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Abstract The problem of the electrostatics in conical
wormholes is revisited, now improving the background
geometries with asymptotical flatness. The electric self-force
on a point charge placed at different regions in the space-
time of a conical thin-shell wormhole connecting flat outer
submanifolds is obtained and compared with the results of
previous works. The study is also carried out in terms of a pre-
viously introduced analogy in which the effect of the matter
shells on the electric field is reproduced by non-gravitating
layers of charge located on the boundary surfaces. Besides, a
better insight on the physical effects of a non trivial geometry
is obtained by means of a further analysis of the electric fluxes
across the wormhole throat and at both spatial infinities. It is
found that the throat is traversed by a non-arbitrary and finite
electric flux determined by the global topology, which is pro-
portional to the charge of the source, and is characteristic of
the asymptotically flat cylindrical wormholes regardless of
the details of the throat geometry.

1 Introduction

Amongst other remarkable physical predictions, the relativis-
tic theory of gravity introduces the possibility of a self-force
on an electric charge, as a result of the anisotropy of the
Maxwell field induced by the non-Minkowskian character of
the background geometry associated to a matter source. Early
works showed this very interesting effect for rest charges in
black hole backgrounds, both in a weak field approxima-
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tion [1] as in the context of the full field equations [2].1 The
Maxwell equations for curved spacetime [4] (with c = 1)
are:
(
Fμν√−g

)
,ν

= 4π jμ
√−g

Fμν = Aν,μ − Aμ,ν

jμ =
∑

a

qa√−g
δ(x − xa)

dxμ

dx0 , (1)

where μ = (0, 1, 2, 3), g is the determinant of a given back-
ground metric defined by the tensor gμν , Aμ is the four-
potential, jμ is the four-current and qa are the associated
charges. For only one rest charge q located at the point x′ we
simply have
(
F0k√−g

)

,k
= 4πqδ(x − x′) , (2)

where k = (1, 2, 3). These equations, together with the
suitable boundary conditions corresponding to the particu-
lar background spacetime considered, completely determine
the field of a point charge. Boundary conditions play a cen-
tral role in the problem, as they explain the possibility of an
anisotropic field around a rest point charge located in a region
which is locally flat, and, consequently, the existence of an
electric self-force in such an, at a first sight, trivial situation.
A well known example of this is the self-force on a point
charge in the conical – and thus locally flat – spacetime of a
gauge cosmic string [5–8] early calculated by Linet [9]. Elec-
trostatic self-forces in wormhole [10] spacetimes were first
studied in Refs. [11–13]. Taking into account the interesting
results therein, in previous works we developed a program
aimed to distinguish between topologically different geome-
tries which are equal in the region where the charge is placed.
We have then addressed the determination of the self-force in

1 See [3], and references therein, to find different approaches to the
problem in black holes backgrounds.
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cylindrical thin-shell spacetimes [14,15] and also in spheri-
cally symmetric ones [16] or different number of spacetime
dimensions [17]. Our program has also been extended to the
case of scalar massless and massive fields [18,19].

The particular class of cylindrically symmetric geometries
as those associated to cosmic strings has received a renewed
attention in the last decades [20–25], given, among other
reasons, their possible role as secondary seeds for structure
formation in the Universe. Bronnikov and other authors have
pointed the convenience of asymptotical flatness in axially
symmetric problems [26–28]; such feature can be achieved
by suitably matching a geometry with a nontrivial far behav-
ior to a flat one, thus allowing to turn geometries with unusual
asymptotics into ones with a physically more appealing far
behavior. Following this proposal, here we are interested in
the problem of determining the electric field of a rest point
charge in the background spacetime of a wormhole connect-
ing two gauge cosmic string geometries at each side of the
throat, joined to two Minkowski geometries in their corre-
sponding outer regions. Therefore, in the present work we
will determine how this improvement in the kind of back-
ground geometries considered is reflected in the behavior of
the electric self-force on a point charge, and how this com-
pares with our previous results obtained for everywhere con-
ical spacetimes [14,15]. We will also consider an interpre-
tation at the light of the analogy introduced in [15], where
the effect of a cylindrical thin matter layer on the electric
field is reproduced by replacing such shell by a suitable –
non-gravitating – charge density placed at the corresponding
boundary.

Finally, a detailed analysis of the electric fluxes across the
wormhole throat as well as at both spatial infinities will be
performed; this will give a good picture of the interesting
physical aspects introduced by the non trivial topology of
the geometry. Unlike what was pointed out in previous illu-
minating works on electrostatics in spherically symmetric
wormhole spacetimes [12,13], here we show that the pres-
ence of a test electric charge fixes a finite flux traversing the
cylindrical wormhole throat.

