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Fourier compression: A customization method for quantum control protocols
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Quantum optimal control (QOC) is the field devoted to the production of external control protocols that ac-
tively guide quantum dynamics. Solutions to QOC problems were shown to constitute continuous submanifolds
of control space. A solution navigation method exploiting this property to achieve secondary features in the
control protocols was proposed [Larocca, Calzetta, and Wisniacki, Phys. Rev. A 101, 023410 (2020)]. Here,
we present a navigation-powered protocol postprocessing mechanism allowing naturally inflexible optimization
algorithms to produce user-customized solutions, for example, in terms of a Fourier decomposition. We test
the performance of the method in two inherently different models: the two-level Landau-Zener system and the
quantum harmonic oscillator.
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I. INTRODUCTION

The second quantum revolution is expected to deliver new
technology harvesting fundamentally quantum properties like
entanglement and superposition, with applications in sim-
ulation, computing, sensing, and communication [1–6]. At
the heart of quantum technology is quantum optimal control
(QOC) theory [7–10]. The goal of QOC is to coherently
control quantum dynamics. This is achieved by actively con-
trolling an interaction between the system and a field (e.g., the
electromagnetic field). The temporal profile of the interaction,
ω(t ), known as the control field, is shaped such that a given
objective functional encoding the desired dynamics, I[ω(t )],
is minimized. A parametrization is placed on the control field
and the optimal parameters are found by performing local
optimization routines. Gradient-based methods [11,12] usu-
ally outperform their gradient-free relatives [13] but, unlike
the latter, are bounded to piecewise constant (PWC) Ansätze
for the control field. Because of this, users requiring smooth
and/or bandwidth-limited controls usually have to either in-
clude distorting penalty terms in the objective [14] or resort
to the slower gradient-free methods that allow for arbitrary
parametrizations on the control fields [15].

A methodology for studying the complexity involved in
the search for solutions to QOC problems was developed in
the early 2000s [16]. Quantum control landscapes (QCLs) are
defined by the level hypersurfaces of the objective functional.
Supposing the control field is parametrized by a vector of
variables �ω, the Hessian matrix,

[H(�ω)]i, j = ∂2I (�ω)

∂ωi∂ω j
, (1)

can provide fundamental topological information. It has been
shown [17,18] that, for orthogonal-state-transfer control prob-
lems in systems with finite-dimensional Hilbert space, the
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Hessian at a solution has an extensive null space and at most
2D − 2 nonzero eigenvalues (here, D is the dimension of the
Hilbert space). Global optima constitute continuous subman-
ifolds, level sets of control space [19,20]. Although general
results for infinite-dimensional systems are still missing, in a
recent publication [21], a frequency-driven quantum harmonic
oscillator (QHO) was studied and it was proven that, when
targeting frictionless evolution, solutions form level sets with
at most two directions of decreasing fidelity.

The existence of continuous manifolds of solutions has
very interesting practical consequences. For example, it al-
lows for the achievement of secondary features in the control
protocols [21]. The idea is the following. An initial solution
to the control problem can be further optimized with respect
to a new cost function, without losing its initial fidelity, if
the projection of the gradient of this auxiliary cost into the
main objective solution manifold is used in a second de-
scent procedure. Motion with this projected gradient generates
fidelity-preserving trajectories with ever growing secondary
yield.

Originally, the navigations were used to either smooth
PWC protocols (penalizing the difference between succes-
sive pulses) or compress them into few-pulse solutions
[21]. Here, we extend the compression idea to arbitrary
bases (we exemplify with a Fourier basis, but using other
bases is straightforward). The postprocessing provides few-
parameter user-customized protocols, constituting a simple
way of imposing (among many other conceivable constraints)
smoothness and bandwidth limitations to the PWC proto-
cols offered by standard gradient optimization algorithms.
We benchmark the performance of the compression in two
paradigmatic (and inherently different) models: the Landau-
Zener (LZ) model and the QHO model.

The paper is organized as follows. Section II presents
the physical models that will be used throughout the paper
and Sec. III reviews the solution navigation method. Sec-
tion IV presents the main result: a compression procedure
to customize control protocols. We include some concluding
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remarks in Sec. V. Details of the numerical methods used are
provided in Appendices A–C.

