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Arsenic in groundwater constitutes an agronomic problem due to its potential accumulation in the food chain. 

Among the agro-sustainable tools to reduce metal(oid)s toxicity, the use of Plant Growth-Promoting Bacteria 

(PGPB) becomes important. For that, and based on previous results in which significant differences of As 

translocation were observed when inoculating maize plants with Az39 or CD Azospirillum strains, we decided 

to decipher the redox metabolism changes and the antioxidant system response of maize plants inoculated when 

exposed to a realistic arsenate (AsV) dose. Results showed that AsV caused morphological changes in the root 

exodermis. Photosynthetic pigments decreased only in CD inoculated plants, while oxidative stress evidence 

was detected throughout the plant, regardless of the assayed strain. The antioxidant response was strain-

differential since only CD inoculated plants showed an increase in superoxide dismutase, glutathione S-

transferase (GST) and glutathione reductase (GR) activities while other enzymes showed the same behaviour 

irrespective of the inoculated strain. Gene expression assays reported that only GST23 transcript level was 

upregulated by arsenate, regardless of the inoculated strain. AsV diminished the glutathione (GSH) content of 

roots inoculated with the Az39 strain, and CD inoculated plants showed a decrease of oxidized GSH(GSSG) 

levels. We suggest a model in which the antioxidant response of the maize-diazotrophs system is modulated by 

the strain and that GSH plays a central role acting mainly as a substrate for GST. These findings generate 

knowledge for a suitable PGPB selection, and its scaling to an effective bioinoculant formulation for maize 

crops exposed to adverse environmental conditions. 
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1. Introduction 

Maize (Zea mays L.) is one of the most relevant crops grown worldwide due to its production and sown area 

(Nuss and Tanumihardjo 2010, FAOSTAT 2012). Besides grain production, maize plants are used for other 

purposes such as fermentation and industrial products (Requejo and Tena 2014). Maize is the most important 

cereal in Argentina, this crop represents a source of essential nutrients as well as economic incomes from export 

for the agricultural sector. Moreover, half of the production takes place in Córdoba´s province (SINAVIMO 

2019). This Poacea interacts with soil microorganisms, commonly those of the genus Azospirillum giving rise 

to an associative rhizocenosis, since no specialized structures are formed in the plant root. Among the main 

strains of Azospirillum brasilense, the commercial strain Az39 has been widely used as inoculant in maize, 

wheat and barley crops due to its ability to increase plant root development and also yield. In addition, it has 

been shown that Az39 improved maize and wheat growing under unfavorable environments such as drought 

and salinity stress. The strain CD, a reference strain commonly used at laboratory and field studies also improved 

maize and wheat crops (Perrig et al., 2007). These strains have been described as a model of Plant Growth-

Promoting Bacteria (PGPB) and field traceability and a great amount of information regarding the physiology 

of its growth and development has been published (Coniglio et al., 2019; Cassán et al., 2020). These free-living 

diazotrophs, play a fundamental role in biological nitrogen fixation and represent a model system to study auxin 

biosynthesis and its effects on roots (Pedraza et al., 2010; Molina et al., 2018). However, different abiotic 

stresses, such as metal(loid)s in the environment, could negatively affect this interaction. A metalloid that 

disturbs natural environments worldwide is arsenic (As; Smedley and Kinniburgh 2002; Bianucci et al., 2020).  

This element is naturally present in soil and water, where groundwater is the main source of human poisoning. 

Particularly arsenic implies a severe problem in some maize producing areas in Córdoba, where groundwater 

contains high metalloid concentrations coming from natural geological events (Blarasin et al., 2014). Although 

there is a maximum allowed level of arsenic in drinking water (0.1 µM according to FAOSTAT 2016), 

Córdoba´s groundwater reaches values up to 24 µM (Cabrera et al., 2005). Consequently, the use of this water 

for artificial crop irrigation, or the direct absorption by roots, could lead to significant grain contamination. In 

this way, the metalloid could enter the food chain, constituting not only an agronomic problem due to yield 

losses, but also a risk for human health (Bustingorri and Lavado 2014). The inorganic form arsenate (AsV) is 

one of the most toxic and its predominant in aerobic environments (Zhao et al., 2010) such as those found in 

groundwater from Córdoba (Blarasin et al., 2014). In plants, AsV absorption takes place through phosphate 

(PO4
2-) transporters and its impact on plant cell metabolism has been widely described. (Catarecha et al., 2007; 

Wang et al., 2018; Bianucci et al., 2020).  

One of the main consequences of inorganic arsenic exposure in plants is the oxidative burst due to an 

overproduction of reactive oxygen species (ROS). Among them, superoxide anion (O2˙¯), hydrogen peroxide 

(H2O2) and hydroxyl radical (•OH; Mittler 2017; Sies et al., 2017). In addition, the NADPH oxidase complex 

significantly contributes to this oxidative response (Mittler et al., 2011). Therefore, oxidative damage can occur 

on essential biomolecules like lipids, proteins and nucleic acids, leading to oxidative stress that is translated into 



a plethora of morphological, physiological, biochemical and molecular alterations (Begum et al., 2016; Singh 

et al., 2017a, b; Shahid et al., 2017; Bianucci et al., 2017, 2018, 2019, 2020; Peralta et al., 2019, 2020). 

The use of PGPB constitutes a very important biotechnological tool to reduce metal(oid)s toxicity. It has been 

taken into consideration due to PGPBs activity on the metal(oid)s chemical transformation, chelation, or 

precipitation and sorption (Alka et al., 2020; Marwa et al., 2020). Combined with the metal(oid)s resistance 

mechanisms of microorganisms (Yang and Rosen 2016; Fagorzi et al., 2018), plants can activate an antioxidant 

system that scavenges accumulated ROS, being comprised of enzymes and metabolites with antioxidant 

properties (Noctor et al., 2012; You and Chan 2015). The enzymatic antioxidative defense enzymes are 

superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase/peroxirredoxin (GPX/PRX; Iqbal et al., 

2006), glutathione S-transferase (GST) that constitutes a large and diverse group of enzymes involved in the 

arsenic detoxification (Gill and Tuteja 2010), and the enzymes of the Foyer–Halliwell–Asada Cycle [ascorbate 

peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and 

glutathione reductase (GR; Foyer and Noctor 2015)]. The non-enzymatic components include among others, 

ascorbate (AsA), glutathione (GSH) and carotenoids (Sharma and Dietz 2009; Sharma 2012; Sandalio et al., 

2012). Growing evidence indicates that GSH is one of the most studied antioxidant metabolites to cope with 

oxidative stress caused by arsenic, through its participation in mechanisms related to tolerance, accumulation 

and distribution of the metalloid (Mrak et al., 2010; Sobrino-Plata et al., 2013; Hernández et al., 2015; Bianucci 

et al., 2017, 2018).  

