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INTRODUCTION

As a result of anthropogenic activities, there are regions suffering extreme climate changes (hot
temperatures, droughts, floods), that generate serious and harmful environmental and socio-
economic consequences (Hoegh-Guldberg et al., 2018). Climate change has a strong impact on
agriculture, mainly by increasing soil degradation and reducing land productivity (Olsson et al.,
2019). Desertification decreases soil macronutrients as organic carbon (OC), phosphorus (P) and
nitrogen (N) (Shang et al., 2013; Tang et al., 2015). Considerable reductions of OC, P and N are
caused by a decline in soil water, vegetation and wind erosion. It is estimated that when soil water is
less than 30%, OC and N decrease approximately 50% (Shang et al., 2013). The intensity and
frequency of extreme climate events predicted will increase the competition for nutrients, notably N
among plants and soil microorganisms (Bennett and Klironomos, 2019; Pugnaire et al., 2019).

N availability is essential for net primary production and determines changes in total vegetation
biomass and soil OC (Tharammal et al., 2019). Approximately 150 Tg/yr of N is spilled to the land
surface as a result of industrial activities and fossil fuel combustion (Schlesinger, 2009). Huge
amounts of N fertilizers are used to increase crop productivity, but only 25%–30% are retained in
plant biomass (Nadelhoffer et al., 1999; Schlesinger, 2009). The excess of N is then transported to
aquatic environments resulting in eutrophication and reduction of dissolved O2, percolated to the
groundwater or loss to the atmosphere, increasing greenhouse gas (GHG) emissions such as nitrogen
oxides (NOx) (Schlesinger, 2009; Breitburg et al., 2018). In this context, bio/technological solutions
like genetic modification of crops are required to avoid, reduce and reverse GHG emissions and
water eutrophication, contributing to climate change mitigation. New biotechnological strategies
developed for the agriculture to increase N use efficiency (NUE) in crops would help to fulfill this
purpose. In this opinion, we will discuss some studies of nitric oxide (NO) synthases (NOS) and
nitrate reductase (NR) enzymes playing a collaborative role with globin (Hb) proteins, leading to NO
and/or nitrate (NO3

-) homeostasis in different organisms. We propose that chimeric globin-NOS
such as the NOS from Synechococcus PCC 7335 (SyNOS) may have evolved in photosynthetic
microorganisms contributing to a more efficient N recycling and sustaining growth in N fluctuating
conditions. Engineered crops that maximize NUE would result in a better adaptation to changing
climatic conditions with less N fertilization, preserving aquatic ecosystems and atmosphere.
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NITRIC OXIDE/NITRATE HOMEOSTASIS
BY THE ASSOCIATION OF NITRIC OXIDE
SYNTHASE AND GLOBIN

NOS enzymes catalyze the oxidation of Arginine (Arg) to produce
citrulline and NO, a molecule that participates in diverse processes
ranging from growth and development and stress responses
(Alderton et al., 2001; Crane et al., 2010; Del Castello et al., 2019).
Mammalian NOSs have a N-terminal oxygenase domain (NOSoxy)
and a C-terminal reductase domain (NOSred) joined by a calmodulin
binding motif (Griffith and Stuehr, 1995). In Gram positive bacteria,
NOS have only one domain and consist of NOSoxy similar to that of
animals (Crane et al., 2010). NOS proteins were also identified in
photosynthetic microorganisms such as green algae, diatoms and
cyanobacteria (Foresi et al., 2010; Di Dato et al., 2015; Kumar et al.,
2015). While a NOS-like activity has been detected in plant extracts
(Corpas and Barroso, 2017), the search in more than 1000 sequenced
transcriptomes suggests that this gene is not present in terrestrial
plants (Jeandroz et al., 2016; Foresi et al., 2017). This is intriguing, and
raises the question of whether, in terrestrial plants, NOS has not been
searched correctly, or simply is not present. Particularly, the
characterization of a NOS in the cyanobacterium Synechococcus
PCC 7335 (SyNOS) opens new and interesting questions regarding
its biological function since it is a chimera of a globin domain joined
to a canonical NOS (Correa-Aragunde et al., 2018).