II. MODELS

Consider the evolution of an isolated two-level quantum
system, described by the LZ Hamiltonian:

Ĥ [ω(t )] = �

2
σ̂x + ω(t )σ̂z (2)

with σx/σz the usual Pauli matrices, � the minimal energy
gap, and ω(t ) the control field. This model describes, for
example, a spin- 1

2 particle in a magnetic field with a fixed
x component and a time-dependent z one. We adopt natural
units, setting h̄ = 1, such that energy is measured in units
of frequency. Suppose the control is initially set to ω = −∞
and the spin is prepared on the ground state of Eq. (2), that
is, |ψ (t → −∞)〉 = |0〉. For a linear sweep of ω over time,
ωv (t ) = v t , an analytical formula for the asymptotic proba-
bility of finding the ground state of Ĥ (t → +∞) = |1〉 (that
is, flipping the spin), can be derived [22]. Since energy levels
become nearly degenerate at ω = 0, in order to suppress the
probability of populating the excited level, the level crossing
has to be traversed slowly, with v � vc ∝ �2. That is, narrow
crossings demand slower protocols. Recent work [23] has
considered a finite-time version of this problem, finding that
the minimum time required to traverse a crossing is given by
Tmin = π/�.

Let us introduce the infidelity for the spin-flip task:

ILZ [ω(t )] = 1 − |〈1|ÛT [ω(t )]|0〉|2. (3)

This functional maps real-valued functions ω(t ) to real num-
bers ILZ[ω(t )] measuring the departure from the target state.
The final-time propagator, ÛT [ω(t )], is the solution to the
Schrödinger equation,

i
dÛt

dt
= Ĥ [ω(t )]Ût , (4)

evaluated at time t = T . We use PWC control fields:

ω(t ) =
⎧⎨
⎩

ω1 if 0 < t < �t
...

ωM if (M − 1)�t < t < T

where �t = T/M, T being the duration of the protocol and M
being the number of constant pulses.

Solutions to D-dimensional pure-state-transfer control
problems present at most Mmin = 2D − 2 directions of de-
creasing fidelity [19]. In this case, D = 2 so Mmin = 2. If M =
2 variables are used, multiple solutions exist but are discon-
nected policies in the QCL [24]. Instead, if we choose M � 3,
continuous submanifolds of solutions arise. To better under-
stand this situation, we consider the case M = 3, initializing
4000 seeds of the form �ω = (ω1, ω2, ω3), with ωi randomly
chosen from a uniform distribution in [−5, 5]. The seeds are
optimized with the cost function in Eq. (3). In Fig. 1, we plot
those optimized fields that are globally optimal (with infidelity
below a certain threshold, I < Ith = 10−6). A hidden structure
is revealed. Solutions gather in closed looplike formations,
appearing to form continuous curves. In the following section
we will show how to use the navigation method to build a

FIG. 1. Solution sets for the LZ model with M = 3 control
parameters. Each black point in 3D space represents a possible proto-
col, with ωi the amplitude of the ith pulse in the PWC sequence. Dim
gray points represent the projections of the solutions onto the Y Z and
XZ planes. We initialize thousands of random seeds and optimize
with respect to the cost function of Eq. (3). Those optimized fields
with infidelity below 10−6 are plotted as black dots. The solutions
appear to form continuous curves, one-dimensional submanifolds of
parameter space.

trajectory connecting these solutions. Figure 2 provides the
spectrum of the Hessian at one of these optimal fields. Solu-
tions are found to have exactly two nonzero eigenvalues. We
further verify this showing the spectrum of a M = 48 solution
(inset). We have set � = 1 and T = 1.4π

2 in the simulations.
As a second model, regard a particle in a one-dimensional

time-dependent harmonic trap, the evolution of which is de-
scribed by the QHO Hamiltonian:

Ĥ (t ) = p̂2

2m
+ m

2
ω(t )2x̂2 (5)

where x̂ and p̂ are position and momentum operators, respec-
tively; m is the mass of the particle; ω(t ) is the time-dependent
frequency of the trap. Again, we set m = h̄ = 1. Originally,
the trap has frequency ω(0) = ω0. In the context of quantum