2 The geometry

Cylindrical wormholes of the thin-shell class, including those
connecting gauge cosmic string submanifolds, i.e. conical
geometries, have been extensively studied [29–40]. Now we
consider an extension of the latter, that is an asymptotically
flat thin-shell wormhole (FW) manifold defined as

M = Me− ∪ Mi− ∪ Mi+ ∪ Me+, (3)

where the inner submanifolds

Mi± = {x/a ≤ r± ≤ bi } (4)

have conical metrics, and the exterior ones

Me± = {x/b ≤ r± < ∞} (5)

are Minkowski geometries; the wormhole throat is located
at r± = a, while bi and b are the radial coordinates at each
side of the outer joining surfaces present in both, the minus
and the plus, submanifolds of the spacetime. This spacetime
is supported by thin layers of matter located at these three
joining surfaces. The novelty in the present analysis clearly
relies in the asymptotic flatness, so we are not going to mess
with the possibility of different geometries at each side of the
wormhole throat; thus we have two identical submanifolds
M− = Me− ∪Mi− and M+ = Mi+ ∪Me+ with metrics
[6–8]

ds2± = −dt2 + dr2 + ρ2(r)dφ2 + dz2, (6)

ρ(r) =
{

ωr , if a ≤ r ≤ bi (Mi±) ,

r , if b ≤ r < ∞ (Me±) .
(7)

As usual, we have

−∞ < t < +∞ , 0 ≤ φ ≤ 2π , −∞ < z < +∞ .

In the case of the cosmic string geometries from which we
start our mathematical construction, and in units such that
G = 1, the parameter ω would be given by ω = 1 − 8μ

where μ is the mass per unit length of a gauge cosmic
string. Its associated stress–energy tensor has the form T ν

γ =
(−ρ, pr , pφ , pz) = −μ diag(1, 0, 0, 1) δ(x) δ(y), so that
the pressure along the axis is negative, i.e. it is really a ten-
sion. Here we only assume 0 < ω ≤ 1.

The continuity of the geometry at the throat is automat-
ically satisfied, while across both outer joining surfaces it
requires that we define the coordinates at each side so that
ωbi = b. While the geometry must be continuous, the deriva-
tives of the metric are not forced to do so. In general, the pres-
ence of a thin layer of matter will be associated to a jump in
these derivatives. When put in covariant form, this relation
between the geometry and the surface matter has the form of
the Lanczos equations [41–45]

8π Si j = [K ]hi j − [Ki j ], (8)

wherehi j is the induced three-dimensional metric on the join-

ing surface, [Ki j ] = K (2)
i j − K (1)

i j is the discontinuity of the

extrinsic curvature tensor across this surface, [K ] = hi j [Ki j ]
is its corresponding trace, and Si j is the stress–energy ten-
sor of the matter shell. In mixed components, the surface
stress–energy tensor for a cylindrical shell has the form

S j
i = diag(−σ, pφ, pz), (9)

with σ the surface energy density, and pφ and pz the surface
pressures. For a static configuration, at the wormhole throat
we have
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σ = − 1

4πa
, (10)

pφ = 0 (11)

and

pz = 1

4πa
. (12)

The surface energy density and pressure on each outer shell
are given by

σ = ω − 1

8πb
, (13)

pφ = 0 (14)

and

pz = 1 − ω

8πb
. (15)

Note that in all cases the energy density is negative, thus
reflecting the presence of exotic matter. Such matter at the
throat is necessary to have a wormhole geometry, while that at
the outer joining surfaces is the price to be paid for asymptot-
ical flatness. Another aspect to be mentioned is that the rela-
tion between the energy density and pressures on each shell
is the same as for a gauge cosmic string; however, while for a
string (of course with positive energy density) such relation
implies a tension along the axis, for the shells in our con-
struction the situation is reversed, and we effectively have a
pressure in the direction parallel to the axis of symmetry.

3 Field of a point charge

Starting from the background geometry introduced above,
we now determine the electric field of a rest point charge,
neglecting any backreaction of this field on the space-
time metric. In general, for a static point charge located at
(r ′, φ′, z′) in a conical spacetime with angle deficit 2π(1−ω),
from (2) we can write down the following equation

∇2A0 = −4πq

ωr
δ(r − r ′)δ(φ − φ′)δ(z − z′) (16)

for the only non vanishing component A0 ≡ V of the four-
potential, where ∇2 ≡ gkl∇k∇l ; the other components of the
four-potential vanish. The explicit form of this equation is

[
∂2

∂r2 + 1

r

∂

∂r
+ 1

ω2r2

∂2

∂φ2 + ∂2

∂z2

]
V

= −4πq

ωr
δ(r − r ′)δ(φ − φ′)δ(z − z′). (17)

As is usual in analogous problems, we look for a solution of
the form

V = q

ω

4

π

+∞∑

n=0

cos[n(φ − φ′)]
1 + δ0,n

+∞∫

0

dk cos[k(z − z′)]χn(k, r) ,

(18)

where Fz = {cos[k(z−z′)]} and Fφ = {cos[n(φ−φ′)]} are a
complete set of orthogonal functions of the coordinates z and
φ. By substituting this expression for V in Eq. (17) we obtain
the following equation for the radial functions χn(k, r):
{

∂

∂r

[
r

∂

∂r

]
− r

[( n

ωr

)2 + k2
]}

χn(k, r) = −δ(r − r ′) .