Given that research about the impact of arsenic on maize are generally focused on non-inoculated plants and 

that the metalloid concentrations applied are much higher than natural arsenic levels, the extrapolation to field 

conditions is very difficult (Requejo and Tena 2014; Ghosh et al., 2016; Anjum et al., 2016 a, b; Ghosh et al., 

2017; Upadhyay et al., 2018). In a previous research we set out to evaluate the effect of an average natural AsV 

concentration found in Cordoba´s groundwater on the growth of maize plants and the metalloid translocation to 

leaves (Peralta et al., 2019). We found that 3 µM AsV had a negative impact on maize growth and the inoculation 

with Azospirillum brasilense strains (Az39 or CD) conditioned the growth variables and restricted the metalloid 

translocation to edible parts. Specifically, all growth variables as well as nitrogen content were diminished by 

metalloid addition. Remarkably, Azospirillum strains allowed greater biological nitrogen fixation (BNF) in 

plants compared to non-inoculated plants. On the other hand, in inoculated maize plants, metalloid accumulation 

was mainly detected in roots compared with leaves, a completely opposite response compared to non-inoculated 

plants. An interesting fact was that the CD Azospirillum brasilense strain increased phytostabilization on maize 

plants, reducing in a significant way metalloid translocation to shoots when compared to Az39 inoculation 

(Peralta et al., 2019). Based on these results, our experiments were performed in order to unravel the redox 

response and the implication of the antioxidant system of maize plants exposed to a natural AsV concentration, 

when inoculated with Azospirillum brasilense Az39 or CD strains. This first report will allow deciphering key 

aspects of the oxidative and antioxidative mechanisms triggered in the maize- Azospirillum interaction exposed 

to a natural concentration of the metalloid and the implication of Azospirillum strains to modulate this response 

on the plant. 



 

2. Material and methods 

2.1 Bacterial strains and cell viability under As exposure 

The Azospirillum brasilense strains Az39 and CD (ATCC 29710) were obtained from IMIZA-INTA Castelar 

(Argentina) and EMBRAPA (Brazil), respectively. Bacterial cultures were grown on liquid Nfb medium 

(Döbereiner 1989) and incubated as described in Peralta et al., (2020). 

The growth of A. brasilense Az39 or CD strains was evaluated in Nfb liquid culture medium supplemented with 

increasing Na2HAsO4·7H2O (AsV) concentrations (0, 750, 1500, 2250 or 3000 µM). Medium without metalloids 

was considered as control. The culture flasks were inoculated with an appropriate volume of each strain cultures 

previously grown in Nfb medium without AsV, to achieve an initial OD620nmvalue of 0.1. The strains were 

incubated on a gyratory shaker at 150 rpm and 28 ± 2°C. The OD620nm was monitored at different times until 

stationary phase. Cell viability was determined by the microdroplet method according to Somasegaran and 

Hoben (1994). 

 

2.2 Plant management and growth conditions 

Hybrid maize seeds DK72-10 VT3pro (DEKALB, Argentina) were superficially disinfected and germinated 

following the method described by Vincent (1970). Then, seedlings were transferred to a Leonard Jar system as 

described in Peralta et al., (2020). Hoagland´s nutrient solution (Hoagland and Arnon 1950) devoid of AsV 

(control) or containing 3 µM AsV (a natural concentration of the metalloid found in groundwater of Córdoba; 

Cabrera et al., 2005) were the established treatments. The AsV was supplied as Na2HAsO4·7H2O and the liquid 

level in the lower cup remained constant throughout the entire experience. At seven days post-emergence, maize 

seedlings were inoculated with A. brasilense Az39 or A. brasilense CD. Plants were grown in a plant chamber 

as described in Peralta et al., (2020) for 30 days post-inoculation. At harvest, leaves and roots were used for 

different analysis. 

 

2.3 Inspection of root anatomy 

For anatomical analysis, fresh maize adventitious roots were cut into 5 mm long portions, at 1 cm from the root 

tip according to Travaglia et al., (2012). Samples were processed using microtechnical methods described by 

Johansen (1940), which included dehydration, infiltration and paraffin embedding, rotary microtome (which 

model? Company?) cutting and staining. The evaluation of histological preparations was carried out as reported 

by Peralta et al., (2020). 

 

2.4 Indicators of ROS production  

2.4.1 Determination of NADPH oxidase activity and hydrogen peroxide (H2O2) 

NADPH oxidase activity was determined spectrophotometrically according to Sagi and Fluhr (2001) with some 

modifications as described in Peralta et al., (2020). Fresh plant material (roots or leaves) was homogenized 



following the procedure reported by Sobrino-Plata et al., (2009). One unit of NADPH oxidase was defined as 

the quantity of enzyme necessary to reduce 1 µmol of NADPH min-1. 

Hydrogen peroxide content was spectrophotometrically determined according to the procedure described by 

Alexieva et al., (2001) with modifications mentioned by Peralta et al., (2020). The amount of H2O2 content was 

calculated from a standard curve of H2O2. 

 

2.4.2 Histochemical detection of ROS by fluorescence microscopy in roots 

The sample collections for the histological ROS detection in maize roots was carried out according to Travaglia 

et al., (2012). The fluorescence observation was achieved as in the methods in Sandalio et al., (2008) and 

Rodríguez-Serrano et al., (2006), using dihydroethidium (DHE; Fluka Biochemika) and 2´-7´-

dichlorofluorescein diacetate (DCF-DA; Calbiochem) for O2˙¯ and H2O2 detection, respectively. Although the 

specific DHE probe was used (Fink et al., 2004), specificity of the reaction was deepened using the tetramethyl 

piperidinooxy superoxide scavenger (TMP; 1 mM). Likewise, as mentioned in Tarpey et al., (2004), DCF-DA 

is not a specific probe, therefore ascorbate 1 mM (H2O2 scavenger) was used following the Peralta et al., (2020) 

procedure. The observations were made in a stereomicroscope (O2˙¯: excitation at 488 nm, emission at 520 nm; 

H2O2: excitation at 485 nm, emission at 530 nm). 

