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Abstract 

We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical 
bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results. 
The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the 
density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those 
practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider 
natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state.  
In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented 
Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic 
simulation tool and comparing the Extended Kalman Approach with the proposed one. 
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1. Introduction 

Undoubtly traffic congestion is a major problem in most cities. A lot of work has been done in order to optimize 
the performance of traffic networks (Stanciu et al. 2012). In freeway traffic, intelligent vehicle freeway systems 
(IVHS) can give partial solutions to the traffic congestion problem (Baskar et al. 2011).  

 

 
* Corresponding author. Tel.: +54-249-4385690; fax: +54-249-4385690. 

E-mail address: mrisso@exa.unicen.edu.ar 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Transportation Research Procedia 00 2017 000–000  

 www.elsevier.com/locate/procedia 

 

2214-241X © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting.  

20th EURO Working Group on Transportation Meeting, EWGT 2017, 4-6 September 2017, 
Budapest, Hungary 

A nonlinear algorithm for traffic estimation with state constraints 
Mariano A. Risso a*, Neila Bhourib, Pablo A. Lotitoa, Aldo J. Rubialesa 

aPLADEMA, CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina 
bUniversité Paris Est, IFSTTAR, GRETIA, France.   

Abstract 

We present a real-time traffic state estimation algorithm for motorways. Natural constraints on the variables, like practical 
bounds on densities and velocities, are incorporated in the estimation process aiming to obtain better estimation results. 
The dynamic equation for the evolution of the traffic is defined by a second order macroscopic model which computes the 
density, the flow and the mean speed according to several nonlinear equations, but nothing avoids the results being out of those 
practical bounds. Different extensions of the Kalman method were already applied to this problem, but none of them consider 
natural constraints in the variables. On the other hand, general filter methods have been designed to cope with a constrained state.  
In order to incorporate the natural constraints of the traffic model, we adapt one of those methods based on the Unscented 
Kalman Filter. To validate the approach, many simulation cases over a freeway section were made using a microscopic 
simulation tool and comparing the Extended Kalman Approach with the proposed one. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 20th EURO Working Group on Transportation Meeting. 

Keywords: state estimation; Kalman filter; second order model 

1. Introduction 

Undoubtly traffic congestion is a major problem in most cities. A lot of work has been done in order to optimize 
the performance of traffic networks (Stanciu et al. 2012). In freeway traffic, intelligent vehicle freeway systems 
(IVHS) can give partial solutions to the traffic congestion problem (Baskar et al. 2011).  

 

 
* Corresponding author. Tel.: +54-249-4385690; fax: +54-249-4385690. 

E-mail address: mrisso@exa.unicen.edu.ar 

2 Author name / Transportation Research Procedia 00 2017 000–000 

These IVHS must be fed with real-time information observed in the field. As it is stated in Papageorgiou et al. 
(1990), based on some directly measured traffic variables, the estimation algorithm should calculate and complete 
all the traffic variables associated to each element of the traffic network for a given time. 

Traffic is known to have a highly non-linear behaviour (Treiber and Helbing 2002) with many vehicle 
interactions, what makes the issue of estimating the average traffic behaviour by means of aggregated variables 
absolutely challenging. Macroscopic models may be used to describe such behaviour representing the traffic average 
behaviour in terms of aggregated variables (flow, density and average speed) making use of partial derivation 
equations Hoogendoorn and Bovy (2001). The model presented in Messner and Papageorgiou (1990) considers that 
the freeway is divided into consecutively numbered sections, each one with a respective length and a number of 
lanes. For each section, the model calculates the density, the flow and the average speed according to several 
equations which accurately model the merging and lane drop phenomena Spiliopoulou et al. (2014). In Wang and 
Papageorgiou (2005) the extended Kalman filter (EKF) method uses this model for traffic state estimation.  

To cope with the nonlinearity in the model, an unscented version of the Kalman filter (UKF) applied to the 
previously mentioned model of Messner and Papageorgiou (1990) is presented in Ngoduy (2011) showing good 
results. However, the UKF method can fail when the variables are restricted, see the survey Simon (2010). 
Furthermore, for the traffic model studied here, negative speed or density values could be obtained escaping from 
the validity domain of the equations. 

In order to consider non linear constrained traffic models, some authos have consider the Particle Filter 
approach, for example, the traffic flow of a freeway stretch belonging to the northern of Beijing city in China is 
estimated in Zhang et al. (2013). In this work a particle filter algorithm based on the second-order macroscopic 
traffic flow model proposed by Papageorgiou Papageorgiou et al. (1990) is applied. Nevertheless this approach, as it 
is a sort of Montecarlo method, it has the drawback of the large number of particles needed to make a good 
estimation.   