(19)

The steps above will be applied to calculate the potential for
a point charge in different cases. Then we shall identify the
part of the field which is regular at the position of the charge,
which is the contribution determining the electric self-force.

We shall first study the case of a point charge between
a and bi because we are interested in the comparison with
the example, already studied, of the field of a charge in
an everywhere conical thin-shell wormhole background. We
shall assume that the charge is placed in the Mi+ subman-
ifold region. The potential VFW for a charge q located at
(r ′, φ′, z′) ε Mi+ is given by the solution of the following
equations valid for the corresponding regions of the com-
plete manifold:

∇2
(ω)V

i±
FW =

[
∂2

∂r2 + 1
r

∂
∂r + 1

ω2r2
∂2

∂φ2 + ∂2

∂z2

]
V i±
FW

=
{

− 4πq
ω

δ(r − r ′)δ(φ − φ′)δ(z − z′) for Mi+ ,

0 for Mi− .

(20)

∇2V e±
FW =

[
∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2

]
V e±
FW

=
{

0 for Me+ ,

0 for Me− .

(21)

The boundary conditions to be satisfied by the potential
are:

• From the periodicity condition of the potential on the
angle φ:

1. V i±
FW (r, φ = 0, z) = V i±

FW (r, φ = 2π, z),
2. ∂

∂φ
V i±
FW (r, φ = 0, z) = ∂

∂φ
V i±
FW (r, φ = 2π, z).

3. V e±
FW (r, φ = 0, z) = V e±

FW (r, φ = 2π, z),
4. ∂

∂φ
V e±
FW (r, φ = 0, z) = ∂

∂φ
V e±
FW (r, φ = 2π, z)

• From the globally valid continuity of the potential:

1. V i+
FW

(
r → r ′+, φ, z

) = V i+
FW

(
r → r ′−, φ, z

)
,

2. V i+
FW (r → a+, φ, z) = V i−

FW

(
r → a+, φ, z

)
.

3. V i±
FW (r → b−

i , φ, z) = V e±
FW

(
r → b+, φ, z

)
.
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• The admissible asymptotic behavior implies:

1. lim
r→∞ V e±

FW = 0.

• Requirements on the slope of the potential coming from
the continuity of the associated electric field at the joining
surfaces and the discontinuity of the field at the point
charge source determine that:

1. ∂
∂r V

i+
FW (r → a+, φ, z) = − ∂

∂r V
i−
FW (r → a+, φ, z),

2. ∂
∂r V

i+
FW (r → r ′+, φ, z) − ∂

∂r V
i+
FW (r → r ′−, φ, z) =

− 4πq
ω

δ(φ − φ′)δ(z − z′) ,

3. ∂
∂r V

i±
FW (r → b−

i , φ, z) = ∂
∂r V

e±
FW (r → b+, φ, z),

From these boundary conditions we can obtain the radial
functions χ

(i,e)±
n (k, r) of the potential in each region. We are

particularly interested in the potential for the region where
the charge is placed; the radial functions for the charge in an
inner region Mi+ are

χ i+
n (k, r) = An(k)K n

ω
(kr) + Bn(k)I n

ω
(kr)

+I n
ω
(kr<)K n

ω
(kr>) (22)

where r>< = {r ′, r}, and K n
ω

and I n
ω

are modified Bessel
functions of order n/ω; the coefficients An and Bn are given
by

An(k) = −Pn(kr
′)

(
Pn(ka)I n

ω
(ka)

)′

2Pn(ka)P ′
n(ka)

(23)

Bn(kr) =
(
An(k) + I n

ω
(kr ′)

)
Gn(k) (24)

with the auxiliary definitions

Pn(kr) ≡ I n
ω
(kr)Gn(k) + K n

ω
(kr) (25)

Gn(k) ≡ −
K ′

n
ω
(kbi )Kn(kb) − K n

ω
(kbi )K ′

n(kb)

I ′
n
ω
(kbi )Kn(kb) − I n

ω
(kbi )K ′

n(kb)
; (26)

where the primes over functions imply a derivative with
respect to the corresponding radial argument a, bi or b.

