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The effect of magnetic interactions is a key issue for the performance of nanoparticles in magnetic
fluid hyperthermia. There are reports informing on beneficial or detrimental effects in terms of the spe-
cific power absorption depending on the intrinsic magnetic properties and the spatial arrangement of
the nanoparticles. To understand this effect, our model treats a simple system: an ensemble of identi-
cal nanoparticles arranged in an ideal chain with the easy axis of the effective uniaxial anisotropy of
each particle aligned parallel to the chain. We study the magnetic relaxation of linear chains with low
anisotropy in magnetic-fluid-hyperthermia experiments, a system that yields a larger hysteresis area than
the noninteracting case (i.e., improved specific power absorption) for all orientations of the chain (even
in the perpendicular configuration and the randomly oriented case). The most-favorable case is the chain
parallel to the external field; however, we show that the incorporation of a dipolar-field component per-
pendicular to the external field is necessary for the correct modeling of chains nearly in the perpendicular
configuration, which is not always done. The mechanism involved in the hysteresis-area increase can be
interpreted as a shift between the local field and the applied field.
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I. INTRODUCTION

Magnetic fluid hyperthermia (MFH) consists in the con-
trolled local heating of tissue through the magnetic losses
of magnetic nanoparticles (NPs) in the presence of an ac
magnetic field [1–3]. MFH is based on the fact that increas-
ing the temperature to 41–42 °C can preferably kill tumor
cells rather than normal ones [4]. When NPs are exposed
to an ac magnetic field, they absorb energy from the field,
subsequently converting it into heat. The energy absorbed
by the mass of NPs per unit time is called “specific power
absorption” (SPA) and can be obtained from the area
enclosed by a magnetization hysteresis loop times the fre-
quency of the experiment f. The hysteresis loop arises from
the dephasing between the applied ac field and the response
of the magnetic moment of the material [5]. The response
of the magnetic moment of the NPs is directly related to
the magnetic properties of the system.

For applications in MFH, the size and controlled fab-
rication of magnetic NPs are crucial issues to obtain the
desired magnetic properties. The advances achieved nowa-
days allow the fabrication of NPs with detailed control of
their size and composition [6,7]. However, there are many
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aspects associated with the characteristics of the NPs that
are relevant to their performance; for instance, interfacial
effects in core-shell systems, anisotropy, and interparticle
interactions [8–10].

The evaluation of interactions and their effect on hys-
teresis loops is crucial for the success of MFH experiments
due to NP aggregation promoted in intracellular environ-
ments [11]. Interparticle interaction is inherent to such
experiments because aggregation is caused not only by
the cellular environment but also by other factors, such as
the applied field gradient [12] or even the NP synthesis
procedure [13].

Many efforts are being made to assess the influence of
aggregation on the magnetic response of NPs, from both
the experimental and the theoretical point of view [14–
16]; however, it is a complex problem. The varied nature of
NP agglomerates with distinct spatial arrangements (clus-
ters [16,17], nanoflowers [18], rings [19], chains [20–24],
natural magnetosomes synthesized by magnetotactic bac-
teria [25], etc.) and the large set of experimental conditions
make the task of determining the effect of interactions on
the SPA of the system extremely challenging. In addition,
the orientation of the external applied magnetic field with
respect to these arrangements is also decisive for the results
of the experiments [24].
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Chainlike assemblies have shown great performance
in MFH [20–24]. The Néel relaxation time in systems
with similar characteristics is affected by interparticle
dipolar interactions, as evidenced by the work of Anand
et al. [26]. However, there is some controversy regard-
ing this subject, as some authors have reported opposing
results for other linear systems, such as Zubarev and
Abu-Bakr [27,28]. Moreover, there are some reports on
NP aggregates with different anisotropy giving different
properties [29].

From the aforementioned discussion, ideal NP-chain
arrangements are good systems for the study and charac-
terization of the fundamental effects of dipolar interactions
on the magnetic response under an ac magnetic field. In
this paper, we study in detail the mechanisms involv-
ing dipolar interactions in the magnetic relaxation of an
ideal system for MFH experiments. Our system is built
up in a simple way to gather and understand the essen-
tial effects caused by interactions in these experiments. We
consider an ideal chain of low-anisotropy NPs with their
easy axes of effective uniaxial anisotropy in the direction of
the chain, allowing different orientations of the chain with
respect to the applied field. The low-anisotropy assumption
means that the anisotropy field HK is lower than the ampli-
tude of the ac applied field H0. For this system, HK < H0
and interactions are considered; consequently the linear
response theory [30] cannot be applied. Hence, another
nonlinear model [13,31] is used for this study.

This paper is organized in four sections: Sec. I pro-
vides an introduction, Sec. II introduces the model used
and details its hypotheses, in Sec. III we show and dis-
cuss the results of our numerical simulations, and Sec. IV
presents the conclusion of this work.

II. THE MODEL

The model used in this work is based on a previous
one, in which the magnetic behavior of an ideal assem-
bly of noninteracting NPs is described as a function of the
external magnetic field and temperature [31]. We have suc-
cessfully used this model in various situations: to study the
effect of thermal fluctuations on the ferromagnetic reso-
nance of superparamagnetic particle and blocked-particle
systems [32] and to characterize the precision of first-
order-reversal-curve analysis for NP systems [33]. The
model was also effectively used to describe MFH exper-
iments; for example, to determine the influence of inter-
particle interactions in simple agglomerates dispersed in
toluene [13] and on the intracellular medium [34]. The
central idea is based on the fact that temperature plays
two fundamental roles: on the one hand, it helps to invert
the NP magnetic moment from one minimum to the other
and, on the other hand, it is responsible for reducing the
effective value of magnetization due to thermal fluctua-
tions [31]. The fraction of NPs that invert their magnetic

moment is given by the probability of finding a parti-
cle in the superparamagnetic regime L = 1 − exp(−τm/τ)

[13,31–33], where τm is the measurement time and τ is
the effective relaxation time. The effects of fluctuations
on each energy minimum are calculated by the statistical
averaging on the regions of the corresponding minimum
[35,36].