 

2.4.3 Histochemical detection of ROS in leaves 

Visual detection of O2˙¯ was accomplished by incubating fresh plant material in 1 mM NBT, following the 

procedure described by Frahry and Schopfer (2001). Histological detection of H2O2 was performed by 

incubating fresh plant tissue in 1 mg ml-1 3.3-diaminobenzidine (DAB) according to Orozco-Cárdenas and Ryan 

(1999). Photographs were then taken using a Dell® scanner. 

 

2.5 Oxidative stress markers 

The extraction of photosynthetic pigments from fresh leaves was carried out using 80% ethanol, according to 

Mac Kinney (1938) with modifications described by Peralta et al., (2020). Chlorophyll and carotenoid amounts 

were calculated using the formula chlorophyll a = 11.63 (OD665nm) - 2.39 (OD650nm); chlorophyll b = 20.11 

(OD650nm) - 5.18 (OD665nm); Total chlorophyll = chlorophyll a + chlorophyll b; Carotenoids = 0.02 (OD450nm). 

Lipid peroxidation and protein carbonylation were evaluated in roots and leaves, as oxidative damage indexes 

using a UV-visible light spectrophotometer (Spectronic® Genesys 2). Damage to lipid structures was evaluated 

by quantification of thiobarbiturate-reactive substance (TBARS) concentrations as described by Heath and 

Packer (1968) with modifications reported by Peralta et al., (2020). 

Protein oxidation was analyzed by quantification of the reactive carbonyl groups to 2,4-dinitrophenylhydrazine 

(DNPH) to form hydrazones (Levine et al., 1990) with modifications reported by Peralta et al., (2020). The 

number of protein carbonyls was calculated using the extinction coefficient 22 000 mol-1 cm-1 and the values 

were expressed in nmol mg-1 of protein. 

 



2.6 Antioxidants 

2.6.1 Enzymatic activities 

The root samples were ground in liquid nitrogen and the powder obtained was homogenized according to the 

enzyme evaluated. The supernatant from the homogenates for superoxide dismutase (SOD, EC 1.15.1.1), 

catalase (CAT, EC 1.11.1.6), GPX / PRX (EC 1.11.1.9), GR (EC 1.6.4.2), and GST (EC 2.5.1.18) were obtained 

according to the methodology detailed by Bianucci et al., (2017), and for MDHAR (EC 1.6.5.4) and DHAR 

(EC 1.8.5.1) as reported by Peco et al., (2020). Protein concentration in plant extracts was determined according 

to Bradford (1976), using bovine serum albumin as standard. Enzymatic activities were tested 

spectrophotometrically according to the following methods: SOD activity as reported by Beauchamp and 

Fridovich (1973), CAT activity was measured using the method described by Aebi (1984), GPX/PRX activity 

was determined as detailed by Flohé and Gunzler (1984), this enzyme also acts as a TRX-linked thiol peroxidase 

(Navrot et al., 2006). GR activity was determined as described by Sheadle and Bassham (1977) and GST activity 

was determined according to Habig et al., (1974). Finally, APX activity was evaluated as reported by Nakano 

and Asada (1987), the DHAR and MDHAR activities were measured according to Dalton et al., (1993) and 

Nakano and Asada (1981), respectively. 

 

2.6.2 Gene expression analysis using qRT-PCR  

Following the acid guanidine thiocyanate-phenol-chloroform method of Chomczynski and Sacchi (1987), total 

RNA was determined using a Trizol reagent kit according to the manufacturer's instructions. DNase (Ambion 

DNA free, Ambion) was used according to the manufacturer's protocol. RNA quality was checked by means on 

0.8% agarose gel electrophoresis. An aliquot of RNA of 1 µg was used as a template for the reverse transcriptase 

(RT) reaction using the iScript ™ cDNA Synthesis Kit (Bio-Rad, Hercules). The program was set at 25°C for 

5 min, 42°C for 30 min, 85°C for 5 min and it was kept at 4°C. Primer sequences are described in Supplemental 

Table S1. Quantitative real-time PCR was programmed on an iCycler iQ5 (Bio-Rad). Each 25 µl reaction 

contained either 1 µl of the cDNA or a dilution (1: 10 000) for the amplification of the act1 gene, 200 nM of 

each primer, and iQ SyBrGreen Supermix (Bio-Rad). Control PCR reactions of the RNA samples not treated 

with RT were also performed to confirm the absence of contaminating genomic DNA. Initial denaturation of 

the samples was carried out heating at 95°C for 3 min followed by a 35-cycle amplification and quantification 

program (95°C for 30 s, 55°C for 45 s and 72°C for 45 s). A melting curve was performed to ensure the 

amplification of a single product. Amplification efficiency was calculated using the formula (E = [10 (1 / a ) -

1] × 100) where a is the slope of the standard curve, the relative expression of each gene was normalized to that 

of actin (act1) and the analysis of the results was performed using the comparative critical threshold method 

(ΔΔCT; Nogales et al.,, 2010). 

 

2.6.3 Quantification of glutathione 

Extracts were obtained from maize roots homogenized in 5% (w/v) 5-sulfosalicylic acid and centrifuged at 10 

000 g for 10 min at 4ºC to remove cell debris. The supernatant was used to measure total GSH content as 



determined by Anderson (1985) using baker's yeast GR. GSSG was determined by the same method in the 

presence of 2-vinylpyridine and GSH content was calculated as the difference between the two forms. The 

reaction was followed at 412 nm and calibration curves were carried out using GSH (0-30 µM) and GSSG (0–

10 μmol) samples. The intracellular GSH content was expressed as nmol GSH g-1 fresh weight (FW). The 

GSH:GSSG ratio was expressed as GSH/(GSH+GSSG). 

 

2.7 Statistical analysis 

Experiments were carried out in a completely randomized design with seven replicates and three independent 

experiments. The data were analyzed using the InfoStat software (Di Rienzo et al., 2018). Differences among 

treatments were analyzed using 2-way ANOVA, taking P < 0.05 as significant according to the Duncan test. 

Before the test of significance, the normality and homogeneity of variance were verified using the modified 

Shapiro-Wilk and Levene tests, respectively.  