Now we turn to the case of a point charge in the
outer region r > b; we evaluate VFW for a charge q at
(r ′, φ′, z′) ε Me+. This would allow the comparison, for
instance, with the field of a charge in a flat wormhole space-
time (that is, a wormhole joining two Minkowski geome-
tries). The potential is determined by the solution of the
following equations corresponding to the four submanifolds
which constitute the complete manifold M:

∇2
(ω)V

i±
FW =

[
∂2

∂r2 + 1
r

∂
∂r + 1

ω2r2
∂2

∂φ2 + ∂2

∂z2

]
V i±
FW

=
{

0 for Mi+ ,

0 for Mi− .

(27)

∇2V e±
FW =

[
∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂φ2 + ∂2

∂z2

]
V e±
FW

=
{ − 4πq

r δ(r − r ′)δ(φ − φ′)δ(z − z′) for Me+ ,

0 for Me− .

(28)

The boundary conditions to be satisfied by the potential
are:

• From the periodicity of the potential on the angular coor-
dinate φ:

1. V i±
FW (r, φ = 0, z) = V i±

FW (r, φ = 2π, z),
2. ∂

∂φ
V i±
FW (r, φ = 0, z) = ∂

∂φ
V i±
FW (r, φ = 2π, z).

3. V e±
FW (r, φ = 0, z) = V e±

FW (r, φ = 2π, z),
4. ∂

∂φ
V e±
FW (r, φ = 0, z) = ∂

∂φ
V e±
FW (r, φ = 2π, z).

• From the continuity of the potential, valid everywhere:

1. V e+
FW

(
r → r ′+, φ, z

) = V e+
FW

(
r → r ′−, φ, z

)
,

2. V i+
FW (r → a+, φ, z) = V i−

FW

(
r → a+, φ, z

)
.

3. V i±
FW (r → b−

i , φ, z) = V e±
FW

(
r → b+, φ, z

)

• The requirement of a good asymptotic behavior implies

1. lim
r→∞ V e±

FW = 0.

• Conditions on the slope of the potential dictated by a
discontinuity of the associated electric field at the point
charge source and continuity at every other point, in par-
ticular at the joining surfaces, imply the equalities:

1. ∂
∂r V

i+
FW (r → a+, φ, z) = − ∂

∂r V
i−
FW (r → a+, φ, z),

2. ∂
∂r V

e+
FW (r → r ′+, φ, z) − ∂

∂r V
e+
FW (r → r ′−, φ, z) =

− 4πq
r δ(φ − φ′)δ(z − z′) ,

3. ∂
∂r V

i±
FW (r → b−

i , φ, z) = ∂
∂r V

e±
FW (r → b,+ φ, z),

Again, we can obtain the radial functions χ
(i,e)±
n (k, r) of

the potential in each region from these boundary conditions.
In particular, the radial functions for the charge in the outer
region Me+ are

χe+
n (k, r) = Cn(k)Kn(kr) + In(kr<)Kn(kr>) (29)

where r>< = {r ′, r}, and Kn and In are modified Bessel
functions of order n; the coefficient Cn is given by

Cn(k) = −Kn(kr
′) I ′

n(kb)Wn(kbi ) − In(kb)W ′
n(kbi )

K ′
n(kb)Wn(kbi ) − Kn(kb)W ′

n(kbi )
,

(30)

and the auxiliary functions Wn are given by

Wn(kr) ≡ K n
ω
(kr)(Pn(ka)I n

ω
(ka))′

− I n
ω
(kr)(Pn(ka)K n

ω
(ka))′ (31)

with Pn(ka) defined as in (25), and the prime over functions
implying derivative with respect to the corresponding radial
argument a, bi or b.
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4 Evaluation of the self-force

For the evaluation of the self-force we need the potential at
the position of the charge where it admits to be written as the
superposition

VFW = Vbulk + Vshells , (32)

with Vbulk containing the inhomogeneity at r = r ′ and Vshells
containing the information corresponding to the distortions
coming from the boundary conditions at the shells and from
the topology of the wormhole.2 The divergent term Vbulk
is locally equivalent to the potential in the spacetime of a
cosmic string with parameter ω ∈ (0; 1], i.e., Vbulk = VCS .
The renormalization of our potential function at the position
r = r ′ is, therefore,

V ren
FW (r ′) = Vren

CS |r ′ + Vshells |r ′ , (33)

where [46,47]

VCS = q

π
√

2rr ′

+∞∫

u

sinh(ζ/ω) ω−1 dζ
[
cosh(ζ/ω) − cos φ−φ′

ω

]
(cosh ζ − cosh u)1/2

(34)

with

cosh u = r2 + r ′2 + (z − z′)2

2rr ′ , u � 0 . (35)

The geometry is locally flat in a neighborhood of the charge,
which means that the singular part VS to be subtracted is

identical to the potencial in a Minkowski spacetime; henceVS

can be written by putting ω = 1 in the previous expression:

2 An interpretation in terms of an analogous problem where the effect
of the matter shell is reproduced by a non-gravitating layer of charge
on the boundary surface can be seen in Ref. [15]. A central point in
this analogy is that the charge density concentrated on the region of the
surface which is near to the charge location has equal (opposite) sign
to that of the point charge according to the normal (exotic) nature of
the matter shell, producing a repulsive (attractive) effect. See also the
discussion below.