A. Noninteracting case

We assume a noninteracting single-domain NP sys-
tem with uniaxial anisotropy whose magnetic relaxation
is given by the reversal of the magnetic moment (i.e.,
Néel relaxation). Our noninteracting model is based on the
Stoner-Wohlfarth model [35], in which the energy E of a
NP, under the previous considerations, can be expressed as

E = −μ0µ · H − KV(n̂ · µ̂)2, (1)

where μ0 is the vacuum permeability, µ is the magnetic
moment of the particle, H is the magnetic field, K is its
anisotropy constant, and V is its volume. n̂ denotes the
direction of the anisotropy easy axis. This energy expres-
sion yields two minima in which the NPs can fluctuate.

Although we talk about a single NP, in our study each of
them represents an ensemble of NPs. The fraction of NPs
in the ensemble on each energy minimum is Pk, k = 0, 1,
and is called “population of the energy minimum k” from
this point forward. They satisfy P0 + P1 = 1 and are time
dependent because there is a probability L that a NP will
fluctuate between minima (i.e., the probability of being in
the superparamagnetic regime). Given P0(t) and P1(t), the
populations at time t, the evolution of the population of the
minima in a discritized time interval δt corresponds to

P0(t + δt) = P0(t) + L[P∞
0 − P0(t)], (2)

where P∞
0 is the equilibrium population associated with

the energy minimum 0. In this way, if δH is the field step,
then δH/δt is the field sweep speed, which can be calcu-
lated in a MFH experiment as 2H0f . Equation (2) can be
derived through the master equation and the Arrhenius law
[31], giving the closed-form expression L = L(H , T, τm) =
1 − exp(−τm/τ), with T the temperature. The probabil-
ity expression for L is identical to that used in kinetic
Monte Carlo (MC) simulations [26,36,37]. One difference
between the two procedures is that in the kinetic MC simu-
lations the statistical average is calculated in the usual way
for MC simulations but in our model we perform numeri-
cal integrations weighted by the Boltzmann probability on
the regions of interest.

As our model is probabilistic, to calculate the aver-
age magnetization of the system 〈μ〉 = 〈µ · H〉 we need
to consider the superparamagnetic and the blocked con-
tributions in the ensemble with probabilities L and 1 − L,
respectively. The fraction of NPs in the ensemble that are
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FIG. 1. The energy minima. The integration regions to obtain
the different contributions to the statistical average of the mag-
netic moment are colored. Bk, blocked in minimum k = 0, 1; SP,
superparamagnetic.

in the superparamagnetic regime are in thermodynamic
equilibrium and their magnetization is a state function of
H and T. Meanwhile, the blocked NPs are not in ther-
modynamic equilibrium and their magnetization depends
on their magnetic history and therefore they contribute to
the hysteresis of the system. The average for the super-
paramagnetic fraction 〈μ〉SP = 〈µ · H〉SP is obtained by
integration over all the microstates of the system. On the
other hand, for the blocked fraction, the contributions of
each energy minimum Pk〈μ〉Bk = Pk〈µ · H〉Bk (with k =
0, 1) have to be taken into account separately by integrating
wherever it corresponds. In Fig. 1, these integrations are
schematized.

With all of these considerations in mind, the total aver-
age magnetization of the system 〈μ〉 as a function of t can
be written as

〈μ〉 = L〈μ〉SP + (1 − L)
∑

k=0,1

Pk〈μ〉Bk, (3)

where the time dependence is given through the evolution
of the populations of the minima and the changes in the
minima due to the external field.

B. Including dipolar interactions

In general, interparticle interactions are a complex prob-
lem to solve, and even more so for dipolar interactions,
which are strongly dependent on the magnetic assem-
bly of the system. As already mentioned, the nonlinear
model has been modified to treat interacting NP systems
before [13,34]. However, the previous approaches were for
clusters (in particular slightly distorted hexagonal-close-
packed arrangements) in the mean-field approximation.
By contrast, in the present work we treat linear arrange-
ments in the dipole-dipole approximation by calculating
the dipolar field acting on each NP.

We consider systems of diluted chains of particles with
uniaxial anisotropy. This means that the agglomeration
level in our simulations is rather low. Moreover, collective
behavior is not exhibited, as is expected for highly com-
pact agglomerates of NPs with different anisotropy values

[38–40], contrarily to the case we are dealing with. For this
reason, each NP “retains” its identity; that is, its magnetic
state can be well described by the orientation of the mag-
netic moment of the particle. We assume that the NPs are
not in contact, and thus no exchange is present and their
interactions are only of dipolar nature.

The main idea is to include the dipolar interactions act-
ing on each particle through a correction to its local field
Hloc. Hence, the effective magnetic field that governs the
behavior of particle i can be described by the external
magnetic field H plus an interaction field Hdip i. Strictly,
we treat each particle as noninteracting but with a differ-
ent local field that accounts for the dipolar field produced
by other NPs in its position in the chain. We can do this
because we are dealing with diluted chain systems with
mild to moderate interactions where collective behavior is
not exhibited.