Globins (Hbs) are heme-proteins comprising three families,
flavohemoglobin (FHb), globin-coupled sensors and truncated-Hb
(THb). The main function of Hbs is related to NO detoxification by
a NO dioxygenase (NOD) activity oxidizing NO to NO3

-

(Vinogradov and Moens, 2008). The interaction of NO molecule
and Hbs was studied in bacteria, animals and plants (Poole and
Hughes, 2000; Seregélyes and Dudits, 2003; Tejero and Gladwin,
2014). However, the current knowledge shows that there are few
examples of a coupled reaction between NOS enzymes and Hb and
leading to NO/NO3

- release regulation. In mammals, endothelial
NOS (eNOS) associates with a-Hb to modulate NO diffusion
during vascular smooth muscle relaxation. a-Hb binds to eNOS
and oxidates NO to NO3

-, preventing that NO reaches smooth
muscle cells (Straub et al., 2012). The interaction between NOS and
Hbs to regulate NO homeostasis has also been reported in bacteria.
Staphylococcus aureus generates energy using NO3

- as an alternative
electron acceptor in O2 limiting conditions and it is principally
regulated by NOS and HMP (bacterial FHb) (Kinkel et al., 2016).
Under micro-aerobic conditions, NOS-derived NO inhibits aerobic
respiration by interacting with cytochrome oxidases. Under aerobic
conditions, NO consumption predominates by HMP activity
providing a homeostatic mechanism that modulates respiration in
response to O2 availability (Kinkel et al., 2016).
HBS AND NO PARTICIPATION IN N
METABOLISM IN PHOTOSYNTHETIC
ORGANISMS

More interestingly, the interaction of Hbs and NO has a remarkable
role in the N metabolism of photosynthetic organisms. N
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metabolism was largely studied in higher plants, green algae and
diatoms (Flynn, 1991; Coruzzi andZhou, 2001; Bertoni, 2017). Once
NO3

- is internalized, it is reduced toNO2
- byNR, the first enzyme in

the assimilation pathway (Wilkinson and Crawford, 1991). In
Chlamydomonas, NO2

- is the substrate of NOFNiR (NO Forming
NO2

- Reductase) that catalyzes NO production even in the presence
of high (millimolar) concentrations of NO3

-, which inhibits NO
production by the NO2

- reductase activity of NR. NOFNiR together
with NR are intimately connected both at transcriptional and
posttranscriptional regulatory levels suggesting enzyme
cooperativity (Chamizo-Ampudia et al., 2016; Llamas et al., 2017).
Furthermore, NO3

- controls the expression of THbs by regulating
transcription factors activity. THB1 generates a direct connection
between NO and NO3

- metabolism by modulating NO levels and
NR activity. NR is also able to reduce THB1, through its diaphorase
activity. Interestingly this activity is more efficient than others
reducing cofactors like NADH, FAD, or cytochrome b5 reductase
which possesses high homology to NR (Sanz-Luque et al., 2015).

The interaction between NR and THB1 in N metabolism has
also been demonstrated in diatoms. Smith et al. (2019) show that
two of the strongest NO3

– sensitive genes were part of the Hb
superfamily with high homology to THB1 from Chlamydomonas.
Considering these evidences, the interaction NR-THB1 seems to
work as a complex for NO and NO3

- homeostasis. Scavenging of
NO to produce NO3

-, maximizes NR efficiency during N
assimilation diminishing N loss (as gaseous NO), improving N
utilization in photosynthetic organisms.
CHIMERIC GLOBIN-NOS FROM
SYNECHOCOCCUS PCC 7335 AND ITS
POTENTIAL ROLE IN N METABOLISM

The NOS from Synechococcus PCC 7335 (SyNOS) was the first
NOS characterized that contains a globin domain (Correa-
Aragunde et al., 2018). Biochemical analysis showed that SyNOS
produces NO and NO3

- in vitro in an approximately 1:3 ratio and
data suggest that the globin domain is mainly responsible for NO3

-

production (Picciano and Crane, 2019). Chimeric globin-NOS
similar to SyNOS appears in some diatom and cyanobacteria
genomes (Di Dato et al., 2015; Correa-Aragunde et al., 2018).