VS = q

π

1√
2rr ′

+∞∫

u

sinh ζ dζ

[cosh ζ − cos(φ − φ′)] (cosh ζ − cosh u)1/2 .

(36)

Evaluating at z = z′ and φ = φ′ to take the coincidence limit
using radial geodesics we obtain

Vren
CS = lim

r→r ′
(
VCS

(
r, r ′) − VS(r, r

′)
)

= q

2π

Lω

r ′ , with: (37)

Lω =
+∞∫

0

[
sinh(ζ/ω)

ω [cosh(ζ/ω) − 1]
− sinh ζ

cosh ζ − 1

]
dζ

sinh(ζ/2)
.

(38)

Finally, the regularized potential of the inhomogeneous term
in a conical geometry is

Vreg
CS (r, r ′) = q

4π

Lω

r ′
(

2 − ln
r

r ′
)

, (39)

from where one obtains Vren
CS = V reg

CS (r, r ′)|r ′ . The regular-
ized potential at the position of the charge at our wormhole
geometry is Vreg

FW = Vreg
CS + Vshells . A term like (39) will

be present if the charge is placed in an angle deficit sub-
manilod, i.e., in the interior regions of the wormholes where
ω < 1. In the flat exteriors, without angle deficit, we have
Vreg
CS = 0 (which can be checked from the coefficient (38)).

Consequently, we obtain

V reg
FW =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q Lω

4π
1
r ′

(
2 − ln r

r ′
) + q

ω

∞∑
n=0

4
π(1+δn,0)

+∞∫

0
dk

[
K n

ω
(kr)An(k) + I n

ω
(kr)Bn(k)

]
, in Mi

q
∞∑
n=0

4
π(1+δn,0)

+∞∫

0
dk Kn(kr)Cn(k) , in Me

(40)

for the interior and exterior regions, respectively. From the
regularized potential we compute the self-force f on the
charge q as measured by a static observer in the wormhole
geometry, f ≡ f r̂ = −q ∂

∂r
V reg
FW |r=r ′ , this yields

f =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q2

[
Lω

4π
1
r ′2 − 1

ω

∞∑
n=0

4
π(1+δn,0)

+∞∫

0
dk

(
K ′

n
ω
(kr ′)An(k) + I ′

n
ω
(kr ′)Bn(k)

)]

, in Mi

− q2
∞∑
n=0

4
π(1+δn,0)

+∞∫

0
dk K ′

n(kr
′)Cn(k) , in Me

(41)

In an inner region Mi the force is described essentially by
two parts; a positive term ∼ r ′−2 which decreases with
increasing ω, plus the contribution of the infinite series
describing the deflection of the field generated by the bound-
ary conditions. In the flat Minkowski exteriors Me the force
is produced exclusively by the effects involved at the bound-
aries. To represent the self-force we will plot it using the
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(a) ω = 0.7, Δ = 1000, a = 1. (b) ω = 0.8, Δ = 1000, a = 1. (c) ω = 0.9, Δ = 1000, a = 1.

Fig. 1 Dimensionless self-force f × (�/q)2 in terms of the dimensionless coordinate x , for different values of the angle deficit parameter ω. The
throat is at x = 0 and the exterior shell is at x = 1

(a) ω = 0.7, Δ = 1, a = 1. (b) ω = 0.7, Δ = 100, a = 1. (c) ω = 0.7, Δ = 500, a = 1.

Fig. 2 Dimensionless self-force f × (�/q)2 in terms of the dimensionless coordinate x , for different sizes � of the conical region. The throat is
at x = 0 and the exterior shell is at x = 1

(a) ω = 0.7, Δ = 1000, a = 2. (b) ω = 0.7, Δ = 1000, a = 5. (c) ω = 0.7, Δ = 1000, a = 10.

Fig. 3 Dimensionless self-force f × (�/q)2 in terms of the dimensionless coordinate x , for increasing values of the throat radius a. The throat is
at x = 0 and the exterior shell is at x = 1

global dimensionless coordinate x ∈ (−∞;+∞), defined
as follows

r ′ =

⎧
⎪⎪⎨

⎪⎪⎩

b x , if + ∞ > x � 1 , in Me+
x � + a , if 1 � x � 0 , in Mi+
−x � + a , if 0 � x � −1 , in Mi−
−b x , if − 1 � x > −∞ , in Me−

(42)

The parameter � ≡ bi − a = b/ω − a is the size of each
interior region or, equivalently, 2� is the size of the conical
throat which joins the two Minkowski exteriors. The position
x = 0 is the center of the throat of radius a, and the exterior
shells are located to x = ±1.