Several parameters are important when in a magnetic
relaxation study: anisotropy, particle size, different kinds
of agglomerates and spatial arrangements, etc. Another
path to solve the problem is to set distributions of these
parameters. Taking all of this into account, in this work,
we focus on studying the most-relevant effects of dipo-
lar interactions in one-dimensional chains of NPs, and
for this we assume the particles to be identical, with the
same size, anisotropy constant K , and saturation magneti-
zation MS, to avoid the impacts introduced by considering
any distribution of these quantities that could mask the
effects of interactions on the magnetic properties of the
system.

Focusing on the hypotheses of our model, for this spe-
cific magnetic relaxation problem, we make the following
assumptions:

(a) The magnetic relaxation of each NP can be
individually described by the model presented in
Sec. II A.

(b) A system of identical single-domain magnetic NPs
with uniaxial anisotropy arranged in an equally spaced
linear chain is considered.

(c) A diluted arrangement of chains is studied, which
allows us to ignore the interaction between NPs from
different chains.

(d) The particles positioned in the same chain interact
dipolarly with each other.

(e) The easy axis of a given particle is aligned along the
main direction of its corresponding chain. This is based
on the idea that in a chain-formation process, the dipolar
energy is minimized if the easy axes are all lined up in the
chain direction.

(f) The Néel relaxation time τ for the NPs is much
smaller than the time necessary to take H from the max-
imum applied field H0 to −H0. That is, f τ � 1, where
f is the frequency of the experiment. In addition, the
step in which the field is swept is small enough to
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(a)

(b) (c)

FIG. 2. (a) A system of diluted chains, (b) one of the chains
with its orientation with respect to the external field, and (c) mag-
netic moment, anisotropy axis, and dipolar field (with each of its
components) for individual particles of the chain.

ignore changes in the energy minima between time t and
time t + δt.

(g) We assume that HK = 2K/MS < H0. In this way,
we are sure that there are not minor loops in our simula-
tions.

Under the aforementioned considerations, the energy of
NP i can be described by the Stoner-Wohlfarth model [35].
However, as we are dealing with an interacting system, the
effective field on this particle is H + Hdip i:

Ei = −μ0µi · (H + Hdip i) − KiVi(n̂i · µ̂i)
2, (4)

where Hdip i = ∑
j �=i

{
−µj /r3

ij + 3[rij (µj · rij )/r5
ij ]

}
is the

dipolar field acting over the magnetic moment of the ith
particle µi, Ki is its anisotropy constant, Vi is the particle’s
volume, n̂i is the direction of the easy axis, and rij is the
vector that points from particle j to i.

Under hypotheses (c)–(e), the equilibrium moment of a
given particle, and as a consequence, the dipolar effective
field on a particle, lies in the plane defined by the orien-
tation of the anisotropy n̂i and the external magnetic field
H = H x̂. The system is illustrated in Fig. 2.

In this context, the dipolar field Hdip i of a given parti-
cle can be decomposed in the parallel and perpendicular

directions with respect to H as

H‖
dip i =

∑

j �=i

〈μ‖
j 〉

D3|j − i|3 [3 cos
(
φn − ϕj

)
cos φn − cos ϕj ]x̂,

H⊥
dip i =

∑

j �=i

〈μ⊥
j 〉

D3|j − i|3 [3 cos
(
φn − ϕj

)
sin φn − sin ϕj ]ŷ,

(5)

respectively, where D is the distance between the centers
of adjacent NPs in the chain, and φn and ϕj indicate the
orientation of the chain and the magnetization with respect
to H, respectively (see Fig. 2). As μ

‖
j = µj · x̂ and μ⊥

j =
µj · ŷ, 〈μ‖

j 〉 and 〈μ⊥
j 〉 denote the statistical average of the

parallel and perpendicular components of the j th magnetic
moment.

Analogously to the noninteracting case (see Sec. II A),
to calculate these averages it is necessary to take into
account the superparamagnetic and blocked contributions
with probabilities Lj and 1 − Lj , respectively. Again, the
averages for the superparamagnetic fraction, 〈μ‖

j 〉SP and
〈μ⊥

j 〉SP, are obtained from the integration over all the
microstates of the system, and for the blocked fraction,
the contributions 〈μ‖

j 〉Bk and 〈μ⊥
j 〉Bk (with k = 0, 1) have

to be taken into account for each minimum (see Fig. 1).
Summarizing, we have

〈μ‖
j 〉 = Lj 〈μ‖

j 〉SP + (1 − Lj )
∑

k=0,1 Pj
k〈μ‖

j 〉Bk,
〈μ⊥

j 〉 = Lj 〈μ⊥
j 〉SP + (1 − Lj )

∑
k=0,1 Pj

k〈μ⊥
j 〉Bk,

(6)

where Pj
k(t) is the fraction of the ensemble represented by

particle j on the kth minimum.