 

3. Results 

3.1 Cell viability of Azospirillum brasilense strains exposed to arsenate  

In order to evaluate to what extent AsV affects A. brasilense strains growth, the number of viable cells of both 

strains were measured. A. brasilense Az39 and A. brasilense CD were able to grow with up to 2250 µM AsV, 

showing a short lag phase and reaching viability higher than 1x 109 CFU ml-1 at the end of the exponential 

phase. Survival to the metalloid by both strains studied was markedly decreased at 1500 µM AsV in comparison 

with the control treatment (Figure 1). 

 

3.2 Effects of arsenate on root anatomy 

In all treatments, regardless of the inoculated strain, the three tissue systems dermal, fundamental and vascular 

were recognized. This allowed us to classify the roots as polyarch types, determined by the projection numbers 

of the protoxylem inside the vascular cylinder (Figure 2A-D). Although the addition of AsV did not generate 

changes in the total cross-sectional area of maize roots (Figure 2E, F), it was identified that the parenchymal 

cells of the exodermis had thicker walls with respect to the control, regardless of the strain tested.  

 

3.3 Influence of arsenate on photosynthetic parameters 

The addition of AsV modified the photosynthetic pigment content of the maize - A. brasilense CD interaction 

with respect to control treatment. Specifically, the total chlorophyll content represented mainly by chlorophyll 

a (31.4%) was declined, together with a significant decrease of the carotenoid contents (33.3%). The maize- A. 

brasilense Az39 interaction exposed to AsV did not show significant variations in pigment composition (Table 

1). 

 

3.4 ROS production and oxidative damage in arsenate-treated plants 

3.4.1 NADPH oxidase activity 



To begin dissecting the ROS generation in maize plants, we were interested in evaluating the participation of 

the NADPH oxidase complex. Addition of AsV increased NADPH oxidase enzyme activity (44%) in leaves of 

maize plants inoculated with A. brasilense Az39, without changes in roots (Figure 3A). Meanwhile, this enzyme 

activity was significantly decreased (20%) in roots of plants inoculated with A. brasilense CD with respect to 

the control conditions (Figure 3B). 

 

3.4.2 Detection, localization and quantification of H2O2 by fluorescence microscopy, histochemistry and 

spectrophotometry 

Figure 4 shows H2O2 detection and quantification in roots and leaves of maize plants. Maize roots exposed to 

AsV showed a higher fluorescence emission compared to the control treatment, irrespective of the inoculated 

strain (Figure 4A). Similarly, DAB staining of maize leaves revealed that, regardless of the strain used as 

inoculant, an increase in H2O2–dependent dark brown precipitates was observed when arsenate was added 

compared to the control treatment (Figure 4B). However, the quantitative determination of H2O2 revealed that 

it increased (43.5%) only in leaves from maize plants inoculated with A. brasilense CD (Figure 4C). The H2O2 

histochemical observation in roots was consistent with the quantitative analysis of this species in which 

significant increases were observed upon AsV exposure, regardless of the inoculated strain. The H2O2 increase 

detected in roots of maize plants inoculated with A. brasilense Az39 was significantly higher (44%) than that 

obtained when A. brasilense CD was added as an inoculant (18%; Figure 4D).  
 

3.4.3 In vivo histochemical detection of O2˙¯ in maize plants  

A higher red fluorescence emission was observed in maize roots exposed to AsV, compared to the control 

treatment, highlighting those roots of maize plants inoculated with the Az39 strain (115,6%; Figures 5A,C). 

Likewise, irrespective of the inoculated strain, the leaves of maize plants grown under arsenate exposure, 

showed blue precipitate points indicating O2˙¯ presence (Figure 5B). 

 

3.5 Arsenate effect on lipid and protein oxidation 

To determine the extent of the oxidative burst induced by arsenate, we evaluated oxidative damage indexes. 

AsV increased lipid peroxidation in leaves and roots of maize plants, irrespective of the inoculated strain, 

compared to the control treatment (Figures 6A,C). Regarding protein oxidation, the results indicated that AsV 

triggered an increase on the content of carbonylated proteins in all evaluated tissues, with respect to plants 

devoid of arsenate and irrespective of the inoculated strain (Figures 6B,D). 

 

3.6 Antioxidant response of inoculated maize plants to arsenate 

We found that arsenate caused significant increases in superoxide dismutase (SOD) and glutathione S-

transferase (GST) activities compared to the control treatment in the roots of maize plants inoculated with A. 

brasilense CD (Figures 7A,C). On the other hand, the specific activities of catalase (CAT) and glutathione 

peroxidase/peroxirredoxine (GPX/PRX) did not show significant changes with either of the tested strains 



(Figures 7B,F). Concerning the enzymatic activities involved in the Foyer-Halliwell–Asada cycle, the metalloid 

addition caused an increase in GR activity in roots of the maize-A. brasilense CD interaction with respect to 

those plants inoculated with A. brasilense Az39 (Figure 7E). Furthermore, while monodehydroascorbate 

reductase (MDHAR) and ascorbate peroxidase (APX) activities decreased significantly, the dehydroascorbate 

reductase (DHAR) activity remained without changes, irrespective of the assayed strain (Figures 7G,D,H). 

Interestingly, the transcript level of GST23 was upregulated by arsenate stress, whereas GR and APX1 remained 

unaltered, regardless of the inoculated strain (Figure 7I). 

 

3.7 Glutathione content is altered by arsenate 

According to the analysis of glutathione content, AsV diminished the total glutathione (GSHT) and reduced 

glutathione (GSH) contents in the roots of maize plants inoculated with A. brasilense Az39, while those 

inoculated with A. brasilense CD showed a significant decrease in the oxidized glutathione (GSSG) content. 

However, the GSH/(GSH+GSSG) ratio remained unalterable in either interaction evaluated (Table 2, Figure 

S2). 

In order to improve the understanding of the results a resume of all the presented result is shown in Table S2. 

