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Production of biodiesel from acid oil using
sulfuric acid as catalyst: kinetics study
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Abstract
Biodiesel production is becoming more relevant due to its environmental advantages together with the
global petroleum situation regarding decreases of the reserves, instability of the prices and so on.

The kinetics of the esterification and transesterification reaction of an acid oil (10% of initial free
fatty acid) was studied using ethanol and a homogenous acid catalyst. The controlling step method was
employed to obtain the kinetic equations, and nonlinear multiparametric routine was implemented to
estimate the kinetic parameters. The selected reaction rate represented the experimental data for several
operating conditions satisfactorily.
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1 INTRODUCTION

Fuel consumption has considerably increased over the last
few years; therefore, great efforts have been made to find
other renewable and sustainable alternatives for fossil fuel.
Biodiesel is a valuable option because of its environmental
benefits such as lower toxicity for humans, i.e. lower CO and
sulfur emissions and a minimum amount of particle matter
[1–4].

The most common way to produce biodiesel is by transes-
terification of vegetable oils with an alcohol. The reaction can
be catalyzed by alkalis, acids or enzymes or by carried out
under supercritical conditions [5–21].

The main disadvantage in biodiesel production is the high
cost of the raw materials used, normally refined oils. Therefore,

different feedstocks (waste, acid and frying oils) are being evalu-

ated as possible substitutes. These alternative raw materials are

less expensive, although being likely to appear more impure.
In acid oils, the amount of free fatty acid (FFA) could vary

from 3 to 40%. When the amount of FFAs in the feedstock

exceeds 0.5%, the use of the conventional alkali catalyst is not

recommended due to the fact that the saponification reaction

might take place [2–4]. Nevertheless, the FFA could be trans-

formed into ester by means of the direct esterification reaction.
The main reactions involved when an acid oil is used are

summarized as follows:

CH2 � OOC� R

j
CH� OOC� R

j
CH2 � OOC� R

þ 3R0OH  !catalyst

R1 � OOC� R0

j
R2 � OOC� R0

j
R3 � OOC� R0

þ

CH2 � OH

j
CH� OH

j
CH2 � OH

Triglycerides Alcohol Esters Glycerin

ð1Þ

R�COOH
Free fatty acid

þR0OH
Alcohol
 !catalyst

H2O
Water
þR�CO�OH2C�R0

Easter
ð2Þ

where R and R0 denotes any hydrocarbon chain.
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The kinetics of the esterification reaction has extensively
been studied [22–30]. However, in those works, the FFA was
considered a pure component. Berrios et al. [31] and Tesser
et al. [32] have considered acid oil with several concentration
of FFA. Nevertheless, the amount of triglycerides has not been
included in the reaction mechanism proposed. It could be con-
sidered constant if its concentration does not change during
the reaction. However, this is unlikely to happen because the
conditions for the transesterification to take place are
appropriate.

In the present work, the kinetics of the direct esterification
of the FFA has been studied using acid oils in two different
contexts. In the first case, triglycerides have been considered
inert. Consequently, only the esterification reaction (2) has
been considered. From laboratory results, a second alternative
was proposed where the transesterification reaction of triglycer-
ides (1) occurs together with the direct esterification reaction
(2). For both cases, the kinetic models were developed and
their kinetic parameters have been fitted using experimental
data obtained at different operating conditions such as reaction
temperature, amount of catalyst, alcohol/oil molar ratio and
different initial percentages of FFA in the mixture. These
kinetic models were obtained applying the rate-controlling step
method to the different reaction mechanisms proposed.

Both alternatives were found to be suitable to reproduce the
experimental data for different temperatures and amounts of
catalyst. However, when both reactions are taken into account,
the kinetic model fits the information more accurately.

2 MATERIALS AND EXPERIMENTAL
METHOD

The experimental runs were carried out in a lab scale reactor
of 500 ml equipped with a mechanical agitation manipulated
by speed control at 200 rpm. The reaction temperature was
controlled by thermostatic bath that allowed setting the temp-
erature at the desirable value with an error of +0.18C.

To carry these experiments, refined sunflower oil from a
commercial brand were used. Ethanol anhydrous and sulfuric
acid, brand ‘Anedra’, were utilized as reagent and catalyst,
respectively. Ethanol was chosen instead of methanol due to its
lower toxicity and the fact that this alcohol could be produced
from renewable sources.

To obtain an oil acid of a known acidity, an amount
measured of oleic acid was added to the vegetable oil. The
mixture was prepared and fed to the reactor to be heated up.
Once the reaction temperature was reached, the catalyst mixed
with the alcohol was fed and the reaction started. In each run,
the liquid samples were withdrawn at different specific times
by means of a valve placed at the bottom of the reactor.