C. Some details of the numerical calculations

As the effects of the dipolar interactions are dependent
on the magnetic configuration of the system, we start our
calculation by considering a certain configuration C(t) =
C[µ0(t), . . . , µj (t), . . . , µN−1(t)] of the magnetic state of
a chain of N particles at time t. This means that we take
into account the orientations of the magnetic moment for
each NP. For all our treatment, we ignore the subscript that
indicates the chain, since chains do not interact with each
other and therefore this identification is unnecessary. To
calculate the interaction field acting over particle j (which
does not depend on the particle itself) at time t + δt, we
calculate Hdip j according to the expressions in Eqs. (5)
and (6) considering the previous configuration C(t). Then,
we let the magnetic state of the j th particle evolve,
obtaining a new configuration C′(t) = C[µ0(t), . . . , µj (t +
δt), . . . , µN−1(t)]. Because of hypothesis (f), we know that
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the evolution of the system between t and t + δt is
sufficiently “smooth” as to maintain the energy profile
for each NP, even when the influence of the dipolar field
generated by the rest of the NPs is considered. This guar-
antees that the aforementioned process can be applied to
our calculation. This procedure is repeated for the other
particles; nevertheless, the interaction field is always cal-
culated from the original configuration C(t). The new
total configuration C(t + δt) is achieved when all particle
moments have been updated, giving C(t + δt) = C[µ0(t +
δt), . . . , µj (t + δt), . . . , µN−1(t + δt)]. Consequently, our
process ensures that the new configuration will not depend
on the order in which the state of each particle is updated.

III. RESULTS

The magnetic properties of the particles used in the sim-
ulations are the anisotropy constant K = 5 × 103 J m−3

and the saturation magnetization MS = 4 × 105 A m−1,
which correspond to high-saturation maghemite magnetic
nanoparticles [41]. We also assume a frequency (f =
100 kHz) and a field amplitude (H0 = 32 kA m−1) that
are usual in MFH experiments, although we analyze how
changing the frequency of the MFH experiment affects the
relaxation in Sec. III B. The diameter of the NPs � is taken
to be 25 nm and the distance between them D is taken to be
40 nm. Then, the dipolar field from neighboring particles
goes approximately from 5 to 20 kA m−1.

The system is simulated at room temperature (T =
293 K). With these particle parameters and at room tem-
perature, the particles are in the superparamagnetic regime
in typical dc measurements and in the blocked regime in
MFH conditions at zero field. The probability L of being
superparamagnetic will be modified by the applied field.

For our analysis, we normalize the magnetization M and
external applied field H as m = M/MS and h = H/HK .

To start exploring the effects of interparticle interactions
in magnetic relaxation, we simulate chains oriented par-
allel to the external magnetic field (φn = 0) and others
oriented at φn = π/4 with a fixed length of N = 25 NPs
(the impact of varying the length of the chain is analyzed
in Sec. III A). The results for the magnetization hysteresis
loops of these systems are presented in Figs. 3(a) and 3(b),
respectively, for the noninteracting and interacting cases.
It is evident that dipolar interactions, in systems of this
kind, increase the area A enclosed by the loops for both
orientations.

Another interesting feature arises from the analysis of
both dipolar-field components. The insets in Fig. 3 show
the parallel and perpendicular components of the dipolar
field Hdip [with respect to the external magnetic field; see
Fig. 2(c)] as a function of h for φn = 0 and φn = π/4.
These components are normalized by MS: h‖

dip = H ‖
dip/MS,

and h⊥
dip = H⊥

dip/MS.
It is noticeable that both hdip and m exhibit hysteresis

in the same field region, as expected, with the exception
of the null h⊥

dip in the parallel orientation as a consequence
of the symmetry of the problem. This implies that for the
parallel orientation of the chain, the increase in the area of
the magnetization hysteresis loop is caused exclusively by
H ‖

dip. For this reason, it is easier to interpret the influence
of dipolar interactions in the case of the parallel config-
uration, and we proceed to further analyze this particular
situation in Sec. III C.

A. Chains with different lengths

The study of chains with different lengths has been
discussed in several articles [23,24,26]. In any case, the

(a) (b)

FIG. 3. Comparison of the magnetization hysteresis loops for the interacting and noninteracting cases corresponding to the (a) par-
allel (φn = 0) and (b) φn = π/4 orientations. For the interacting case, the insets show the normalized components of the dipolar field
as a function of the normalized external magnetic field.
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FIG. 4. Normalized magnetization as a function of the normal-
ized external magnetic field for chains of variable length N with
orientation φn = π/4. The arrow indicates the direction in which
N increases.

simulations of chains are also performed with variable
length N in different orientations with respect to the
applied field. In Fig. 4 we show the results for the aver-
age m(h) loops in the particular case of φn = π/4, but the
behavior is the same for other orientations.

It is clearly noticeable that for very short chains (N = 3
and 5) the average loop exhibits a lower coercivity than
for the longer chains (N ≥ 7) due to border effects being
an important contribution in the averaging. This feature
saturates for the longer chains, in accordance with several
previous reports [23,24,26]. Because of this “asymptotic
saturation” behavior, N = 25 is used as the length of all
the chains simulated for the results shown henceforth. In
this situation, border effects do not affect the average loops
significantly.

B. Influence of the frequency of the experiment f on
the m(h) loops

We have been studying the relaxation of NPs and
chains under a fixed frequency f of 100 kHz. However,
it is of utmost importance to know if there are signifi-
cant changes when f is varied when one is designing a
MFH experiment. When one is designing an experiment,
the experimental working conditions may be chosen tak-
ing into account the particularities of the NP system and
the application. If we are talking of MFH as a therapy,
there are several proposed therapeutical limits H0f [42,43]
that restrict the choice of the experimental conditions and
therefore need to be considered.