FIG. 2. Eigenvalues of the Hessian of Eq. (3) at a solution of
M = 3 (M = 48 in the inset). We observe exactly two nonzero eigen-
values, corresponding to those eigendirections that depart from the
solution set.
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heat engines [25–29], a typical problem is to design adiabatic
expansion or compression strokes, that is, finding protocols
for opening or closing the trap, such that ω(T ) = ωT 	= ω0

and N (T ) = N (0), N being the particle number expectation
value. In general, evolution with arbitrary driving protocols
ω(t ) causes the time-evolved Hamiltonian to no longer be di-
agonal in the basis of states with well-defined particle number,
N̂ (0) = â†(0)â(0). Nevertheless, a basis diagonalizing this
time-evolved Hamiltonian can be obtained through a Bogoli-
ubov transformation [21,30]:

â(T ) = αâ(0) + βâ†(0) (6)

where α and β are protocol-dependent complex coefficients
satisfying |α|2 − |β|2 = 1. Initial states with a well-defined
particle number (or incoherent superpositions of them) can
only experience an increase in the mean particle number,

N (T ) = 〈â†(T )â(T )〉 = N (0)(1 + 2|β|2) + |β|2, (7)

a process called quantum friction in the literature [25–29].
A natural measure for the departure from target frictionless
evolution is given by

IQHO [ω(t )] = |β|2 (8)

so we will use this as the objective functional. See Ref. [21]
for a detailed description on how to compute the Bogoliubov
coefficient β associated with a given driving.

III. SOLUTION NAVIGATION

Reference [21] introduced a framework capable of navigat-
ing through solutions to control problems. Let us review the
procedure. Consider a trajectory in parameter space, �ω(ζ ), the
solution to an initial value problem:

d �ω(ζ )

dζ
= f [�ω(ζ )] (9)

with �ω(0) = �ω0. Suppose �ω0 is a solution and let us choose
f [�ω(ζ )] to be P�a, with �a an arbitrary vector and P the projec-
tion onto the null subspace of H, given by

P�a = �a −
∑

i|λi 	=0

�vici. (10)

The sum runs through the normalized Hessian eigenvec-
tors �vi associated with nonzero eigenvalue λi, and ci = �a · �vi.
The arising trajectory is constrained to solution space. In
practice, we use a fourth-order Runge-Kutta integration rou-
tine to numerically approximate Eq. (9) and a second-order
finite-difference (FD) approximation to compute the Hessian
matrix (see Appendix A for details). As an example, in Fig. 3
we use the method to drive through the solutions of Fig. 1.
Starting from an optimal field, a perfect fidelity trajectory (red
line) is built by following, at each iteration, the instantaneous
eigenvector associated with the null Hessian eigenvalue (see
Fig. 1).

IV. FOURIER COMPRESSION

Previous work [21] demonstrated how to exploit the nav-
igation procedure to smooth or compress solutions obtained
from raw optimization. Smoothing procedures were shown to

FIG. 3. Following the null Hessian eigenvector. Black dots depict
solutions found optimizing thousands of initial random seeds (see
Fig. 1). Starting from one of these solutions, we follow the FD-
generated Hessian eigenvector associated with the null eigenvalue
generating a fidelity preserving trajectory (red curve) linking all of
the scattered solutions. We set ε = 10−2 and h = 0.01.

be effective at producing regular control fields. Alternatively,
protocols described by only a few parameters were obtained
putting forward compression procedures. Since compression
was performed in the original PWC parametrization, the two
approaches were incompatible. Let us show how these two
secondary features can be simultaneously tackled by extend-
ing the compression idea to the frequency realm.

First, let us introduce the general compression mechanism.
The idea is the following. First, choose an orthonormal basis
for control space B = {φ j | j ∈ [1, M]}. Since we are working
with M-dimensional PWC control fields, the control space
is RM , the M-dimensional vector space over the field of real
numbers. Now, expand the initial field to be postprocessed in
this basis:

x =
M∑

j=1

a jφ
j . (11)

Suppose we want the field to have components only on
B̄ = {φ j | j ∈ p} ⊂ B, for some subset of indices p. To enforce
this compression, we define a cost penalizing the components
outside p,

Cp(x) =
∑
k 	∈p

y2
k , (12)

where yk is the component of x on the kth element of the basis,

yk = 〈x, φk〉 =
M∑

n=1

xnφ
k
n, (13)

and follow its gradient, projected onto the solution submani-
fold [as explained in Eq. (10)].
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FIG. 4. Fourier protocol compression in the QHO. Each point
in the graph depicts the value of the ith component of a given
protocol, corresponding to the time interval �ti. That is, the curves
represent distinct protocols, which were colored relative to their
secondary objective cost value of Eq. (12). All of them are optimal
with respect to the main objective in Eq. (8). Starting with different
random solutions, we present Fourier compression trajectories with
(a) ps = pc = {1, 2} and (b) ps = pc = {1}.