Once it was removed from their reaction mixture, the
sample was washed with water in order to stop the reaction as
well as to facilitate the separation. To improve the separation of

phases, a centrifuge was used for 20 min. From the upper
phase (oil phase), a small sample was taken for GC analysis
and a slightly bigger sample was used for titration.

Titration procedure was done by diluting the oil sample
into ethyl ether and ethanol (50% vol), adding phenolphtha-
lein as an indicator. The acidity was then measured by using a
KOH solution of concentration and normality known. This
was done accordingly to AOCS Standard Methods Ca 5a-40
[33].

The amount of KOH consumed was recorded, and the
acidity of the sample could be calculated by means of the fol-
lowing relation:

a ¼ V 100 PM C

Mg
ð3Þ

From to the acidity of the system, the amount of oleic acid
(Cffa) is therefore established at each time. Consequently, the
conversion of FFA (xffa) was calculated using this expression:

xffa ¼
at¼0

ffa � at¼t
ffa

at¼0
ffa

ð4Þ

where at¼0
ffa is the initial acidity of the fatty acid mixture and

at¼t
ffa is the acidity of the same at ‘t’ time.

In this case, that sulfuric acid was used as catalyst, it was taken
care that the acid was not present in the oil phase. The exper-
imental data selected by this study showed that sulfuric acid does
not appear in the samples within of 1.8% in the acid index.

The concentration of triglycerides, diglycerides, monoglycer-
ides, biodiesel and glycerin were analyzed by capillary gas
chromatography (GC). Each sample of the oil phase was diluted
in pyridine (50 mg/5 ml), 100 ml from of the solution were
mixed with 200 ml N,O-bis(trimethylsilyl)-trifluoroacetamide
and 100 ml trimethylchlorosilane. This new mixture was heated
up for 20 min at 708C and 1 ml was then injected to a GC
Varian 3700. The GC was fitted with 15 m � 0.32 mm �
0.1 mm column DB-5HTJ&W Scientific.

The titration and the GC method are complimentary
methods due to the fact that different compounds could be
analyzed with this technique. However, the FFA was checked
with both techniques. This procedure allowed us to verify the
results of the GC analysis.

3 KINETIC MODELS

The kinetic expressions were obtained using the controlling
step reaction method applied to several possible reaction mech-
anisms. The FFA conversion as a function of time was calcu-
lated using the batch reaction equation:

dxffa

dt
¼ �rffa

C0
ffa

ð5Þ

The kinetic parameters from the proposed mechanism were
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adjusted with experimental data presented elsewhere [34,35].
To carry out this procedure, a non-linear regression routine
based on the Marquard [36] algorithm was used.

The selection of the model was done by comparing statisti-
cal criteria such as standard deviation and variance among
others.

3.1 Case I: esterification reaction
In this case, only the proposed esterification reaction took
place whereas the transesterification reaction did not. Hence,
the triglycerides can be considered inert in the reaction.

To obtain the kinetic expression, the mechanism proposed
by Straitweiser et al. [37] was chosen. From this mechanism
and applying the controlling step method, several possible
expressions for the kinetic reaction rate were obtained. Upon
applying statistical criteria, the following reaction rate (r, mol/
l/s) turned out to be the most accurate one.

rffa ¼
m0

cat

1þ K1CfaeeCw þ K2CfaeeCw=Cffað Þ þ K3Cfaee

k Cffa �
CfaeeCw

CalcK

� � ð6Þ

where m0
cat is initial concentration of the catalyst (kg/l), faee

fatty acid ethyl oleate, C concentration of a compound (mol/l),
k kinetic constants in l/(mol h), k ¼ k1 expð�E=RTÞ, where E is
activation energy (kJ/mol), R is universal gas constant and T is
temperature (K), andK ¼ K1 expð�DH=RTÞ, where Ki is equili-
brium constants and DH is heat of reaction (kJ/mol).

The kinetic parameters for the selected model are reported
in Table 1.

The obtained activation energy (E ¼ 23.137 kJ/mol) is of
the same magnitude as one obtained by Sendzikiene et al. [30]
(13.290 kJ/mol).

The experimental and calculated conversion of FFA for
three different reaction temperatures (35, 45 and 558C) are
shown in Figure 1. As it can be seen, the model predicts the
experimental data satisfactorily. The effect of the amounts of
catalyst is displayed in Figure 2.

3.2 Case II: esterification and transesterification
reactions
Considering experimental laboratory results, the transesterifica-
tion reaction could take place simultaneously with the esterifi-
cation reaction. For this reason, a global reaction mechanism
should be proposed to obtain the kinetic expression for both
the esterification and the transesterification reactions.