In Fig. 5(a), we compare the previous loops (at f =
100 kHz) with ones obtained at a much higher frequency,
f = 1 MHz; that is, the conventional upper limit in the

(a)

(b)

FIG. 5. (a) Normalized magnetization as a function of the
normalized external magnetic field for chains with orientation
φn = π/4 exposed to an ac field of different frequencies f . The
arrows indicate the direction in which f increases. (b) Dimen-
sionless area A of the m(h) loops [as the ones shown in (a) for
two frequencies] as a function of f .

field of MFH application and instrumentation. Noninter-
acting and interacting (chains) systems are both consid-
ered. The effect of increasing the frequency is to increase
the enclosed area A for the noninteracting systems. Mean-
while, for the case of interacting NP chains, a barely
noticeable effect on the coercive field HC is seen.

We simulate noninteracting and interacting systems
spanning the whole MFH frequency range (100 kHz to
1 MHz). The results are shown in Fig. 5(b), where the
dimensionless area A [the area calculated from the normal-
ized m(h) loops] is plotted as a function of f . Again, we
notice that the area of the interacting loops stays practically
the same, while the noninteracting loops increase their area
at higher frequencies but reach saturation in this frequency
range.
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C. Effect of the dipolar field in the hysteresis loops

Returning to the task of determining the influence of
the dipolar-field components on the magnetization hys-
teresis loops, it is essential to assess the problem as self-
consistent, as the magnetization hysteresis loop generates
hysteresis in the dipolar field and the dipolar field corrects
the magnetization. For each value of H , self-consistency
is attained in the numerical simulations and, equivalently,
dynamic equilibrium is reached in the experiment. The
problem is solved by our making the field sweep step small
enough as to not affect the magnetization (and therefore the
resulting dipolar field) significantly, except in the case of
magnetic moment reversal. In practice, this is achieved by
our verifying that the discretization of the field sweep does
not modify the appearance of the hysteresis loop and, as a
consequence, its enclosed area.

In Fig. 6, the results of a hypothetical experiment in the
parallel configuration are shown to illustrate the mecha-
nism through which interactions produce an increase of the
loop-enclosed area. For this configuration, only H ‖

dip needs
to be taken into account, simplifying the analysis of the
problem. As mentioned in the model description, interac-
tions do not change the intrinsic coercive field of the NPs
but they produce a shift in the local field Hloc = H + H‖

dip
on each particle. The hysteresis loop of a given interact-
ing particle as a function of Hloc [see Fig. 6(c)] will look
exactly the same as the one associated with a noninteract-
ing particle as a function of H [see Fig. 6(a)]. However,
when the magnetization for the interacting case is plot-
ted as a function of the external field (as done in a real
experiment), an increase in coercivity will be evident, as
in Fig. 6(d).

The dipolar field [see Fig. 6(b)], generates a shift �H in
the local field with respect to the external field. This can
be clearly visualized in Fig. 6 for the ascending branch of
the hysteresis loops, where solid circles represent a given
value of H and open circles represent the corresponding
Hloc for the interacting system. By symmetry, an analo-
gous situation is observed for the descending branch of the
hysteresis loops, yielding an increased coercivity.

The aforementioned ideas allow us to explain the effect
of H ‖

dip on the hysteresis given that H⊥
dip is zero for the

parallel configuration. The role of the perpendicular com-
ponent for other orientations of the chain remains to be
seen. It is relevant to study what the individual contribu-
tions of both components are for different orientations as
well as in randomly oriented chains. In this way we can
determine if H⊥

dip produces an effect to be considered in
future magnetic relaxation models.

D. Evolution of the hysteresis loops with the
orientation of the chain

For simplicity, we have analyzed the parallel configura-
tion so far, but to determine the contribution of H⊥

dip, we

(a)

(b)

(c)

(d)

FIG. 6. Interaction effects on the magnetic response of a
system with only a parallel dipolar component (i.e., φn = 0).
(a) Magnetization of a noninteracting particle and (b) parallel
component of the dipolar field as a function of the local mag-
netic field Hloc = H + H‖

dip. (c) Magnetization of an interacting
particle as a function the local field. (d) Loop given in (c) but
plotted as a function of the external magnetic field H . A solid
circle represents a given H value and an open circle represents
its corresponding Hloc value.

need to study chains in other orientations. In Fig. 7, we
present magnetization hysteresis loops for chains in dif-
ferent orientations, as well as the dipolar-field components
as a function of h. Looking at the parallel and perpendic-
ular components of the dipolar field as a function of the
applied field in Figs. 7(b) and 7(c) respectively, we can
see that hysteresis is again exhibited. For the perpendicu-
lar component, for φn �= 0, we have h⊥

dip �= 0, and when φn
approaches π/2, the enclosed area of the m(h) loop gets
smaller.

There are more effects apart from the reduction of
the area: the hysteresis loops of the dipolar components
change not only their shape but also their distribution in
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(a)

(b)

(c)

FIG. 7. Normalized (a) magnetization and components of the
dipolar field (b) h‖

dip and (c) h⊥
dip as a function of the normal-

ized external field for orientations 0 ≤ φn < π/2. The quadrant
numbers are given in boxes.

each quadrant. Independently of the corresponding orien-
tation, most of the m(h) loop-enclosed area is always in
quadrants I and III [see Fig. 7(a) for reference]. For h⊥

dip(h)

loops, a similar behavior is observed. Nevertheless, for
h‖

dip(h), the loops shift from quadrants I and III to quad-
rants II and IV as the orientation nears π/2. A detailed
study of how the changes in the shape and distribution of
the h‖

dip(h) and h⊥
dip(h) loops influence changes in the m(h)

loop is presented in the Appendix.