Considering that the EKF was applied successfully in Wang and Papageorgiou (2005), that there are UKF 
variants that improve the results of the EKF method as it is demonstrated in other areas (Zhang and Xia, 2011, Risso 
et al., 2015), and that standard UKF algorithm can give estimations outside the variable domain which make the 
algorithm to stop (Teixeira et al. 2008), the goal of this work is to develop a constrained filtering method that 
combining the previous advantages overcomes the difficulties. As it is inspired by the UKF method, it is named 
Projected Interval Unscented Kalman Filter (PIUKF). 

The paper is organized as follows. In the first section we present the evolution model. In the second section, we 
pose the estimation problem, first the UKF method is described and then we present and extension that considers 
constraints. In the last section, the proposed algorithm is tested using several examples based on the microscopic 
simulator SUMO. The examples differ in the parameter setting and in the possibility of estimating them. 

2. Traffic Model 

The second order model proposed in Papageorgiou et al. (1990) is a macroscopic model for traffic simulation. In 
this model a given freeway stretch is subdivided in N  segments of length il  with i  lanes in each segment.  

 

 
Fig. 1. Variables defined for each segment in the freeway 

The length of the segments must satisfy 0> ,il Tv where 0v  is the average free speed. For each segment the 
following aggregated traffic variables are defined and shown in the fig. 1: 
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 Traffic flow ( /veh h ) is the number of vehicles leaving segment i  during the time period [ , ( 1) ]kT k T , divided 
by T ;  

 Traffic density ( / /veh km lane ) is the number of vehicles in segment i  at time kT , divided by the segment 
length il  and lane number i ;  

 Mean speed ( /m h ) is the mean speed oh the vehicles included in segment i  at time =t kT ;  
 On-ramp inflow and Off-ramp outflow ( /veh h ) in segment i .  

 
These variables verify the following equations. First, the traffic flow is related to the density through the 

fundamental diagram:  
 ( ) = ( ) ( ) .i i i iq k k v k   (1) 

 
The evolution of density is given by the following equation  
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which is an equation designed to model the dynamic evolution of the mean speed at each segment. The values 

[ / / ]veh km lane , [ ]h , 2[ / ]km h  and   are model parameters which are given the same values for all the 
segments. Considering the fundamental diagram used in this work (see Papageorgiou et al. (1990)), the desired 
speed is related with the segment density as follows 

   0
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where c  is the critical density at which the traffic flow is maximal and a  is a model parameter to adjust the shape 
of the fundamental diagram. 

The equations (2)-(3) model the system dynamics and, representing with kx  the vector of all the state variables 
(density and velocity for each segment) at time ,k  they can be written in a compact way as 1 = ( , ),k k k kx f x u where 

ku  is the input that in our case is a vector with the components 0q , 0v , ir  y is  for time .k  The measures are 
grouped in the variable ky  and the observation is given by = ( , ).k k k ky h x u  

3. State Estimation 

Basically, the estimation problem consists in solving the large scale system of nonlinear equations defined by the 
values of x  that verify given(2)-(3) some initial value for 0x  and the observations ,ky  for =1, , .k K  This is an 
inverse problem not well posed.  When the functions f  and h  are linear, the classical Kalman filter gives an 
explicit formula to obtain recursively an “optimal” solution to a relaxed version of the equations. When they are 
nonlinear functions, as in our case, a modified version of the filter called Extended Kalman Filter (EKF) can be 
applied. An example of that appears in the researchwork Wang and Papageorgiou (2005), where the authors present 
an approach to estimate the state of a freeway applying EKF method and the second order model stated in 
Papageorgiou et al. (1990). 
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To apply EKF we consider that the equations  are affected by Gaussian errors:  
 

 1 = ( , ) ,k k k k kx f x u    (5) 
 = ( , ) ,k k k k ky h x u   (6) 

 
where   and   are the error vectors for the model and the observation, assumed to be normally distributed, with 0 
mean and known covariance matrices Q  and .R  The criterium to obtain the optimal estimation is to reduce the 
mean squared error and this turn to be equivalent to reduce the sum over time of the trace of the covariances 
matrices of ˆk kx x  and ˆk ky y . The EKF linearizes the functions f  and h  around the current estimation ˆkx , and 
proceeds in two steps: 
 

Prediction step,  
 1 ˆ= ( , ),k k kx f x u

  (7) 