Heterologous expression of SyNOS in Escherichia coli allows
bacteria to improve growth under limiting N conditions.
Furthermore, SyNOS expression may contribute the use of Arg
as a N source in bacteria (Correa-Aragunde et al., 2018). In
cyanobacteria and plants, Arg serves as a major organic N
storage and transport. Thus, Arg metabolism plays a key role in
N distribution and remobilization in these organisms (Winter
et al., 2015). Arg dihydrolase, another novel enzyme recently
characterized, converts Arg to ornithine, CO2 and ammonium
(Zhang et al., 2018; Burnat et al., 2019). Results indicate that Arg
dihydrolase is part of a mechanism involved in N storage and
remobilization in cyanobacteria conferring rapid adaptability to N
fluctuations (Zhang et al., 2018). N fluctuation in aquatic
environments, mainly rivers, lakes, estuaries and marine coastal
regions, are result of precipitation events, droughts, wind velocity
and warming affecting water-sediment interactions and
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anthropogenic N inputs (Conley et al., 2009; Havens et al., 2016).
We predict that fluctuations in N availability will become more
severe in a faster and unpredictable climate change.

The characterization of novel functional genes is significant for
the understanding of the mechanisms governing the adaptation to
changing environmental conditions. Chimeric genes provide an
exceptional source of new cell functions, resulting in organisms that
may adapt to different environments by developing new metabolic
skills. The characterization of the chimera globin-NOS like SyNOS
could break a paradigm on NOS biological functions. In our
opinion, SyNOS represent a sophisticated evolution of NOS genes
with the ability to regulate the NO/NO3

- homeostasis and signaling,
besides the potential function in N metabolism.
SYNOS EXPRESSION AS A
BIOTECHNOLOGICAL STRATEGY TO
IMPROVE NUE IN PLANTS

Early attempts to increase NUE and yield in crops were based in
manipulating NO3

- transporters or N assimilation genes, but
negative or contradictory results suggest that is a complex
agronomic trait (Li et al., 2017). NR overexpression affected
intracellular NO3

- levels but did not increase yield nor improve
plant growth (Ferrario-Méry et al., 1998; Djennane et al., 2002).
More promising results have been achieved by manipulating genes
involved in plant N remobilization (Oliveira et al., 2002; Gaufichon
Frontiers in Plant Science | www.frontiersin.org 3
et al., 2017; Chen et al., 2019). Specially, the manipulation of genes
involved in amino acid catabolism and transport seems to be good
strategies to remobilize organic N storage increasing seed filling
and plant yield (Good et al., 2007; Shrawat et al., 2008; Ma et al.,
2013; Meng et al., 2015; Perchlik and Tegeder, 2017).

In this opinion, we propose that the expression of the chimeric
globin-NOS from Synechococcus PCC 7335 could improve cellular
N metabolism enhancing NUE and crop production under N
shortage conditions. There are already evidences of NOS from
different origins (animals and algae), recombinantly expressed in
plants (Rodrıǵuez-Ruiz et al., 2019). In all cases, the NOSs expressed
are active in the transgenic plants displaying high NO levels and
stress tolerance (Chun et al., 2012; Shi et al., 2012; Shi et al., 2014;
Cai et al., 2015; Foresi et al., 2015). SyNOS as well as animal NOS
function with tetrahydrobiopterin (BH4) cofactor and not with
tetrahydrofolate (THF) (Picciano and Crane, 2019), the main
known pterin in plants (Sahr et al., 2005). However, plants can
enzymatically produce dihydrobiopterin (BH2), and it was reported
that the photosynthetic apparatus can reduce pterins from dihydro
to tetrahydro form (Fuller and Nugent, 1969). Otherwise, it is
known that other pterins can fulfill NOS activity (Presta et al., 1998).
Recently, Nejamkin et al. (2020) have shown that the expression of
the NOS from the algae Ostreococcus tauri (OtNOS) in tobacco
increases growth rate, number of flowers and seed yield, and that
this phenotype is lost when plants are grown in low N condition.