E. Role of the parallel and perpendicular components
of the dipolar field as a function of the orientation of

the chain

The problem of evaluating the separate influence of each
component, h‖

dip and h⊥
dip, is complicated because they both

act simultaneously in the simulation, as well as in exper-
iments performed in the same conditions. In other words,
during the evolution of the hysteresis-loop measurement
or calculation, the changes in the magnetization affect the
dipolar components dynamically. In turn, the components
also affect the evolution of the magnetization. This is why
(in the framework of this effective “interaction” between
H ‖

dip and H⊥
dip through M ) it is complex to clearly dissoci-

ate the role of each component for a given orientation of
the chain.

For our analysis, we take advantage of the control over
each component that we have in simulations: although in
the experiment there is no possibility of switching an indi-
vidual component off, in the simulation we can do it and
it can be a powerful tool for the thorough understanding
of the problem. However, because of the self-consistency
we mentioned earlier, it is not sufficient to ignore one of
the Hdip components and to evaluate the effect of the other
on the increase of the area of the loops. Thus, we imple-
ment a protocol to correctly assess this problem. Assuming
that we are interested in studying the influence of the H ‖

dip

and H⊥
dip components as a function of the orientation of the

chain φn, for each value of φn, two hysteresis loops are
simulated: one of them with both of the components (with
enclosed area AT) and the other in which we exclude the
component (H ‖

dip or H⊥
dip) that we are interested in (with

enclosed area A⊥ or A‖, respectively). Then, for each φn,
we can calculate

a‖(φn) = AT(φn) − A⊥(φn)

AT(φn)
,

a⊥(φn) = AT(φn) − A‖(φn)

AT(φn)
.

(7)

In this way, a‖ and a⊥ give us relative information about
the increase in the area of the magnetization loop related
to the respective component of the dipolar field. In addi-
tion, following the same idea as for the expressions in
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Eq. (7), we consider the parameter aT(φn) = [AT(φn) −
A0(φn)]/AT(φn), where A0 the enclosed area for the nonin-
teracting case, to analyze the influence of both components
at the same time.

In Fig. 8(a), we present the results for aT, a‖, and a⊥ as a
function of φn. It is important to note that φn is varied up to
4π/9 because above this value crossover [44] of the hys-
teresis branches, which is inherent to the Stoner-Wohlfarth
model [35], occurs.

To get a better understanding of this issue, we start by
analyzing φn = 0. In this case, H⊥

dip = 0, which causes
AT(0) = A‖(0), finally giving a⊥(0) = 0 and aT(0) =
a‖(0) [see Fig. 8(a)]. This reflects the fact that H⊥

dip has
no effect in the parallel configuration (as observed in the
insets in Fig. 3) and that all contributions come from H ‖

dip,
as previously noted.

Our results show opposite behaviors between a‖(φn)

and a⊥(φn) when φn approaches π/2. The contribution

(a)

(b)

FIG. 8. (a) Relative increases of the area aT, a‖, and a⊥ and
(b) normalized absolute area A as a function of φn.

of H⊥
dip increases, while that of H ‖

dip decreases. However,
for all orientations, the total effect of the components
is equal to or greater than that of each one separately
[aT(φn) ≥ a‖(φn), a⊥(φn)] and the effect of both compo-
nents is not a simple addition of each one [aT(φn) ≤
a‖(φn) + a⊥(φn)]. In conclusion, the influence of the par-
allel (perpendicular) component is more important near
the parallel (perpendicular) orientation of the chain. This
stresses the importance of considering that Hdip can have
a component perpendicular to H when one is modeling
chains near the perpendicular orientation, which is not
always done.

As a⊥ ≥ 0 and a‖ ≥ 0 for all φn, there is no way that
the net effect of having both components can be detrimen-
tal to the increase of the hysteresis area (i.e., the SPA) in
the systems considered. As aT ≥ 0, and we can affirm that
in low-anisotropy chains of NPs of this type, interactions
always help to increase the hysteresis area.

In Fig. 8(a) it is observed that interactions (in the case
that both components of the dipolar field are considered)
have a greater relative influence for orientations near φn =
π/2. However, the important parameter that determines the
SPA in a MFH experiment is the absolute area A, which
we plot in Fig. 8(b) as a function of φn. We normalize
the absolute enclosed area A to the area of the nonin-
teracting system in the parallel configuration A0(φn = 0).
With this in mind, we conclude that the strong increase
of a⊥ approaching φn = π/2 is a direct consequence of
the reduction of the absolute hysteresis area. Also, it is
now evident that the most-favorable case in terms of SPA
occurs when the chain is parallel to the external field.

F. Randomly oriented chains

Because of the possibility of getting randomly oriented
chains inside a cell in a MFH experiment, chains in this
condition are simulated. To accelerate the calculations, we
use the azimuthal symmetry of the problem, discretizing
the values of the polar angle φn of the orientation of each
chain and weighting the value of the corresponding area
by the solid angle (sin φn), avoiding unnecessary sweeps
of the azimuthal angle. In this particular case, we take 91
chains with consecutive, equally spaced orientations 0 <

φn < π/2. Hysteresis loops with and without interactions
are obtained. Loops where one of the dipolar-field compo-
nents is forced to zero are also simulated for comparison
[see Fig. 9(a)].