 1
ˆ= T

k k k k kP F P F Q
   (8) 

Correction step,  
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where kF  and kH  are the jacobian matrices obtained by linearizing f  and h  around ˆkx , and the matrix kK  is the 
Kalman gain computed by  
 

 1
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     (11) 

 
The advantage of the EKF is its recursive formula to compute the estimation, but the validity of the methodology 

strongly depends on the non linear character of the functions f  and h . In fact, the update and correction formulae 
for the covariance matrix P  are exact if the functions are linear and can be considered as good approximations if 
those functions are aproximatedly linear. This can be explained because of the identity cov( ) = cov( ) TAx A x A  but 
there is no similar identity relating cov( )x  and cov( ( ))f x  for non linear .f  When the non linearity affects the 
performance, a way to circumvect this problem is to estimate the covariance cov( ( ))f x  by means of the so called 
Unscented Tranformation the resulting method is called Unscented Kalman Filter (UKF). As stated in Valverde and 
Terzija (2011), UKF methodology improves the results obtained from EKF in many different areas of application.  

The Unscented Transformation presented in Julier and Uhlmann (2004), allows estimating the distribution of the 
random variable = ( )y f x  knowing the function f  and the distribution of the random variable .x  Such 
transformation consists in choosing a set of points { }iX  known as sigma points in such a way that their mean and 
covariance coincide with the random variable x . The function f  is then applied to the sigma points and the mean 
and covariance of ( )f x  are estimated from { ( )}if X . 

More precisely, considering the variable x  of dimension n  with expectation ˆ[ ] =E x x  and covariance 
cov( ) = xx P , the 2 1n   sigma points 0 1 2, , , nx x x  are obtained using the following equations  
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The parameter   determines the spread of the sigma points around x  and usually takes a value inside the 
interval 4(10 ,1) . The parameter   is used to incorporate the knowledge of the distribution of x  (for Gaussian 
distributions = 2 ),   is usually 0 . All of the parameters were obtained from Van der Merwe and Wan (2001). 

To estimate the statistics of ( ),f x  the equations in (18) are used with the same weights but applying the function 
f  to the sigma points, i.e., changing ix  for ( )if x :  
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The Unscented Kalman Filter is a combination of the the classical Kalman filter (11-14) with the unscented 

transformation (12)-(14) to compute the new covariances that in (8) and (10) were computed for a linear .f  It was 
firstly presented in the work Julier and Uhlmann (2004) and the previous (8), (10) and (11) are replaced by (21) and 
(22). 

In our case, two state variables for each segment of the freeway are considered: density   and average speed .v  
When the sigma points are computed considering equation (25), it is possible to obtain values of   and v  that fall 
outside the model domain, for instance, a negative speed. What is worse, the dynamic equations of the model (1)-(4) 
can not be applied to these values. In Teixeira et al. (2008) a method called Interval Unscented Kalman Filter 
(IUKF) is presented. This method adds constraints to the sigma points fixing the problem of computation of the 
dynamic equations outside their validity domain. 

The IUKF methods assumes that the state variables must verify kd x e   where d  and e  are lower and upper 
bounds of kx . It redefines the values i  and weights in equations (12)-(14). The   and W values now depend on 
the time step k  and are calculated as min ,k k
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where = 1,...,i n  corresponds to the sigma point dimension, =1,...,2j n  to the sigma point quantity, and the matrix 

S  is given by .S P P     Finally the weights assigned to each sigma point now are  
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Other extension of UKF that considers constraints is presented in Teixeira et al. (2008) and called Projected 
Unscented Kalman filter (PUKF). It makes the same steps as UKF and then projects the estimation 1ˆkx   to the 
validity domain solving a quatratic optimization problem (24). 
 

For our traffic model, neither IUKF nor PUKF can be applied because it is possible to obtain non valid values, 
after the correction in IUKF or after the prediction in PUKF. But it can be combined into a new method called 
Projected Interval Unscented Kalman Filter (PIUKF). Precisely, this new method, consists in adding the projection 
step after the correction step of IUKF. The IUKF part gives valid sigma points and the PUKF part restores the 
corrected estimation to the validity domain. The   step of the proposed PIUKF method is composed of the following 
computations: 
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4. Results 

For the numerical experiments we used an open source traffic simulation package SUMO, that also has tools to 
import network topologies and to model demand parameters (Behrisch et al. 2011). It is a purely microscopic traffic 
simulation. It is important to remark that the simulation methodology of SUMO (microscopic simulation software) 
is completely independet to the equations used to derive our estimation method and hence the output can be 
considered very approximated to real observed data. We only compare the performance of EKF and PIUKF due to 
the limitations that PUKF and IUKF have when the sigma points become negative. 
 