In particular, for Fourier compression, we choose

B = Bc ∪ Bs

= {cos(2πktn)|k ∈ [0, M/2]}
∪ {sin(2πktn)|k ∈ [1, M/2 − 1]} (14)

where tn = n/M. Let us use ps and pc to address the set of
allowed indices for the sine and cosine bases individually. For
example, ps = pc = {1} indicates that we want the field to
be a linear combination of sine and cosine with frequency 1.
Figure 4 shows compression trajectories for the QHO control
problem. We begin with M = 48 solutions and follow the
projected gradient of Eq. (12) for (a) ps = pc = {1, 2} and
(b) ps = pc = {1}. Notice how the initial high-dimensional
protocols are now described by only a few parameters (four
and two, respectively). Let us refer to the latter case as full
compression, since the final number of parameters describing
the field equals Mmin, a lower bound on the number of param-
eters needed [20,31]. Further compression is very unlikely to
succeed.

Similar compression trajectories for the LZ problem are
presented in Fig. 5. Again, setting ps = pc = {1, 2} for trajec-
tory (a) means we penalize every frequency in the control field
except for the fundamental and first harmonic, while the ps =
pc = {1} case in (b) reflects that we aim for a monochromatic
field. In both situations, the Hessian was computed using a
finite-difference second-order approximation. Details are pro-
vided in Appendix A. The simplicity of the models studied
allows for the exact diagonalization of the PWC Hamiltonian,

FIG. 5. Fourier protocol compression in the LZ model. Each
point in the graph depicts the value of the ith component of a
given protocol, corresponding to the time interval �ti. The curves
represent distinct protocols, which were colored relative to their
secondary objective cost value of Eq. (12). All of them are optimal
with respect to the main objective in Eq. (3). Starting with different
random solutions, we present Fourier compression trajectories with
(a) ps = pc = {1, 2} and (b) ps = pc = {1}.

and thus exact expressions for the propagator and its deriva-
tives are available (see Appendix B). A benchmarking of the
performance of the finite-difference approximations can be
found in Appendix C.

V. FINAL REMARKS

Solutions to quantum control problems form continuously
varying level sets in the QCL. Recent work evidenced that
this property may have major practical consequences [21].
Navigation methods were shown to provide a straightforward
way of producing secondary features in the control protocols
(e.g., smoothness or compression).

Gradient-based QOC optimization methods lack the pos-
sibility of choosing the basis in which the control field is
expanded. Albeit fast-converging, they produce protocols that
are irregular due to the underlying fixed PWC parametriza-
tion. This is hard to reconcile with the natural bandwidth
requirements of laboratory experiments. In this paper, we
proposed a navigation-based protocol postprocessing proce-
dure that allows the user to overcome this problem. Defining
an auxiliary cost penalizing the Fourier components of the
control protocol, initially irregular and high-dimensional so-
lutions were evolved into smooth controls described by only
a few parameters. Fourier compression constitutes an alter-
native approach to smoothness, bandwidth limitation, and
protocol customization in quantum control.

Although originally developed to explore the complexity
of the search for controls, the study of QCLs is proving to
be more fruitful than expected. The results presented in this

033108-4



FOURIER COMPRESSION: A CUSTOMIZATION METHOD … PHYSICAL REVIEW A 102, 033108 (2020)

paper pave the way for the design of universal solution man-
ifold navigation methods, extending their application beyond
analytically solvable models.
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APPENDIX A: APPROXIMATE HESSIAN COMPUTATION

This Appendix provides the details regarding the FD com-
putation of the Hessian matrix, used in Secs. III and IV to
power the navigations. This is not the most efficient way of
computing derivatives of the objective. We chose a model-free
approach mainly because of its simplicity and all-terrain fea-
tures. More efficient methods can be found in Refs. [32,33]. In
particular, both models described in the main text are simple
enough to allow for an exact treatment, which we describe
in Appendix B. Finally, in Appendix C, we benchmark the
quality of the approximations.