 

4. Discussion  

The impact of arsenic on plant growth and metabolism has been reported for different plant species (Ghosh et 

al., 2016, 2017; Souri et al., 2017; Abbas et al., 2018; Bianucci et al., 2017, 2018, 2019). Nevertheless, research 

about the effect of natural concentrations of the metalloid on maize plants establishing non-symbiotic 

interactions with members of the edaphic microbiome is scarce, making it difficult to extrapolate the findings 

to field conditions. CD and Az39 Azospirillum brasilense strains are PGPB that have been widely studied in 

several crops due to their capability to increase crop yield. However, information regarding their behavior when 

inoculated on maize plants growing under arsenic stress is scarce. Moreover, it is known that the response of 

plants to metal(loid)s could be differentially modulated by the inoculated strain, even though they belong to the 

same species. It was extensively observed in plants that establish a symbiotic interaction like soybean and peanut 

exposed to As or Cd (Bianucci et al., 2012, 2013, 2018, 2019). In this regard, previous work showed that maize 

inoculation with CD restrained arsenic translocation to aerial parts, limiting grain contamination when compared 

to Az39 (Peralta et al., 2019).  In this work we described the oxidative stress and antioxidant responses of maize 

plants exposed to a natural arsenate concentration when inoculated with CD or Az39 Azospirillum brasilense 

strains. 

Our first approach was to recognize arsenic tolerance through Azospirillum brasilense strains thus, in vitro tests 

were performed. Both bacterial strains showed similar behavior when exposed to increasing AsV concentrations. 

Although these findings deserve further study in the future, it is known that the reduction of cell viability agrees 

with previous reports (Mandal et al., 2008; Panigrahi et al., 2013) and could be due to As-induced oxidative 



damage. Moreover, defensive strategies to overcome this stress are usually strain-specific, these include 

formation of As-GSH complexes, efflux systems that eject the metalloid outside the cell, processes of oxidation 

and/or anaerobic reduction and methylation (Verbruggen et al., 2009; Sharma 2012; Yang and Rosen 2016).  

Plants have the ability to acclimate in response to abiotic environmental stresses through physiological and 

biochemical processes, as well as adjusting morphological and developmental patterns (Schikora and Schmidt 

2001; Pasternak et al., 2005). Among these adaptations, roots are the first organs in contact with metals and 

metalloids in the soil, therefore several anatomical alterations of root tissues can be expected (Deng et al., 2019). 

However, 3 µM AsV treatment did not modify the cross-section area of adventitious roots of maize plants and 

did not change the number of cortical layers. Nevertheless, a thickening of plant cell walls when exposed to 

metal(loid) stress was observed. Similar results were observed in other plant species (Sujkowska-Rybkowska 

et al., 2015; Lafuente et al., 2015; Bianucci et al., 2017; Sujkowska-Rybkowska and Ważny 2018). Thus, the 

thickening in root cell walls and exodermis changes could restrict the arsenic permeability avoiding metalloid 

translocation (Gall et al., 2015).  

Less data is available about the mechanisms involved in arsenic toxicity at photosynthesis level. However, it is 

suggested that it could be related to an alteration of the redox homeostasis (Finnegan and Chen 2012). According 

to our results, AsV induced a significant decrease in the content of photosynthetic pigments in maize plants 

inoculated with A. brasilense CD, while A. brasilense Az39 kept that variable stable. This result was in 

agreement with our previous findings in which inoculation of maize with the Az39 strain promoted plant growth 

even when the metalloid translocation to the aerial part was higher, compared to maize plants inoculated with 

A. brasilense CD (Peralta et al., 2019). Thus, under arsenic treatment, we suggest that the maintenance of 

pigment contents observed in Az39 inoculated plants, could be associated to a priming response induced by the 

microorganism (probably associated with ROS production). Furthermore, despite the unfavorable growing 

condition that these plants were exposed to and the a high content of As that was detected in the leaves, maize 

plants were able to maintain carbon fixation process. Under stress conditions, an overload of the electron 

transport chain in the photosynthesis process produces a leak of ferredoxin electrons to O2, giving rise to an 

oxidative burst which may alter chlorophyll content and integrity (Suneja et al., 2014; Emamverdian et al., 2015; 

Hasanuzzaman et al., 2017). Thus, some authors proposed the determination of chlorophyll content as a redox 

status index (Miteva 2002; Shaibur et al., 2009). While arsenic-induced chlorophyll damage is a widely reported 

response (Stoeva et al., 2003; Abbas et al., 2018), a study carried out by Mascher et al., (2002) showed no 

modification of the photosynthetic pigments in red clover plants, when exposed to a low arsenic dose. In 

addition, an increment in chlorophyll content was observed in tomato, onion and maize plants (non-inoculated) 

exposed to low AsV concentrations (Miteva 2002; Sushant and Ghosh 2010; Mallick et al., 2011). On the other 

hand, carotenoids protect light-harvesting complexes against light over-excitation and photo-oxidative damage. 

It is well documented that they dissipate the excess of absorbed energy, thereby preventing or reducing the 

formation of ROS such as 1O2 (Strzałka et al., 2003) even in plants growing under arsenic exposure (Neill et al., 

2002; Sinha et al., 2013).  



To investigate the production of ROS that takes place in response to arsenic (Ahsan et al., 2008; Mallick et al., 

2011; Sharma 2012; Islam et al., 2015), we evaluated the NAPDH oxidase activity and the detection of O2˙¯, 

•OH and H2O2 species. Our results showed that the exposition of maize plants to 3 µM AsV, for a period of 30 

days in a semi-hydroponic system, induced a significant oxidative burst. The redox imbalance depends on 

several variables such as, the phenological stage and the plant species, the time of exposure, the type of substrate 

used and the concentration of the contaminant, among others. For example, Gupta et al., (2013) reported an 

increase in H2O2 content in Arabidopsis thaliana plants grown for five days in a hydroponic system, 

supplemented with 50 µM AsV. In the same way, peanut plants exposed to 20 and 100 µM AsV for fifteen days, 

showed an increase in O2˙¯ and H2O2 contents compared to the control condition, without significant ROS 

production at the lower concentration tested (6 µM AsV; Bianucci et al., 2017).  

It is known that NADPH oxidase associated with the plasma membrane is one of the most important sources of 

ROS under arsenic stress (Gupta et al., 2013; Hernández et al., 2015; Bianucci et al., 2017, 2019). Nonetheless, 

this work revealed that while the activity of NADPH oxidase was enhanced by arsenate in leaves of interaction 

maize-A. brasilense Az39, the enzymatic activity decreased roots of those plants inoculated with the CD strain. 