In the following figures we plot f×(�/q)2 (dimensionless
self-force), against the dimensionless coordinate x , for differ-
ent values of the angle deficit parameter ω of the conical inte-
rior, the size � and the radius a of the throat. Since the worm-

hole is symmetric across the throat, the force is represented
for a charge placed in the plus region M+ = Mi+ ∪ Me+,
only. Figure 1 shows the dependance on the deficit angle with
the comparison of three cases with different ω and fixed �

and a. As it could be expected from the first term in (41), for
a given size and radius of the throat, the repulsive self-force
effect due to the conical geometry decreases for increasing
ω.

In Fig. 2 we show the dependance of the force on the size
�, while in Fig. 3 its dependance on the radius a. The analysis
of the results shown in the figures reveals some points to be
remarked:

1. Any shell with negative energy (exotic matter associated
to a positive spatial curvature on a surface joining two
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submanifolds) has an attractive effect on the electric point
charge: this happens near the shell at the wormhole throat
as well as at both sides of the exotic outer shell required to
achieve asymptotic flatness. Of course, for a charge in the
conical region, if the position is near the throat this attrac-
tion points towards the axis, while for a charge located
near the outer shell this attraction points outwards. The
attractive effect of these exotic shells is studied in more
detail below.

2. If the size � of the conical region is large enough so that
the effect of the shells in the region between them (that is,
between the throat and the outer shell) becomes compara-
tively weak, the dominant contribution to the electric self-
force is a repulsion from the central axis associated to the
angle deficit of the conical geometry. On the other hand,
as this repulsive effect decays as ∼ 1/r ′2 (r ′ > a), for
larger values of the throat radius a it eventually becomes
negligible (see Figs. 2, 3 with fixed ω).

3. In the outer flat regions, where no deficit angle exists, the
only effect is the attractive self-force towards the axis; as
pointed above, this force is a characteristic of the exotic
matter shells which have positive spatial curvature on the
joining surface.

To understand the attractive contribution to the force pro-
duced by these shells of negative energy density we can apply
the interpretation of the equivalent electric problem devel-
oped in [15]. This interpretation provides an alternative pic-
ture in which the actual deflection of the field lines generated
at the shell’s curvature jump is replicated with an analogous
image method electric problem in which surface charge den-
sities are placed at the boundaries between two regions. The
analysis will show that, in addition to the deflection of the
field by the thin-shells, the leading asymptotic attractive force
towards the throat involves a drain hole effect which is char-
acteristic of the wormhole topology.

Let us start considering the problem in an outer region
Me+. If the charge is placed in Me+ the potential is the
superposition of an inhomogeneous term produced by the
particle plus an homogeneous part called Vshell , as pointed
out earlier in Eq. (32). The equivalent interpretation describes
the problem of the point charge in the exterior Minkowski
region of the wormhole using an equivalent electric potential
ϕe in a Minkowski spacetime in which the thin-shell contour
at the surface r = b is replaced by a non-gravitating surface
charge distribution �b. This charge density must produce a
potential ϕb ≡ Vshell in the region b < r < ∞. Defining
ϕq to be the inhomogeneous point charge electric potential
in Minkowski space, the total field given by ϕe = ϕq + ϕb

is equivalent by construction to the original one in the outer
region of the wormhole. Following the procedure described
in [15] (see Eq. (49) and explanation therein), the potential
of the surface charge density is explicitly

ϕb = q
∫ +∞

0
dk cos [k(z − z′)]

×
∞∑

n=0

cos [n(φ − φ′)] 4Cn(k)

(1 + δn,0)π In(kb)
In(kr<)Kn(kr>) ,

(43)

where r>< = {r, b}, and coincides with Vshell in b < r < ∞,
as given by the first term in (29). Then, the associated surface
charge density at r = b is

�b(φ, z) =
∞∑

n=0

cos [n(φ − φ′)]
∫ ∞

0
dk cos [k(z − z′)]�b

n (k) ,

(44)

with the Fourier coefficients

�b
n (k) = q

4πb

4Cn(k)

(1 + δn,0)π In(kb)
. (45)

Like any induced surface charge, �b(φ, z) depends on the
position (r ′, φ′, z′) of the source charge q and is well defined
for b < r ′ < ∞ (r ′ is implicit in the coefficient function
Cn(k)). In the limit r ′ → b we have

lim
r ′→b

�b(φ′, z′)
q/�2 = −∞ (46)

as is expected from the numerical analysis in terms of the self-
force, i.e. a peak of infinite opposite charge density is concen-
trated at (φ′, z′), correspondingly with the leading attraction
to the exotic matter shell in the original problem. An interest-
ing calculation which can be performed using the equivalent
electric problem is the net charge Qb of the effective surface
distribution �b(φ, z), this is

Qb =
∫ +∞

−∞
dz

∫ 2π

0
b dφ = 2π2b lim

k→0
�b

0 (k) = −q

2
.