Consider the ε-approximated central-difference Hessian
matrix:

[Hε (�ω)]i, j = 1

4ε2
{I[�ω + ε(�ei + �e j )]

− I[�ω + ε(�ei − �e j )]

− I[�ω − ε(�ei − �e j )]

+ I[�ω − ε(�ei + �ei )]} + δFD (A1)

where �ei is the ith basis vector of parameter space and the
error, δFD, is O(ε2). A central-difference approach is about
four times more expensive than a forward-difference one, but
certainly worth it considering that the latter has an error that
is O(ε). Of course in the limit ε → 0 both errors vanish.
But this ignores the round-off errors, δRO = O(u/ε2), that are
introduced when the function I is evaluated numerically [34].
Here, u is an upper bound on the error arising in the casting
of real numbers x into floating-point numbers: |x − f l (x)| �
x(1 + u). We use double-precision floating-point arithmetic,
where u, also known as unit round-off error or machine ep-
silon, is about 10−16. Because the round-off error is inversely
proportional with ε, a tradeoff takes place. An estimation of
the optimal step, εopt, in terms of u can be obtained minimizing
the sum of the errors d

dε
[δRO(ε, u) + δFD(ε)] = 0. This gives

ε ≈ u1/4 ≈ 10−4 and, in consequence, an upper bound to the
error of ≈10−8.

APPENDIX B: EXACT HESSIAN COMPUTATION

In this section we obtain exact derivatives of the objective.
We use an open-source symbolic computation library [35] to
compute expressions for the propagator U (ω, t ) as a function
two symbolic variables ω and t . We start by building the

Hamiltonian matrix:

H (ω) = σx + ωσz. (B1)

The simplicity of this system allows us to obtain exact expres-
sions for the eigenenergies λk (ω) and eigenvectors |k(ω)〉 of
the Hamiltonian and, thus, via the spectral theorem, an exact
expression for the propagator matrix:

U (ω, t ) = e−iH (ω)t

=
∑

k

e−iλk (ω)t |k(ω)〉〈k(ω)|. (B2)

Finally, this expression is differentiated to obtain dU (ω,t )
dω

and d2U (ω,t )
dω2 . The three symbolic expressions are converted to

functions and saved to disk. Each time we want to compute the
objective and its derivatives at a certain field �ω, we load these
building blocks and evaluate them. For example, the infidelity
of a given M-dimensional PWC protocol

ILZ = 1 − |〈1|UM . . .U1|0〉|2 (B3)

involves M constant-field propagators

Uk = e−i(σx+ωkσz )�t (B4)

that are easily obtained by evaluating the precomputed prop-
agator with (w, t ) = (wk,�t ). Similarly, the Hessian of the
objective

∂2ILZ

∂ω j∂ωk
= −2Re

[
〈1| ∂2UT

∂ω j∂ωk
|0〉〈0|U †

T |1〉

+ 〈1|∂UT

∂ω j
|0〉〈0|∂U †

T

∂ωk
|1〉

]
(B5)

is ultimately written in terms of gradients and Hessians of
constant-field propagators that are evaluated with the precom-
puted functions:

∂UT

∂ω j
= UM . . .Uj+1

∂Uj

∂ω j
Uj−1 . . .U1, (B6)

∂2UT

∂ω2
j

= UM . . .Uj+1
∂2Uj

∂ω2
j

Uj−1 . . .U1, (B7)

∂2UT

∂ω j∂ωk
= UM . . .Uj+1

∂Uj

∂ω j
Uj−1 . . .

Uk+1
∂Uk

∂ωk
Uk−1 . . .U1. (B8)

An analogous approach is used for the QHO model. Again
we build the constant protocol Hamiltonian matrix

H (ω) = 1

2

[
ω2 0
0 1

]
(B9)

and we compute the symplectic matrix

S(ω, t ) = eJH (ω)t (B10)

where

J =
[

0 1
−1 0

]
. (B11)

Since the final time symplectic matrix is S(T ) = SM . . . S1

and since the Bogoliubov coefficient β, completely determin-
ing the objective value, can be ultimately related to S(T )
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FIG. 6. Overlap error E (ε) between exact and approximate Hes-
sian eigenvectors, as a function of the step in the FD computation, ε,
for the QHO model (dots) and the LZ model (crosses). Only those
eigenvectors associated with nonzero eigenvalues are presented.

[21], the derivatives of the objective are obtained through the
building blocks: S(ω), dS(ω)

dω
, and d2S(ω)

dω
.

