratified intervals 

occur. Locally these beds are fossiliferous 

and bioturbated. Layers are 10 to 30 cm 

thick. 

Density flows, hemipelagic fallout and 

deformation due to slumping of beds 

during deposition. This facies could rep-

resent hyperpycnal flows, where the fin-

er-grained outwash sediment carried in a 

buoyant meltwater plume rises suddenly 

to the free water surface and transports 

abundant fine sand, silt and mud (Mulder 

et al., 2003). Dropstones suggest ice 

rafting influence. ACCEPTED M
ANUSCRIPT
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4 Tabular 

Sm 

(Fig. 4d)  

Well-sorted, fine, tabular, massive, green-

ish-yellow sandstones showing diffuse 

borders. Horizons are 2 to 10 cm thick. 

Abundant tool marks (groove, bounce and 

prod casts). Bioturbation is present, as 

well as occasional small-scale load struc-

tures.  

Rapid deceleration of a hyperconcen-

trated flow. Overloading and high sedi-

mentation rates indicated by load struc-

tures. This facies implies high rates of 

sand supply in varying water depths 

from offshore to shoreface (cf. Clifton, 

2007; Johnson and Baldwin, 2002). 

5 Dmm + 

Gm 

(Fig. 4e) 

Lenticular beds of extraformational coarse 

diamictites and thin conglomerates 

(< 0.20 m), usually amalgamated. Beds 

are 4 m thick. Lateral extension is no 

greater than tens of metres. Synsedimen-

tary intraformational folds are common. 

Faceted, bullet and striated clasts are 

present (Dmax 10 cm). 

Cohesive and fluid flows (hyperconcen-

trated and residual deposits, cf. Powell, 

1990; Mutti, 1992), indicating reworking 

of glacial deposits. Synsedimentary-

deformed glacial deposits characteristic 

of submarine gravitational resedimenta-

tion of subglacial till (cf. Eyles et al., 

1985; Lønne, 1995) 

6 Dmm 

(Fig. 4f) 

Tabular, massive and extraformational 

diamictites (granitic, metamorphic and 

limestones clasts). Beds are 0.50 to 3 m 

thick. Their lateral extension ranges 

from tens to hundreds of metres. Muddy 

to sandy matrix. Mx/Cl ratio is 10:1 to 

1:1. Sub-rounded to rounded, striated, 

faceted and bullet-shape clasts are 

common (Dmax 20 cm).  

Geometry and internal bed organisation 

indicate density flows. Striated, faceted, 

and bullet-shape clasts suggest rework-

ing of glacial deposits 
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7 Dms 

(Fig. 4g) 

Tabular, stratified diamictites with yellow-

ish coarse sandy matrix. Beds are 10 to 

50 cm thick separated by thin mudstone 

partitions. Bed lateral extension of tens of 

metres. Mx/Cl 5:1. Sub-rounded to 

rounded, striated, faceted and bullet-

shape clasts (Dmax 8 cm) as well as 

outsized clasts rupturing strata 

(> 40 cm) are frequent. More than 20% of 

the diamictites show stratification (similar 

to Dmm), represented by stringers and 

channels of gravels or intercalations of 

sandy/silty layers. 

Stratification of diamictites indicate dilute 

subaqueous density flows. This process 

allows the differentiation of discrete lay-

ers of finely-laminated tabular diamictites 

with thin mudstone partitions, suggesting 

settling product after episodes of drop 

mass and fluctuations in deposition from 

a meltwater plume (cf. Kellerhals and 

Matter, 2003). Striated, faceted and bul-

let-shape clasts suggest reworking of 

glacial deposits. Outsized clasts are 

interpreted as ice rafted debris. 

8 GGm 

(Fig. 4h)  

Coarse, lenticular, poorly-sorted, normally 

graded, cross-bedded conglomerates with 

very erosive base and boulders > 50 cm 

in size. Greenish, brown or purple colour. 

Mx / Cl ratio 1: 1. Faceted, bullet and 

striated clasts are observed. Clast com-

position: granites, metamorphic rocks, 

limestones, dark sandstones, felsic vol-

canic clasts. 

Geometry and internal bed organisation 

indicate turbulent high-energy diluted 

and turbulent flows. The colour variation 

of these channels suggests changes in 

oxidation conditions (subaqueous to 

subaerial). Striated, faceted and bullet- 

shape clasts are interpreted as rework-

ing of glacial deposits 

9 Shp 

(Fig. 5a)  

Yellow-greenish and tabular sandstones 

with hummocky structures. Flat bases 

and ripples are common (climbing, wave 

and asymmetric). 

Aggradation of sand originated by a 

combination of oscillatory and combined 

flow. 

10 Smb+St 

(Fig. 5b) 

Coquinite, detrital limestone consisting of 

shells or shell fragments, matrix to occa-

sionally shell supported. Almost 95% bra-

chiopods, rare nautiloids and bivalves. 

Fine sandstones with cross-stratification 

and occasional ripple lamination are in-

terbedded. 