For all cases considered, the interactions help to increase
the area of the loops compared with the noninteracting
case. It is noticeable that a system with only H ‖

dip produces
a bigger loop than a system with only H⊥

dip considered.
By the definition of the solid angle, we have more chains
oriented near φn = π/2 than near the parallel configura-
tion. However, the phenomenon can be explained because,
as we pointed out before, the absolute area of the loops
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(a)

(b)

FIG. 9. (a) Normalized magnetization as a function of the nor-
malized external magnetic field for randomly oriented chains.
The loops without interactions considered (0), with both
dipolar-field components considered (⊥ + ‖), and with only one
dipolar-field component considered (⊥ or ‖) are presented. (b)
Normalized absolute hysteresis area for the aforementioned ran-
domly oriented chains and chains in the parallel configuration,
both noninteracting (0) and interacting (⊥ or ‖). A0(φn = 0) is
the area for the noninteracting case in the parallel configuration.

corresponding to chains near the parallel configuration
is considerably bigger than that of those near φn = π/2
[see Fig. 8(b)].

Moreover, it is important to note that a model for
interacting systems considering only the interaction com-
ponent parallel to the external field underestimates the area
enclosed by the loops and results in a wrong description of
the evolution of hysteresis loops as a function of H .

In Fig. 9(b), the area of the loops for the randomly ori-
ented chains in Fig. 9(a) is compared with the area for
chains parallel to the external ac field for the noninteracting

case and the interacting case. It is remarkable that inter-
actions can make up for the nonalignment of the chains,
as the hysteresis area for the randomly oriented interact-
ing chains (⊥ + ‖) is considerably larger than the area
for the noninteracting chains and is comparable to that for
the most-favorable case. This implies that the formation
of chains in a MFH experiment can considerably improve
the performance in terms of the SPA, even if they are not
aligned.

IV. CONCLUSIONS

In the case of ideal systems of low-anisotropy (HK <

H0) chains constituted by uniaxial NPs in standard MFH
experimental situations (f = 100 kHz, H0 = 32 kA m−1,
and T = 293 K), we determine that interactions always
help to increase the area of m(h) compared with the system
with noninteracting particles for specific orientations and
also for randomly oriented chains. This increase of the area
implies a higher SPA, which gives better performance in
hyperthermia experiments. We interpret this increase in the
area enclosed by the loops as the result of a shift between
the local field at the particles’ site and the external applied
field.

We show that varying the frequency of the experiment
in the range of MFH applications (100 kHz to 1 MHz) does
not affect the enclosed hysteresis area significantly. More-
over, the loops corresponding to noninteracting systems
present a small enclosed-area increase with increasing f
that saturates in the range studied, while the interacting
loops are barely modified near HC.

We study the dipolar field by decomposing it into two
components: one parallel and the other perpendicular to
the external field. Simulations of chains in different orien-
tations show hysteresis of both components of the dipolar
field with respect to the external applied field. In terms
of area (i.e., SPA), the most-favorable case is the chain
parallel to the external field.

We find a strong correlation between the distribution of
the hysteresis loops in the quadrants (that of the compo-
nents of the dipolar fields with respect to the magnetization
loop) with the influence of these components on the area
enclosed by the magnetization hysteresis loop (as pre-
sented in the Appendix). This result reinforces our idea
that the dipolar field (both components) produces a shift
in the magnetization response that results in an increase in
the area enclosed by the magnetization hysteresis loop.

We conclude that it is essential to include the per-
pendicular dipolar component in a model when chains
oriented near the perpendicular configuration are taken into
account, because this component determines the magnetic
behavior of the system. Near the perpendicular direction,
the relative influence of interactions in the area of the
magnetization hysteresis loops is larger than in the par-
allel direction. However, taking into account the absolute
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influence, we find the best scenario is when the chains
are oriented parallel to the external field, due to the larger
area of the hysteresis loop in this condition. In the parallel
and perpendicular configurations, the corresponding com-
ponent is the one that contributes the most to the increase in
the area of the magnetization hysteresis loop of the system.

Finally, in our study of randomly oriented chains we find
that if the formation of chains can be somehow promoted,
the performance of these chains in MFH experiments
will be significantly better than that of a noninteracting
dispersed-particle system, even if the chains are not
aligned with the external ac field (i.e., if they are randomly
oriented).
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APPENDIX

Study of the evolution of m(h), h‖
dip(h), and h⊥

dip(h)

loops with the orientation of the chain and its
correlation with the hysteresis area

In the particular case of the parallel configuration, we
see that the dipolar field generates a shift in the local field
that produces an increase of the hysteresis. We also study
the effect of each component of the dipolar field on the hys-
teresis of the magnetization for different φn. On the other
hand, the hysteresis loops show us that there are important
changes in their shape and distribution as we change the
orientation of the chain with respect to the external field.
Here we quantify the similarity between the loops of each
component of the dipolar field hdip and the magnetization
loop and correlate it with the effect on the enclosed area.

As we see from Fig. 7, what we call the “distribution”
of the h‖

dip(h) or h⊥
dip(h) loop (i.e., in which quadrants the

majority of the enclosed area is found) is not always the
same and it depends on the orientation of the chain, φn.
The h⊥

dip(h) loop is distributed in the usual fashion [as an
m(h) loop, in quadrants I and III]. However, the h‖

dip(h)

loop experiences a “transition”: it starts distributed as usual
and for φn ≈ 3π/8, it shifts to quadrants II and IV.

To determine what influence the changes in the distri-
bution of the dipolar-component loops have on the mag-
netization hysteresis loop of the chain, we need a way of
quantifying them. For that, we conveniently define two
parameters, C‖ and C⊥, given by

(a)

(b)

(c)

FIG. 10. (a) Ci and (b) its derivative dCi/dφn as a function of
φn. (c) Magnetization and dipolar-component-i loops when Ci ∼
1 or Ci ∼ −1, i =‖, ⊥. The quadrants that enclose most of the
hysteresis area for each loop are grayed.