APPENDIX C: BENCHMARKING THE FD
APPROXIMATIONS

In Appendix A we found a general bound on the error of
the FD computation of the Hessian. Let us explicitly quantify
the quality of its eigenvectors individually:

Ei = 1 − vT
i ṽi (C1)

where vi and ṽi denote the ith exact and approximate Hessian
eigenvectors. Since degenerate subspaces cannot be associ-
ated with a unique choice of eigenvectors, there is no point in
trying to measure an error associated with those eigenvectors
in the null subspace. Moreover, the projection operation only
requires those eigenvectors associated with nonzero eigenval-
ues, such that any component of the motion out of the null
subspace can be neglected. Figure 6 presents the eigenvector
overlap error Ei as a function of ε. Two curves, corresponding
to the only two eigenvectors not belonging to the null space
of H, are plotted for each model. In both cases, excellent
approximations are found, with errors below 10−8. The results
agree with the estimations and the ground is set for attempting
the FD navigation.

Summarizing, we first gave a rough estimation of the opti-
mal ε and later refined it using the exact eigenvectors to build
the error as a function of the step (Fig. 6). Unfortunately, the
exact Hessian is available only in very few simple situations.
To go beyond this situation, consider the following derivative-
free calibrat ion mechanism. A solution is initialized and a
random direction in parameter space is chosen. A trajectory
following the projection of this random direction into solu-
tion space is generated and the final infidelity is recorded.
Ideally, if the step in the trajectory is sufficiently small and the
eigenvectors involved in the projection operation are faithfully
approximated, the infidelity along the trajectory will remain
optimal. Restarting the initial solution and building new tra-
jectories for different values of ε, we plot the final infidelity
as a function of this parameter (see Fig. 7). Two different
M = 6 solutions to the QHO problem were tested (dots and
crosses), running 1000 iterations. The fundamental behavior

FIG. 7. Calibration procedure. A solution to the QHO problem
with M = 6 parameters is initialized. A direction in control space is
chosen at random and a navigation sequence following its projection
onto solution space is started. After 1000 iterations with a step of
h = 0.1, the final infidelity is recorded. The solution is initialized
again and a navigation following the same randomly selected direc-
tion, this time with a new step in the FD scheme, is initiated. The
final infidelity is plotted as a function of ε (black dots), allowing
for the selection of optimal ε without having to compute the exact
eigenvectors (see Fig. 6). A second random direction (black crosses)
yields similar results.

in Fig. 6 is recovered, this time without any computation of
the exact Hessian. The step suggested by the calibration is
εcal

opt ≈ 10−3.
To further validate the method, in Fig. 8 we show

the evolution of the cost and the infidelity along the
approximate trajectory (red circles) and compare it with
the exact descent (dotted lines). Albeit greater, the infi-
delity in the approximate trajectory remains practically zero.
Notably, the secondary cost trajectories are identical. Of

FIG. 8. Exact and approximate trajectories compared: (a) Fourier
cost and (b) infidelity evolution in the exact (dotted black lines)
and approximate (scattered red circles) trajectories of Fig. 4(a). Cost
trajectories are indistinguishable while the infidelity remains below
10−7 in both cases.
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FIG. 9. Run-time analysis. Fifty random fields are initialized for
different values of M, the Hessian eigenvectors are computed, and
the run time is recorded. The mean value of η, the relative duration
of the FD computations with respect to the exact ones, is plotted for
both the LZ model (red squares) and the QHO model (black circles).
The error bars show maximum and minimum values of η.

course, there is a run-time advantage when using the exact
Hessian.

Finally, we compare the run-time performance of both FD
and exact schemes in Fig. 9. We initialize 50 random controls
for different values of M and compute the Hessian eigenvec-
tors with both the exact and FD approaches. We define η as
the ratio between FD and exact run times. Figure 9 displays
the mean value of η as a function of M, for each of the models
studied (the error bars show maximum and minimum values).
Note that for both the LZ (in red squares) and the QHO (in
black circles) the ratio has a similar tendency, increasing with
M. This is reasonable, since the FD Hessian computation
in Eq. (A1) executes O(M2) fidelity evaluations while the
exact routines involve just a single evolution together with the
evaluation of precomputed symbolic expressions for the first
and second partial derivatives of the propagator. Of course, the
exact computation of the Hessian cannot be employed beyond
very simple situations (in our experience, the symbolic com-
putations break for N > 3) and thus approximate approaches
become vital. Although not excellent in terms of speed, the FD
computation is very accurate (if properly calibrated), allowing
for the execution of navigation routines in systems beyond the
exactly solvable.
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