Bioclastic bars, deposited in subtidal 

conditions (cf. Longhitano, 2011). 
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11 Smq 

(Fig. 5c) 

Poorly sorted, massive and coarse 

quartzitic sandstones (95% Qz, Dmax 

1 cm). Tabular beds, normally amalga-

mated in sets > 3 m, that show high angle 

cross-stratification and rare asymmetrical 

ripples. 

Channels and bars of intertidal to sub-

tidal sands.  

12 Fine Sl + 

Sr 

(Fig. 5d) 

Tabular, medium to fine, normally graded 

sandstones with low-angle to parallel 

stratification. Wavy structures are com-

mon. Normally 5–30 cm thick and 20–

50 m lateral extension. 

The normal grading and the parallel lam-

ination suggest deposition from suspen-

sion and/or deposition as bedload 

transport by traction currents for the 

coarse-grained sandstones. The wavy 

structures may be an alternative sign of 

tractive currents and mud suspension 

under wave action. 

13 Coarse Sp 

+ St 

(Fig. 5e) 

Coarse to medium sandstones, with large 

planar and/or trough cross-bedding struc-

tures. Beds > 2 m thick. Normal gradation 

and usually amalgamated banks. Gravel 

layers and pelitic intraclasts are frequent. 

Waning flows from tractional, high ener-

gy, fluid flows that reduces upward to 

low-flow regimes to decantation. Coarse 

gravelly sand on a high-energy coast. 

14 Sm 

(Fig. 5e) 

Fine to very fine massive sandstones. 

Tabular (1 m thick), usually amalgamated 

without fine partitions. Occasionally, par-

allel diffuse lamination (1–5 cm), with 

asymmetrical ripples at the top. Many 

wisps of scattered lycophytes. 

Clean sand, tabular geometry and mas-

sive arrangement suggests high-energy 

gravity flows. Ripples indicate wave ac-

tion. Lycophytes could indicate foreshore 

to upper shoreface environments. 

15 Gm 

(Fig. 5f and 

5g) 

Clast-supported and tabular conglomer-

ates. Orange to yellowish sandy matrix. 

Poorly sorted. Slightly irregular base. 

Dmax 15 cm. Qz 70%, granites 15%, 

sandstone 10%, bioclasts 5%. Occasion-

ally, 95% Qtz and very well-rounded. 

Turbulent high-energy traction currents. 

Unidirectional flows in shallow-water to 

subaerial settings. Locally, the composi-

tional sorting and very well-rounded 

clasts suggest wave action.  ACCEPTED M
ANUSCRIPT
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16 Fine Dm 

(Fig. 5h)   

Tabular, amalgamated diamictites (10–

80 cm thick). Inverse gradation, from Mx 

support in the base (Mx / Cl ratio 10:1) to 

clast-supported (plug) at the top. Angular 

clasts Dmax 10 cm. Fangolitic Mx. Brown 

or purple colour. 

Debris flows, shallow water to subaerial 

(cf. Postma, 1990).  
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Table 2. Description and interpretations of facies associations (FA) of the Agua de Lucho and Cerro Tres 

Cóndores Formations in southern Sierra de Las Minitas. Bold letters indicate the most abundant and 

diagnostic facies. 

  

FA   Facies Description Interpretation  Depositional 
environment 

A     

Dmm  

Ds 

Dms 

Gm 

Sm 

Fl(d) 

This association is dominated 
by greenish-grey or maroon 
diamictites and coarse con-
glomerates that represents 
> 80% of the facies association 
(Dmm, Ds, Dms, Gm). Bedding 
is poorly developed and can 
usually only be seen where 
diamictites are interbedded 
with conglomeratic and sandy 
wedges (Sm). Locally, Fl inter-
beds and are occasionally 
deformed (Fig. 4e). Striations 
are common on the fine-
grained clasts. Faceted clasts 
are common. 

Subaqueous deposition 
from: a) rainout from a high 
concentration of debris-rich 
icebergs; or (b) from sedi-
ment-laden efflux jets close 
to the grounding line of a 
glacier or ice sheet. Con-
glomerate facies represent 
erosional lags or mass flow 
deposits. The Fl (d) facies 
are interpreted as occasion-
al suspension settling sub-
sequently deformed after 
episodes of drop mass. 

Subaqueous 

channels in a fan 
delta. 

Ice contact pro-
glacial settings 

with rework of 
glacial deposits. 
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B     

Sm 

Smq 

Dm 

Ds 

Gm 

Gs 

Pale yellow to greenish-grey, 
moderately to well-sorted 
sandstones (Sm, Smq) are 
commonly interbedded with the 
diamictites (Dm, Ds) and con-
glomerates (Gm, Gs) and form 
laterally continuous sheets or 
discontinuous lenses. Bed 
thickness varies widely, from 
0.2 cm to 3 m. This association 
shows a thinning- and fining-
upward trend is common, as is 
an erosive base. Outsized 
clast (dropstones) are common 
in sandstones and diamictites. 