Engineered plants that express SyNOS unlike the expression of
other NOS would remobilize N stored in Arg internal pools
FIGURE 1 | Plant N remobilization as a target of biotechnological strategy to promote lower fertilization and N pollution in a climate change context. (A) Increased N
remobilization from plant reservoirs through heterologous and/or overexpression of specific enzymes could enhance growth and yield of crops to cope with desertified
soils. Plants tolerant to N scarcity will also help to reduce the use of fertilizers and their impact on the environment. We postulate the heterologous expression of NOS
from Synechococcus PCC 7335 (SyNOS) in plants as a biotechnological tool to increase N remobilization. SyNOS contains a singular globin (Glb) domain at the 5’-end,
followed by the canonical oxygenase (Oxy) and reductase (Red) domains of NOS enzymes. SyNOS activity may remobilize N from Arg internal pools in plants leading to
NO and NO3

- formation, the last contributes to improve plant NUE. SyNOS would be a gain of function increasing the number of Arg-metabolizing enzymes in plant cells:
arginase, Arg decarboxylase (ADC) and NOS-like activity. (B) Postulated scenario showing non-engineered plant yield (adapted from Brueck and Lammel, 2016) and
putative yield of SyNOS-engineered plants, in variable levels of N fertilization and environmental pollution. Dashed lines show positive correlation between environmental
pollution and N fertilization (Zhang et al., 2019).
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producing NO/NO3
- and may be an interesting tool to improve N

metabolism (Figure 1). Although plants have Arg degrading
enzymes (i.e., arginase), the incorporation of Arg catabolic
pathways in crops may improve N remobilization and plant
productivity. It was reported that the overexpression of arginases
improves NUE and seed yield in rice and cotton under different N
conditions (Ma et al., 2013; Meng et al., 2015). These results
support our hypothesis and suggest that SyNOS expression would
be an alternative strategy that generates other N sources (NO3

-/
NO) and may favor crop productivity. NO produced by SyNOS
might also cope to stress tolerance (Del Castello et al., 2019;
Kolbert et al., 2019). Despite this, unexpected phenotypes
concerning changes in NO homeostasis should be analyzed,
as well as the consequences of potential changes in Arg
concentration as substrate of different metabolic pathways (i.e.,
polyamine synthesis). In addition, genetic variations among
cultivars, time of harvest (vegetative/reproductive phase), crop
management should be considered when defining a strategy for
NUE improvement.

Overall, the discovery of novel enzymes involved in
NUE in photosynthetic organisms will facilitate transferring our
knowledge from theory to practice and generate crops to boost
agriculture when confronting serious environmental challenges.
Frontiers in Plant Science | www.frontiersin.org 4
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Mata, C., et al. (2015). Expression of the tetrahydrofolate-dependent nitric
oxide synthase from the green alga Ostreococcus tauri increases tolerance to
September 2020 | Volume 11 | Article 575651