This result was particularly intriguing because the radical O2˙¯ was prominent in leaves and roots of maize and, 

the H2O2 content was significantly increased too. A possible explanation could be directly related to the specific 

interaction established with maize and the Azospirillum strain. In this regard, it was demonstrated that 

inoculation of maize with the CD strain allowed the plant to phytostabilize the metalloid on roots, while Az39 

translocated it to the shoot (Peralta et al., 2019). Thus, the differential arsenic accumulation pattern in maize 

could modify the oxidative response specially on enzymes due to a direct alteration of the activity induced by 

ROS or/and post-transductional modifications. In addition, recent research has shown that the inoculated strain 

could modulate the oxidative response of plants exposed to metal(loid)s in different ways, even when they 

belong to the same genus as observed in peanut plants exposed to As and Cd (Bianucci et al., 2012a, 2013; 

Peralta et al., 2020).  

Deeper analysis of oxidative metabolism research shows that oxidative stress is a common response to 

metal(oid)s in plants, which is manifested by the oxidation of essential biomolecules (Scandalios et al., 2002). 

Among these, lipid peroxidation (Clemens and Ma 2016; Souri et al., 2017a, b; Abbas et al., 2018) mainly 

represented by the TBARS content is widely known (Gill and Tuteja 2010). We observed an increase in 

membrane lipid peroxidation of maize exposed to arsenic, independently of the A. brasilense strain inoculated. 

Similarly, Talukdar (2013) and Gupta et al., (2013) reported lipid peroxidation in fenugreek exposed to 90 µM 

AsV, and in leaves of Arabidopsis thaliana after a long-term exposure to the metalloid, respectively. In a study 

carried out by Singh et al., (2017b) it was revealed that Vetiveria zizanoides plants growing with increasing 

concentrations of arsenic (0-200 µM) showed a correlated increase of lipid oxidative damage. Another effect of 

oxidative damage is the modification of protein structures demonstrated by the release of carbonyl groups 

(Parkhey et al., 2014). We also found an increase in carbonyl content of AsV-treated maize plants, independently 

of the A. brasilense strain used. So far, particularly in plants, it has not been totally demonstrated that the 

induction of oxidation/carbonylation of proteins is promoted by arsenic. Several researchers have focused on 



other metals such as Zn (Ramakrishna and Rao 2013), Cd (Romero-Puertas et al., 2002; Rodríguez-Serrano et 

al., 2006; Bianucci et al., 2012a, b; Pérez-Chaca et al., 2014; Xu et al., 2018), Co (Karuppanapandian and Kim 

2013) and Cu (Mustafa and Komatsu 2016; Ju et al., 2019).  

In an effort to understand the antioxidant response of inoculated-maize plants to As-induced oxidative stress, 

first we analyzed the activity of SOD and CAT, which constitute the first line of defense against O2˙¯ and H2O2, 

respectively (You and Chan 2015; Abbas et al., 2018). According to our results, AsV increased the SOD activity 

only in roots of maize plants inoculated with A. brasilense CD, while CAT activity remained stable in both 

inoculation conditions. This implies another intriguing finding since the Az39 strain increased NADPH activity 

while the CD strain reduced it, but both interactions showed an increase in the H2O2 content. Alternatively, it is 

known that GPX/PRX cleaves H2O2 using GSH or TRX (Navrot et al., 2006). However, our data did not show 

changes in GPX/PRX activity. Alterations of these enzymatic activities have been reported for several crops 

exposed to increasing arsenic doses and under different time exposure (Singh et al., 2017b; Ghosh et al., 2016; 

Souri et al., 2017; Bianucci et al., 2017, 2019). It was reported that the increased of SOD activity by As can be 

explained by an enhanced production of O2˙¯ and/or by a direct action of the metalloid on SOD expression gene 

(Sharma 2012). On the other hand, an increasing CAT activity was observed when plants were exposed to the 

metalloid (Pandey et al., 2015; You and Chan 2015; Bianucci et al., 2017). However, there is some data 

suggesting that a reduction in these enzymatic activities occurs too (Mylona et al., 1998; Singh et al., 2007). 

Usually, literature shows research involving higher doses of arsenic than we used in our work, e.g. sunflower 

plants exposed to 10 µM AsV in hydroponic conditions (Saidi et al., 2017), hyper-accumulating plants as 

Chrysopogon zizanioides and Pteris vittata treated with increasing AsV concentrations (0-50 mg l-1; Tiwari and 

Saragi 2017), rice and wheat plants exposed to 0-0.5 mM or 0-50 µM AsV, respectively (Dave et al., 2013; 

Hasanuzzaman and Fujita 2013). 

GST enzymes constitute a large and diverse group with a preponderant role in plant tolerance to abiotic stress 

(Anjum et al., 2012; Kumar and Trivedi 2018). Interestingly, our results showed an increase in GST activity 

only in the maize-A brasilense CD in response to AsV treatment in roots. Similar results were found in non-

inoculated maize seedlings after two days of exposure to the metalloid (50 and 100 µM; Ghosh et al., 2016), 

while no changes were recorded after four days, due to a possible previous ROS detoxification. Bianucci et al., 

(2017) unveiled a progressive increase in GST activity, arsenic-dose dependent, in roots of non-inoculated 

peanut plants. The GST over-expression enhances its binding ability to the free metalloid before ROS 

overproduction or oxidative damage occurs. Additionally, increases in GST activity in response to AsV treatment 

have also been observed in leaves of inoculated soybean (Bianucci et al., 2019), rice and carob trees 

(Mokgalaka-Matlala et al., 2009; Tripathi et al., 2012; Singh et al., 2016).  