C‖ =
∑

i m+(hi)h
‖ +
dip (hi)|m−(hi)h

‖ −
dip (hi)|

∑
i |m+(hi)h

‖ +
dip (hi)m−(hi)h

‖ −
dip (hi)|

,

C⊥ =
∑

i m+(hi)h⊥ +
dip (hi)|m−(hi)h⊥ −

dip (hi)|
∑

i |m+(hi)h⊥ +
dip (hi)m−(hi)h⊥ −

dip (hi)|
,

(A1)

where the general magnitude x+(hi) [x−(hi)], with x =
m, h‖

dip, or h⊥
dip, is defined as x+(hi) = xsup(hi) + xinf(hi)

[x−(hi) = xsup(hi) − xinf(hi)], where xsup(hi) [xinf(hi)] is
the value of x(hi) for the descending (ascending) branch
of the corresponding loop.

The idea in Eq. (A1) can be understood if we decom-
pose a hysteresis loop into the descending branch msup(h)

(going from H0 to −H0) and the ascending branch minf(h)

(going from −H0 to H0). We take an arbitrary field hi
and calculate the difference between the descending branch
and the ascending branch [given by m−(hi) = msup(hi) −
minf(hi)] and their sum [m+(h) = msup(hi) + minf(hi)] and
then compute their product [m+(hi)m−(hi)]. The same
procedure is conducted with the dipolar component of
interest, h‖

dip or h⊥
dip, giving h‖ −

dip (hi) [h⊥ −
dip (hi)], h‖ +

dip (hi)

[h⊥ +
dip (hi)], and their product. If msup(hi) > |minf(hi)|, this

means that in a neighborhood of hi, the loop occu-
pies a greater fraction in the upper quadrants and con-
sequently m+(hi)m−(hi) > 0. Multiplying this factor by
h‖ +

dip (hi)h
‖ −
dip (hi) [h⊥ +

dip (hi)h⊥ −
dip (hi)], we can compare the

behavior of the loop of the dipolar component in ques-
tion with that of the magnetization at a point hi. This is
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(a)

(b)

(c)

(e)(d)

FIG. 11. (a) Derivative of aT = (AT − A0)/AT (A0 being the
enclosed area in the noninteracting case) with respect to φn,
(b) C‖ and C⊥ and (c) their derivatives with respect to φn as a
function of φn. The vertical lines in (b),(c) denote the orientations
for which loops are presented in (d),(e). Dipolar-component (d)
h‖

dip and (e) h⊥
dip loops for different orientations.

the essence behind the expressions in Eq. (A1), calcu-
lated for every hi and summed up. The denominator in
the expressions is only a normalization to produce C‖ ∈
[−1; 1] and C⊥ ∈ [−1; 1], since m(h) and hdip(h) can have
very different absolute values.

Finally, the values assumed by C‖ and C⊥ are simple
to interpret: C‖ (C⊥) conveniently indicates when the loop
h‖

dip (h⊥
dip) is distributed as the m(h) loop (C‖, C⊥ = 1) or

opposite to it (C‖, C⊥ = −1), as schematized in Fig. 10. To
visualize changes in the distribution with φn more easily, it
is necessary to derive C‖ and C⊥ with respect to φn [see
Fig. 10(b)].

Moving on to the results for chains with different ori-
entations, in Fig. 11(a), we present the derivative of aT =
(A − A0)/A with respect to φn as a function of φn. This
graph represents the derivative of the aT curve in Fig. 8(a).
In Figs. 11(b) and 11(c) we show C‖ and C⊥ and the
derivatives dC‖/dφn and dC⊥/dφn as a function of φn.

The correlation between the daT/dφn, dC‖/dφn and
dC⊥/dφn curves is clear. Both daT/dφn and dC‖/dφn show
strong changes for φn � 0.35π that are correlated with the
change in the distribution of the h‖

dip(h) loop, shown in
Fig. 11(d): daT/dφn starts to increase significantly when
the h‖

dip(h) loop has a “transition” from quadrants I and III
to quadrants II and IV.

For higher φn values [when dC‖/dφn=0, so h‖
dip(h)

no longer changes its area distribution], the perpendic-
ular component starts to play a role. dC⊥/dφn slightly
decreases, meaning it could be responsible for the increase
of daT/dφn, and as consequence the increase of aT, at ori-
entations near the perpendicular one. However, the change
in the distribution of h⊥

dip(h) is relatively small [as it cannot
be clearly seen in the loops in Fig. 11(e)]. From Fig. 8(a)
we infer that the relative influence of the perpendicular
component h⊥

dip on the magnetization loop is stronger than
that of h‖

dip as the orientation becomes closer to φn = π/2.
However, this influence could be an effect due to not only
the slight change of the distribution of the loop but also an
increase in the area of the h⊥

dip(h) loop, as can be inferred
from Fig. 11(e).

With these results, we conclude that the behavior of aT
as a function of φn is closely linked to how the shape and
distribution of the h‖

dip(h) and h⊥
dip(h) loops change with

reference to m(h). Those changes are more pronounced
when φn approaches π/2. First, for φn in the range from
0.35π to 0.45π , the effect of h‖

dip dominates the evolution
of the loops [a result that complements what is observed in
Fig. 8(a)] and then the contribution of h⊥

dip(h) could cause
aT to keep increasing (regardless of the parallel-component
loop maintaining its distribution intact).
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