https://doi.org/10.1042/bj3570593
https://doi.org/10.1042/bj3570593
https://doi.org/10.1111/nph.15603
https://doi.org/10.1105/tpc.17.00651
https://doi.org/10.1126/science.aam7240
https://doi.org/10.3390/w8080356
https://doi.org/10.1111/mmi.14203
https://doi.org/10.1111/mmi.14203
https://doi.org/10.1371/journal.pone.0131599
https://doi.org/10.1111/pce.12739
https://doi.org/10.1093/pcp/pcy214
https://doi.org/10.1007/s10059-012-0213-0
https://doi.org/10.1007/s10059-012-0213-0
https://doi.org/10.1126/science.1167755
https://doi.org/10.1016/j.niox.2016.10.009
https://doi.org/10.1038/s41598-018-30889-6
https://doi.org/10.1038/s41598-018-30889-6
https://doi.org/10.1016/S1369-5266(00)00168-0
https://doi.org/10.1146/annurev-biochem-062608-103436
https://doi.org/10.1146/annurev-biochem-062608-103436
https://doi.org/10.1016/J.NIOX.2019.01.013
https://doi.org/10.1038/srep12329
https://doi.org/10.1093/jexbot/53.371.1037
https://doi.org/10.1093/jexbot/53.371.1037
https://doi.org/10.1104/pp.117.1.293
https://doi.org/10.1104/pp.117.1.293
https://doi.org/10.1093/plankt/13.2.373
https://doi.org/10.1105/tpc.109.073510
https://doi.org/10.1105/tpc.109.073510
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Del Castello et al. Chimera of Globin/Nitric Oxide Synthase
abiotic stresses and influences stomatal development in Arabidopsis. Plant J.
82, 806–821. doi: 10.1111/tpj.12852

Foresi, N., Correa-Aragunde, N., and Lamattina, L. (2017). “Synthesis, Actions,
and Perspectives of Nitric Oxide in Photosynthetic Organisms,” in Nitric
Oxide. Eds. L. J. Ignarro and B. A. Freeman (London, UK: Elsevier), 125–136.
doi: 10.1016/B978-0-12-804273-1.00010-7

Fuller, R. C., and Nugent, N. A. (1969). Pteridines and the function of the
photosynthetic reaction center. Proc. Natl. Acad. Sci. U. S. A. 63, 1311–1318.
doi: 10.1073/pnas.63.4.1311

Gaufichon, L., Marmagne, A., Belcram, K., Yoneyama, T., Sakakibara, Y., Hase, T.,
et al. (2017). ASN1 -encoded asparagine synthetase in floral organs contributes
to nitrogen filling in Arabidopsis seeds. Plant J. 91, 371–393. doi: 10.1111/
tpj.13567

Good, A. G., Johnson, S. J., De Pauw, M., Carroll, R. T., Savidov, N., Vidmar, J.,
et al. (2007). Engineering nitrogen use efficiency with alanine
aminotransferase. Can. J. Bot. 85, 252–262. doi: 10.1139/B07-019

Griffith, O. W., and Stuehr, D. J. (1995). Nitric Oxide Synthases: Properties and
Catalytic Mechanism. Annu. Rev. Physiol. 57, 707–734. doi: 10.1146/
annurev.ph.57.030195.003423

Havens, K., Paerl, H., Phlips, E., Zhu, M., Beaver, J., and Srifa, A. (2016). Extreme
weather events and climate variability provide a lens to how shallow lakes may
respond to climate change. Water (Switzerland) 8, 1–18. doi: 10.3390/
w8060229

Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A.,
et al. (2018). Impacts of 1.5 C global warming on natural and human systems.
Glob. Warm. 1.5° C (Switzerland: An IPCC Spec. Rep).

Jeandroz, S., Wipf, D., Stuehr, D. J., Lamattina, L., Melkonian, M., Tian, Z., et al.
(2016). Occurrence, structure, and evolution of nitric oxide synthase-like
proteins in the plant kingdom. Sci. Signal. 9, re2–re2. doi: 10.1126/
scisignal.aad4403

Kinkel, T. L., Ramos-Montañez, S., Pando, J. M., Tadeo, D. V., Strom, E. N., Libby,
S. J., et al. (2016). An essential role for bacterial nitric oxide synthase in
Staphylococcus aureus electron transfer and colonization. Nat. Microbiol. 2,
16224. doi: 10.1038/nmicrobiol.2016.224

Kolbert, Z., Feigl, G., Freschi, L., and Poór, P. (2019). Gasotransmitters in Action:
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