Multi-storey bodies interfinger 
with the surrounding turbidite 
facies associations (FA C, see 
below).  

The interfingering of multi-
storey channel deposits with 
rain-out diamictites and 
turbidites with dropstones 
indicate a subaquatic glaci-
omarine depositional envi-
ronment. Tabular sand-
stones are interpreted as 
deposition and subaqueous 
outwash fan deposits. 

This facies association sug-
gests a proximal subaque-
ous deposition through the 
release of debris from sub-
glacial conduits at the 
grounding-line fan, locally 
with subsequent wave re-
work.  

Shoreface prox-

imal to ice front. 
Local ice rafting. 

C     

Fl 

Fl + Sr  

Sg-Flg  

Dmm + 
Gm 

Mudstone beds (Fl), rhythmites 
(Fl + Sr) and density-flow de-
posits (Sg-Flg) with outsized 
clasts (dropstones) and occa-
sional interbedding defor-
mation (recumbent folds) un-
der massive diamictites and 
conglomerates (Dmm + Gm) 
with intraclasts and lenses of 
the underlying rhythmite. 

Intense bioturbation. 

Turbidites deposited in flat 
shallow channels by numer-
ous pulses of turbiditic 
events. During the pauses 
between consecutive turbid-
ites, deposition of sediment 
from rain-out of icebergs is 
suggested by intercalations 
of Dmm and dropstones. 
Deformation would be asso-
ciated to overlying mass 
transport. 

Inner-outer shelf. 
Local ice rafting.  

Quiescent suba-
queous sedimen-
tation during an 
ice retreat phase. 
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D     

Dmm + 
Gm 

Fl + Sr 

Smq 

Amalgamated tabular to lentic-
ular conglomerates and dia-
mictites (Dmm + Gm) directly 
overlie through large-scale 
erosive contact on top of fine 
deposits (Fl +Sr). Concave-
upward medium-scale erosive 
bases and planar tops. Lateral 
continuity > 500 m. Individual 
bodies show fining-upward 
arrangement with sandstones 
at the top (Smq). Mud drapes. 

Migration of 2–3D dunes 
during high-energy condi-
tions related to unidirection-
al tractive currents. The 
erosive bases, the lenticular 
geometry and the fining-
upward arrangement sug-
gest that these conglomer-
ates were deposited as the 
infill of channels. The mud 
drapes, attributed to recur-
ring energy variations that 
allow suspension settling of 
fine-grained material, to-
gether with the outcrop 
geometry, indicate tidal 
currents 

Subtidal chan-

nels 

E     

Sm/Sg-
Flg  

Fl + Sr 

Sandstone-dominated packag-
es with a lower mud proportion 
in comparison with FA C. Sm 
and Sg-Flg alternating with Fl 
+Sr (3:1 to 10:1). Dropstones 
are present. 

Intense bioturbation. 

They represent ripple migra-
tion processes and settling 
from suspension during fair-
weather conditions, alternat-
ing with sand accumulated 
by oscillatory and combined 
flows during storm events. 
Dropstones suggest ice 
rafting influence. 

Lower shoreface.  
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F     

Shp 

Smq 

Fine Sl + 
Sr 

Fl + Sr 

Smb 

Sandstones with hummocky 
and ripple structures (Shp), 
alternating with coarse, mas-
sive and normally amalgamat-
ed sandstones (Smq). Tabular 
sandstones with low angle 
parallel stratification and wavy 
structures (Sl +St). Interbed-
ded layers of silt and mud 
(<10%). Occasional coquinites. 
Moderate bioturbation. 

This FA is interpreted as the 
result of 3D subaqueous 
dune migration during high-
energy conditions dominat-
ed by wave action. The 
coarse to medium sand-
stones and the interbedded 
layers of silt and mudstones 
reflect deposition between 
fair-weather wave base and 
storm wave base. Sr inter-
calated with mudstones 
suggests moderate-to-low 
energy conditions. Co-
quinites are interpreted as 
bioclastic bars, deposited in 
subtidal conditions. Lithofa-
cial changeability is inter-
preted as alternating storm 
and fair-weather conditions 
typical for shallow marine 
strata.  

Middle 

shoreface.  

G     

Coarse 
Sp+St 

Fine Sl+St 

Sm 

Gm 

Tabular and coarse Sp+St 
delimited by irregular bases 
and undulated tops, and dis-
playing a coarsening and 
thickening-upward arrange-
ment. Alternation of Sm and 
fine Sl +St (<20%). Gm are 
common. 

The sedimentary structures, 
texture and the general 
arrangement of the sand-
stones suggest deposition in 
high-energy settings, well 
above fair-weather wave 
base. 

Upper shoreface 
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H     

Gm 

GGm 

Dm 

Sm  

Sl +St 

The coarse conglomerates are 
lenticular beds showing broad 
stratification and cross-
stratification. Gradual decrease 
in grain size from poorly sorted 
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