(47)

The above result points out that besides the particle’s charge
q, there is an effective net charge Qb = −q/2 as seen from
the exterior. This net charge of opposite sign is responsible
for the leading asymptotic attraction of the particle towards
the central axes. Moreover, applying Gauss law for the net
image charge there is an associated electric field flux equal to
4πQb. Interpreted in terms of the original problem, this flux
is a drain effect towards the wormhole’s inner region which
is independent of the position of the particle with charge q.

Analogously to what was previously developed for the
exterior, the equivalent problem can be posed in an interior
regionMi+. Following the same procedure, we will consider
two surface charge densities, one associated to each one of the
boundaries of Mi+. The equivalent electric potential ϕi =
ϕq +ϕa +ϕbi in the region a < r < bi of a conical geometry
with parameter ω, is the superposition of: ϕq , the potential
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of the charge q in the conical space, and ϕa and ϕbi which
are produced by charge densities at the surfaces r = a and
r = bi , respectively. The charge density �a

n (k) at r = a, and
�

bi
n (k) at r = bi can be written as in (44), with the Fourier

coefficients given by

�a
n (k) = q

4πaω

4 An(k)

(1 + δn,0)π I n
ω
(ka)

, (48)

�bi
n (k) = q

4πbiω

4 Bn(k)

(1 + δn,0)π K n
ω
(kbi )

, (49)

respectively. We can check, for each, that

lim
r ′→{a,bi }

�{a,bi }(φ′, z′)
q/�2 = −∞ (50)

both negative, as it might be expected from the analyzed
numerical results of the self-force. The net charges of these
effective charge distributions are

Qa =
∫ +∞

−∞
dz

∫ 2π

0
aω dφ �a(φ, z)

= 2π2a lim
k→0

�a
0 (k) = −q

2
, (51)

Qbi =
∫ +∞

−∞
dz

∫ 2π

0
biω dφ �bi (φ, z)

= 2π2bi lim
k→0

�
bi
0 (k) = −q

2
(1 − ω) . (52)

We notice that across any surface enclosing the throat there is
an electric flux 4π Qa produced by the charge Qa = −q/2.
Interpreted in terms of the original problem, this flux enters
across the throat, in the direction from M− to M+, acting
as a drain hole effect for the particle with charge q in the plus
submanifold.

Independently of the position of the test charged particle,
placed either in Me+ or Mi+, we noticed an electric flux
entering across the wormhole throat. The latter observation
can be verified by calculating the electric flux through the
throat at r = a; Fwh = ∫∫

Fμν dXμν , using the potential
A0 = −VFW for an arbitrary position of the particle in M+,
and using the surface normal vector r− pointing from plus to
minus submanifold, this is

Fwh =
∫∫

throat
−∇VFW dS− = 4π

q

2
. (53)

The above is the characteristic drain hole effect produced by
the presence of a test point charge q in our asymptotically
flat cylindrical wormholes. Regarding the imprint at infinity,
we can check the electric field flux F∞+ at the asymptotic
boundary ∂M∞+ of the plus submanifold -where the source q
is placed in the wormhole geometry- pointing in r+ direction

F∞+ =
∫∫

∂M∞+
−∇VFW dS+ = 4πq − Fwh = Fwh = 4π

q

2
,

(54)

which is in accordance with the previous calculations using
the equivalent problem for the outer region, where we found
q + Qb = q/2. The corresponding imprint at the asymp-
totic infinity ∂M∞− of the minus submanifold is checked to
be F∞− = Fwh = 4π q/2, confirming the continuity of
the electric field drain hole effect. An important observa-
tion is that, independent of the position of the test charge
q in the wormhole spacetime, the total asymptotic flux is
F∞ = F∞− + F∞+ = 4πq, as it should be according to
the total charge in the background geometry.