In plants, the Foyer–Halliwell–Asada Cycle (AsA-GSH) cycle has an active role in the detoxification of H2O2, 

GR and APX being crucial enzymes in this process (Foyer and Noctor 2015). In this regard, there are many 

studies that highlight the increase in GR and APX activities in the presence of arsenic (Dave et al., 2013; 

Hasanuzzaman and Fujita 2013; Begum et al., 2016; Saidi et al., 2017). However, in brown mustard and peanut 



plants a decrease or no alteration of the enzymatic activities was revealed, respectively (Srivastava and D’souza 

2010; Bianucci et al., 2017). In our work, AsV decreased MDHAR and APX activities, regardless of the 

inoculated strain. In addition, no changes of DHAR activity would indicate that total DHA is metabolized by 

using GSH. Regarding it, a decrease in the total GSH content, could be explained by its direct action on ROS 

detoxification as well as in the PCs synthesis (Hasanuzzaman et al., 2017). Although the GSH/(GSH+GSSG) 

ratio remained unchanged under both inoculation conditions, GSH declined in the maize-A brasilense Az39 

interaction and remained unchanged in plants inoculated with A. brasilense CD. Curiously, in the reverse, a 

GSSG decrease was detected and as expected, the GR activity in roots of maize plants inoculated with the CD 

strain was increased. In this interaction, we suggest that endogenous GSH is used to supply GST activity and 

maintain the DHAR activity. Consequently, AsA could be supplied to the AsA-GSH cycle, even when there is 

a basal APX activity, thus maintaining the cycle functionality. To gain more insight into the antioxidative 

response of maize plants to arsenate, we performed transcriptomic analysis of some genes that codify for 

antioxidant enzymes. Interestingly, the correspondence between the transcript level and the enzymatic activity 

was only observed in GST for the interaction maize-A. brasilense CD and for GR in roots inoculated with the 

Az39 strain. 

Taken together, our results revealed that for both inoculations, the oxidative burst in maize plants exposed to a 

natural concentration of AsV induced oxidative damage, evidenced by lipid peroxidation of membrane lipids 

and protein carbonylation. One of the most relevant findings in this work was that the antioxidant response was 

strain-dependent. It is necessary to emphasize that literature has a wide background about high arsenic 

concentration effects on non-hyperaccumulating plants. Usually, the changes detected are as expected for such 

concentration (Abbas et al., 2018). Although originally the inoculation of diazotroph microorganisms had a sole 

and important function, to serve as a nitrogen source for crops in order to improve growth and increase yield, 

the utilization of such microorganisms as bioremediation tools constitutes an additional function that has gained 

special attention in the last ten years (Reichman 2007; Mandal et al., 2011; Gómez-Sagasti and Marino 2015). 

In addition, physico-chemical transformations of metal(oid)s carried out by microorganisms in the rhizosphere 

depend on their intrinsic capacities (Finnegan and Chen 2012; Lomax et al., 2012; Yang and Rosen 2016). For 

this reason, the selection of a suitable PGPB for maize requires deep research, since not all bacteria act in the 

same manner when inoculated with plants exposed to different arsenic concentrations, as observed in our 

research. In particular, the associative rhizocenosis could not only modify the growth variables of the plant, but 

also enhance the phytostabilization process serving as a promising biotechnological strategy to avoid 

metal(oid)s translocation to edible parts (Bianucci et al., 2018; Peralta et al., 2019; Bianucci et al., 2020). 

Accordingly, crop inoculation should be carefully controlled, especially in maize whose grains and their post-

processing waste are used to produce food for humans or livestock (Gómez-Sagasti and Marino 2015). The key 

contribution of this work is the elucidation that a low concentration of AsV, naturally present in groundwater of 

cropping areas from Argentina, negatively impacts the oxidative metabolism of maize plants, which is a novel 

observation. In addition, each bacterial strain participates in the modulation of the redox response in the non-



symbiotic system in a specific way, conditioning the crop growth and the arsenic translocation to the edible 

parts of maize, as previously observed in our studies. Particularly, maize plant inoculation with the CD strain 

further restricted the arsenic translocation towards the leaves, although it accumulated a higher total metalloid 

concentration with respect to those plants inoculated with A. brasilense Az39 (Peralta et al., 2019). Thereby, 

the translocation restriction of As by the CD strain gives it a remarkable potential in addition to its PGPRs 

activities in maize.  

 

5. Concluding remarks  

In order to decipher the arsenate impact on maize plants inoculated with Azospirillum brasilense strains, the 

present work made several discoveries, among which, a realistic concentration of the metalloid, naturally 

present in groundwater from agronomic fields, generates an oxidative burst by increased ROS levels and the 

consequent oxidative stress due to lipid and protein damage. We proposed a model in which it is highlighted 

that the antioxidant response of the maize-diazotrophs system is modulated depending on the inoculated 

bacterial strain (Figure 8). Particularly, GSH plays a central role through its participation in ROS scavenging 

and chelation of arsenate acting mainly as a substrate for the GST, an essential enzyme to maintain cell viability. 

These findings together with our previous data provide evidence of a sustainable tool to counteract arsenic-

effects on crops. Besides the widely known PGPB activities of CD strain on maize, the capability of this 

microorganism to restrict As translocation in plants remarks it potential use as inoculant on metalloid affected 

cropping areas. In addition, considering the background of A. brasilense Az39 as bioinoculant for maize, 

research windows are opened for the study of bacterial consortia among the strains studied here. Thus, this 

research generated knowledge for the selection of the appropriate PGPB, which can be a key component of a 

potential microbial inoculant for maize crops exposed to naturally adverse growth conditions. 
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Figure legends 

 

Figure 1. Bacterial viability at different arsenate concentrations. (A) Azospirillum brasilense Az39, (B) 

Azospirillum brasilense CD. Data represent the means ± SE of three independent experiments. 

 

Figure 2. Effect of arsenate on the morphology of inoculated maize roots. Cross sections of adventitious maize 

root in control treatment (A and B) and exposed to 3 µM AsV (C and D), inoculated with Azospirillum brasilense 

Az39 (A, C) or Azospirillum brasilense CD (B, D). Abbreviations: c, cortex; cc, central cylinder; en, 

endodermis; ep, epidermis; ex, exodermis. Magnification: 10X. Effect of arsenate on total cross section area (E) 

and central cylinder area (F). Data represent the mean ± SE (n = 10). Different letters indicate significant 

differences between A. brasilense strains for the same AsV dose. Different numbers indicate significant 

differences between AsV doses for each inoculated strain (P < 0.05) according to Duncan's test. 

 

Figure 3. Effect of arsenate on NADPH oxidase activity in leaves (A) and roots (B) of maize plants. Data 

represent the mean ± SE (n = 7). Different letters indicate significant differences between A. brasilense strains 

for the same AsV dose. Different numbers indicate significant differences between AsV doses for each inoculated 

strain (P < 0.05) according to Duncan´s test. 