The proposed mechanism is as follows:

(1) TG þ ALC$ DG þ FAEE
(2) DG þ ALC$MG þ FAEE
(3) MG þ ALC$ G þ FAEE
(4) FFA þ ALC$ H2O þ FAEE

Each step in the above mechanism is an elementary reaction.

Table 1. Kinetic parameters.

Parameter Value Units

k1 0.058 l/(kg s)

E 23.137 kJ/mol

K1 6.42 � 1067

DH 399.572 kJ/mol

K1 7.62 � 10-2 l2/mol2

K2 3.14 � 101 l/mol

K3 1.00 � 10211 l/mol

Figure 1. Conversions of FFA for different temperatures. Dashed line area of

the curve denotes the simulated values and filled symbols experimental data.

Case I: initial FFA ¼ 10.68%; n ¼ 6.1:1; S ¼ 2.1%; rpm ¼ 200.

Figure 2. Conversions of FFA for different values of S. Dashed line area of the

curve denotes the simulated values and filled symbols denote experimental

data. Case I: initial FFA ¼ 10.68%; n ¼ 6.1:1; rpm ¼ 200; T ¼ 458C.
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The variations in the concentration of each compound is
defined as follows

dCtg

dt
¼ �r1 ð7Þ

dCdg

dt
¼ r1 � r2 ð8Þ

dCmg

dt
¼ r2 � r3 ð9Þ

dCg

dt
¼ r3 ð10Þ

dCfaee

dt
¼ r1 þ r2 þ r3 þ r4 ð11Þ

dCalc

dt
¼ � dCfaee

dt
ð12Þ

dCffa

dt
¼ �r4 ð13Þ

For the esterification reaction, the same model from Case I was
proposed. For the transesterification reaction, a new kinetic
expression was obtained, assuming that all steps were elemen-
tary. The following resulting expressions were attained:

r1 ¼ k1CtgCalc � k2CdgCest ð14Þ
r2 ¼ k3CdgCalc � k4CmgCest ð15Þ

r3 ¼ k5CmgCalc � k6CgCest ð16Þ

r4 ¼
m0

cat

1þ K1CfaeeCw þ ðK2CfaeeCw=CaglÞ þ K3Cest

k7Cffa �
k8CfaeeCw

Calc

� � ð17Þ

where ki ¼ ki1expð�E=RTÞ; i ¼ 1; 8:
The experimental conversion of FFA and those from the

kinetic model can be observed in Figure 3 for the same

temperatures of Case I. Once again, a very good representation
of the experimental data is achieved.

The evolutions of the concentration of TG and biodiesel as
a function of time are shown in Figures 4 and 5. As shown,
when the temperature increases, the TG concentrations
decreases and the biodiesel production increases.

The accuracy of the kinetic model for three different
amounts of catalyst is presented in Figure 6, considering the
variations of the FFA conversions.

The kinetic parameters obtained from the fitting of the
experimental data with the Case II are stated in Table 2.

A comparison of the conversion of FFA obtained with both
models (Cases I and II) was done. Figure 7 shows the
experimental information and the result of both kinetic
models. It can be seen that Case II presents a more accurate
fitting.

Figure 3. Conversions of FFA for different temperatures. Dashed line area of

the curve denotes the simulated values and filled symbols denote experimental

data. Case II: initial FFA ¼ 10.68%; n ¼ 6.1:1; S ¼ 2.1%; rpm ¼ 200.

Figure 5. Experimental and calculated FAEE concentrations. Dashed line

area of the curve denotes the simulated values and filled symbols denote

experimental data. Case II: initial FFA ¼ 10.68%; n ¼ 6.1:1; S ¼ 2.1%;

rpm ¼ 200.

Figure 4. Concentrations of TG for different temperatures. Dashed line area

of the curve denotes the simulated values and filled symbols denote

experimental data. Case II: initial FFA ¼ 10.68%; n ¼ 6.1:1; S ¼ 2.1%;

rpm ¼ 200.
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4 CONCLUSIONS

The kinetic reaction of the direct esterification was studied in
the presence of triglycerides with a homogenous acid catalyst
(sulfuric acid), obtaining good results.

As a first step, the esterification reaction was studied, con-
sidering the triglycerides as inert because the transesterification
reaction did not take place. A mechanism was established and
the experimental data were fitted using a multiparametric
non-linear routine. Satisfactory results were obtained for different
reaction temperatures and amounts of catalyst (Figures 1 and 2).

The laboratory experience showed that the transesterifica-
tion reaction took place at the same time the esterification was
studied. For this reason, a more complete mechanism was pro-
posed involving both reactions. This model fitted the exper-
imental data more accurately.

This kinetic study is an important tool to study the reaction
rate of the esterification and the transesterification reactions of
an oil with high amount of FFAs. This kinetics is suitable for
reactor design.
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