   

Fig. 2 Network used for simulations 

The network example is presented in fig. 2 and has 14 segments. Segments 1 to 11 have two lanes, while segment 
12 to 14 have a single lane. The stretch also has one on-ramp and one off-ramp in segment 7 and 9 respectively. The 
minimum density is = 0min  and the maximun is = 100,max  while the speed constraints are = 0minv  and 

= 130maxv  for each segment. The standard deviations for the model errors are 0.08  for the density and 9 for the 
speed, and for the observation errors are 90  for the density and 8 for the speed. Car-following parameters are the 
default values used by the SUMO simulator. 

  
Fig. 3. Estimated density and speed in segment 3 
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Other extension of UKF that considers constraints is presented in Teixeira et al. (2008) and called Projected 
Unscented Kalman filter (PUKF). It makes the same steps as UKF and then projects the estimation 1ˆkx   to the 
validity domain solving a quatratic optimization problem (24). 
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In the Fig. 3, density and speed obtained for segment 3 are shown. In these figures it is noted that when the most 
important non-linearities occur (periods when congestion begins) the PIUKF method values are closer to real results. 
This fact is possible because the PIUKF method is based on the UKF method, which has a better approximation of 
the error covariance matrix when more important non-linearities occur. 

In order to assess the performance of the method, the following indexes were taken from the work Wang and 
Papageorgiou (2005). They represent for each time step, the mean square error for the estimated density and speed:  
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where N  is the number of segments, iv  is the average speed of segment i  and i  is the density in segment i . The 
variables iv  and i  are the estimated speed and density in segment i . In the figure 4 the indexes defined in (18) are 
shown, there it can be seen that PIUKF has a lower error than EKF. 

 

  
Fig. 4. PI  (left) and vPI  (right) obtained for EKF and PIUKF methods simulating with SUMO 

Finally, to compare the overall performance of the methods we defined seven cases and we used the indexes in 
Hiba! A hivatkozási forrás nem található. averaged in time. The first case (E1) is the previously defined example. 
The other cases are ment to study the performance when estimating also the parameters of the fundamental diagram 
(FD). In practical applications those parameters should also be estimated. The values used for SUMO simulations of 
all the examples are 2a   and 35.c   The cases E2, E4 and E6 were estimated with different values for a  and 

c  without estimating them, and in cases E3, E5 and E7 thoses values were estimaded. The values of the 
coefficients and the preformance of the methods all these cases are shown in Table 1.  

Table 1 Values of the estimation errors in the different cases 

Test Case 
 

EKF PIUKF Improvement EKF 

PIv  PI  PIv  PI  PIv  PI  

S1 SUMO Reference case   12.66   7.15   9.85   5.35   22.2%   25.2%  

S2 wrong = 2.1a    12.73   7.13   9.78   5.46   23.2%   23.4%  

S3 FD parameter estimation   15.26   8.96   9.77   6.6   36.2%   26.3%  

S4 wrong = 1.8a    14.07   7.97   10.03   6.44   28.7%   19.2%  

S5 FD parameter estimation a    16.33   8.82   9.79   6.61   40.0%   25.0%  

S6 wrong = 1.8a  and =37c    13.93   8.55   10.05   7.95   27.8%   7.0%  

S7 FD parameter estimation   17.85   11.07   9.78   6.61   45.2%   40.3%  

8 Author name / Transportation Research Procedia 00 2017 000–000 

 
As can be seen in the estimations, the PIUKF method behaves better than the EKF method estimating both, speed 

and density. The improvement is more important in the cases where the FD parameters are estimated (and in the real 
implementation this should be the case) obtaining improvements ranging from 25%  to 40%  for density and from 
36%  to 45%  for velocity. 

5. Conclusion 

In this work we showed that a constrained version of the Unscented Kalman filter applied to a second order 
model, further improves the numerical results obtained with Extended Kalman filter. This better results are 
explained due to the restriction of the estimated values to be inside the natural domain of the variables. 

The numerical simulations made with a microscopic simulator showed an improvement in the performance index 
as much as 45% in speed and 40% in density. It was also shown that the estimation of hidden parameters can be 
done better with the UKF, and this also has to do with the non linearity of the equations where those parameters 
appear. 

Other investigations are being done in real situations using other kinds of observations like video streaming, 
probe vehicles and wireless sensors. This will be the subject of a future publication. 
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