 

Figure 4. Detection of hydrogen peroxide (H2O2) in maize plants. (A) Representative images of H2O2- DCF-

DA dependent fluorescence in maize roots devoid of AsV or exposed to 3 µM AsV. As negative control the roots 

were incubated in 1 mM ascorbate, a H2O2 scavenger. Magnification: 5X. (B) Distribution of H2O2 in maize leaf 

blade from plants devoid of AsV and treated with 3 µM AsV. The arrows indicate the dark deposits resulting 

from the reaction of H2O2 with DAB. H2O2 content in maize leaves (C) and roots (D). Data represent the mean 

± SE (n = 10). Different letters indicate significant differences between A. brasilense strains for the same AsV 

dose. Different numbers indicate significant differences between AsV doses for each inoculated strain (P < 0.05) 

according to Duncan´s test. 

 

Figure 5. Superoxide radical (O2˙¯) production in maize plants. (A) Histochemical detection of O2˙¯ by 

fluorescence in an adventitious root of maize plants. Representative fluorescence images of O2˙¯ DHE 

dependent staining are shown in plants devoid of AsV or in the presence of 3 µM AsV. As a negative control, 

the roots were incubated with TMP 1 mM (O2˙¯ scavenger). (B) Distribution of O2˙¯in maize leaf blade from 

plants devoid of AsV and treated with 3 µM AsV. The arrows indicate reduced formazan blue deposits caused 

by the reduction of NBT with O2 ˙¯. (C) Quantification of O2˙¯ fluorescence intensity (F. Int.) from images in 

arbitrary units (a.u). Magnification: 5X. Data represent the mean ± SE (n = 10). Different letters indicate 

significant differences between A. brasilense strains for the same AsV dose. Different numbers indicate 

significant differences between AsV doses for each inoculated strain (P < 0.05) according to Duncan´s test. 



  

 

Figure 6. Oxidative stress induced due to arsenic in inoculated maize plants. Lipid peroxidation and carbonyl 

groups content in leaves (A, B) and roots (C, D) of maize plants. Data represent the mean ± SE (n = 10). 

Different letters indicate significant differences between A. brasilense strains for the same AsV dose. Different 

numbers indicate significant differences between AsV doses for each inoculated strain (P < 0.05) according to 

Duncan´s test. 

 

Figure 7. Arsenate effect on antioxidative enzymes in roots of maize plants inoculated. Activities of (A) SOD, 

(B) CAT, (C) GST, (D) APX, (E) GR, (F) GPX/PRX, (G) MDHAR and (H) DHAR. Analysis of mRNA relative 

expression of GR (I), APX (J) and GST (K) by qRT-PCR. Each bar represents the mean ± SE (n = 7). Different 

letters indicate significant differences between A. brasilense strains for the same AsV dose. Different numbers 

indicate significant differences between AsV doses for each inoculated strain (P < 0.05) according to Duncan's 

test. 

 

Figure 8. Proposed response model for maize-A. brasilense interaction exposed to a realistic AsV dose. 

Abbreviations:  Ct, Total chlorophyll; Ca, Chlorophyll a; Cb, Chlorophyll b; NADPHox, NADPH oxidase; 

SOD, Superoxide dismutase; CAT, Catalase; GST, Glutathione S-transferase; APX, Ascorbate peroxidase; GR, 

Glutathione reductase; GPX / PRX, Glutathione peroxidase/peroxiredoxin; MDHAR, Monodehydroascorbate 

reductase; DHAR, Dehydroascorbate reductase; GSHT, Total Glutathione; GSHR, Reduced Glutathione; GSSG, 

Oxidized Glutathione; TBARS, Thiobarbituric acid reactive substances; C = O, free carbonyl groups. 

 

Supplementary material 

 

Figure S1. Quantification of H2O2 fluorescence intensity (F. Int.) from images in arbitrary units (a.u.).       

Figure S2. Relative concentration of GSH and GSSG species in inoculated maize plant roots exposed to AsV. 



















Table 1. Photosynthetic pigment contents in maize plants exposed to As
V
.  

 Photosynthetic pigments content (mg g
-1

 dry weight) 

Azospirillum 

brasilense 

strains 

Total Chlorophyll Chlorophyll a Chlorophyll b Carotenoids    

0 µM As
V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 

Az39 1.30 ± 0.17
A1

 1.10 ± 0.19
B1

  0.92 ± 0.11
A1

 0.78 ± 0.13
B1

 0.38 ± 0.05
A1

 0.33 ± 0.06
B1

 2.1 E
-3

 ± 2.6 E
-4

  
A1

 1.8 E
-3

 ± 2.7 E
-4

 
A1

 

CD 1.23 ± 0.09 
A1

 1.06 ± 0.05 
B2

  0.88 ± 0.06 
A1

 0.74 ± 0.02 
B2

 0.33 ± 0.03 
A1

 0.33 ± 0.03 
B1

 1.9 E
-3

 ± 1.3 E
-4

 
A1

 1.3 E
-3

 ± 2.3 E
-4

 
B2

 

 

Data represent the mean ± SE (n = 7). Different letters on each column indicate significant differences between strains for each treatment and different 

numbers on each row indicate significant differences between treatment for each strain according to the Duncan`s test (P < 0.05) 
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Table 2. Effect of As
V
 on glutathione content in maize roots. 

  
GSHT (nmol g

-1
 FW) GSH (nmol g

-1
 FW) GSSG (nmol g

-1
 FW) GSH/(GSH+GSSG) 

Azospirillum 

brasilense 

strains 

0 µM As
V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 0 µM As

V
 3 µM As

V
 

Az39 149.88 ± 16.23
A1

 89.55 ± 6.5
B2

 144.90 ± 16.23
A1

 83.96 ± 6.21
B2

 4.98 ± 0.01
B1

 5.47 ± 0.50
A1

 0.96 ± 0.01
A1

 0.94 ± 0.01
A1

 

CD 151.24 ± 8.08
A1

 133.71 ± 4.23
A1

 144,28 ± 7.46
A1

 133.83 ± 6.83
A1

 8.08 ± 0.62
A1

 5.46 ± 0.48
A2

 0.95 ± 0.01
A1

 0.96 ± 0.01
A1

 

 

Data represent the mean ± SE (n = 7). Different letters on each column indicate significant differences between strains for each treatment and different 

numbers on each row indicate significant differences between treatment for each strain according to the Duncan`s test (P < 0.05). GSHT: glutathione total; 

GSH: glutathione reduced; GSSG: glutathione disulfide; FW: fresh weight. 
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