5 Discussion

When we compare the results with those previously obtained
we can first note that in the exterior problem (point charge
in the Minkowski outer region beyond r = b), we obtain a
self-force towards the axis which qualitatively always repro-
duces the results shown in Fig. 4 of our previous work [14].
We can say that the inclusion of a two-cones transition region
between the two Minkowski sides of the wormhole does not
introduce a central difference in the behavior of the electric
self-force. For the interior problem (point charge in the con-
ical region between r = a and r = b), instead, the results
are more interesting: the repulsion decaying with the radius
found for large values of the radial coordinate of the charge
in [14] can now be found only for large values of �, that
is for the outer shell far from the wormhole throat, and for
sensible amounts of angle deficit: see Figs. 1a, 2c, 3a here,
and Fig. 2 in [14]. In general, the most interesting new aspect
due to the presence of an outer shell is that for a charge in the
conical region the self-force has a behavior which – differing
from what happens without the outer shell – can be some-
what described in terms of three sections: near each shell the
dominant contribution of the force corresponds to the attrac-
tion associated to their exotic nature, which in turn can be
easily understood in terms of the analogous problem defined
in [15], where each exotic matter shell yields the same effect
of a certain surface charge of sign opposite to that of the point
charge; hence for a charge near the throat we have a force
towards the axis, while for a charge near the outer shell we
have a force pointing outwards. For a charge in an interme-
diate zone, always within the conical region, the repulsive
behavior of the self-force of the form 1/r2 due to the angle
deficit of the cosmic string character of the geometry can
be noted, though it can be clearly isolated only if the region
is wide enough. In conclusion, global differences between
geometries which can locally be equal, and consequently the
existence of different regions beyond shells placed at the join-
ing surfaces, can be revealed by observing the behavior of
the electric self-force on a test charge.

In addition, we have also studied in detail the fluxes across
the wormhole throat and at both spatial infinities, which pro-
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vide a further understanding of the peculiarities introduced
in the electrostatic problem by the non trivial topology of
the background. We found that the throat acts as a drain hole
pierced by an electric flux Fwh = 4π q/2 which points from
the source’s submanifold to the sourceless one; this is the
direction fromM+ toM− in the calculations of the previous
section in which we placed q at the plus side. With the latter
configuration we obtained that the electric field flux point-
ing to the asymptotic plus region is F∞+ = 4π q − Fwh =
4π q/2, and the flux pointing to the asymptotic minus sub-
manifold is F∞− = Fwh = 4π q/2. This means that with
the particle placed at M+, the net charge as seen from plus
infinity is not q, it is q/2. It is important to observe that
the total asymptotic flux is F∞ ≡ F∞− + F∞+ = 4πq,
as it should be according to the total electric charge in the
background wormhole geometry.

We say that the quantity Fwh is a topological flux because
it is exclusively related to the particular non-trivial topology
of the asymptotically flat cylindrical wormhole regardless of
the details of the throat i.e.; it is independent of the radius
a, the size �, and the parameter ω of the inner region. We
remark that it is not an arbitrary flux: it is proportional to the
magnitude of the source charge, q, in the background geom-
etry. Wormholes are known to allow arbitrary fluxes given
by some family of homogeneous solutions to the Maxwell
equations in their specific non-trivial spacetime; this refers
to J. Wheeler’s charge-without-charge realization [48]. For
instance, in the considered cylindrical geometry we could
consider electric potential fields proportional to the logarith-
mic functions ln r/r0. These arbitrary solutions come them-
selves with an associated flux which, in this cylindrically
symmetric case, is infinite. On the contrary, the flux Fwh

we found here is finite and it is not arbitrary, it is given by
the presence of a source and the particular topology of the
background manifold.

The flux Fwh = 4πq/2 can be probed as a monopo-
lar charge from the sourceless side of the wormhole; this
perspective partially resembles Wheeler’s idea of charge-
without-charge -despite it is originated by the source parti-
cle. Some interesting features must be mentioned to complete
our discussion. If we put a neutral charge matter content in
Maxwell equations, for example, a charge anti-charge pair,
then the electric potential in our wormhole spacetime is a
superposition of solutions as the one we found, but now pro-
ducing a total null flux Fqq̄∞ = 0 as it should be for charge
conservation. Note that, in this case, the imprint at each infin-
ity is always Fqq̄

∞+ = Fqq̄
∞− = 0, irrespective of the posi-

tions of the charged particle and the anti-particle. Thereby,
two configurations can be considered: (i) both particles in
the same side of the wormhole producing a flux through the
throat Fqq̄

wh = 0, or (ii) the pair is separated so that each par-
ticle is driven to a different side of the wormhole, producing
Fqq̄

wh = 4πq pointing from the positive charge side to the

negative one. In case (ii) the spacetime started without fluxes
and ended up with a flux through the throat and with non-
null charge in each submanifold. No physical contradiction
appears by arranging this configuration; the imprints at each
infinity remain both null [12]. In the last scenario the drain
hole effect through the throat measures exactly the flux cor-
responding to the charge magnitude q of the pair, resembling
a flux-without-flux configuration. From another perspective,
if we lose sight of the presence of the throat and examine only
one side of the wormhole where Fqq̄

∞+ = 0 (or Fqq̄
∞− = 0),

we find a charge-without-flux picture; the particle interacts
electrically over its submanifold, but no asymptotic flux is
measured.
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