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Abstract. — The aim of this review is to
analyze the different components and the feed-
back mechanisms involved in the normal con-
trol of energy homeostasis and postprandial
blood glucose levels. Such control involves ex-
ogenous and endogenous factors: while the
former include quantity and quality of food in-
take, the latter involve the balance of glucose
intestinal absorption (postprandial period), glu-
cose production and release by the liver and its
consumption by peripheral tissues. Adequate
secretion and peripheral metabolic effects of
insulin play a key role in the control of both
processes. Insulin secretion is controlled by
the level of circulating substrates and by gas-
trointestinal hormones. The mechanism for the
immediate control of blood glucose levels is
modulated by energy homeostasis, with the
participation of the above mentioned hormones
and others produced at the classical endocrine
system and adipose tissue, whose actions inte-
grate at the central nervous system. The alter-
ation of such delicate mechanism of control
causes diseases such as diabetes; therefore,
identification of the multiple components of
this mechanism and comprehension of its nor-
mal function would facilitate the selection of ef-
fective strategies for diabetes prevention and
treatment.
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Introduction

Near normoglycemia is one of the main
challenges in the treatment of diabetes to
avoid the development and progression of di-
abetes complications'?.

Various studies have emphasized the im-
portance of postprandial hyperglycemia,
since its association with fatal and nonfatal
cardiovascular events is greater than that of
fasting hyperglycemia® and even moderate
increased levels constitute a risk factor®. The
risk increases when postprandial hyper-
glycemia associates with postprandial hyper-
lipemia; hyperglycemia increases lipid peroxi-
dation, thus increasing lipoprotein athero-
genic capacity and decreasing plasma antioxi-
dants®. Presumably, the higher the glycemic
increment the higher the decrease of antioxi-
dants will be®. Screening is essential in people
with diabetes presenting fasting glycemia and
HbA,. levels within normal range, and
markedly increased postprandial glycemia®.

The regulation of postprandial glycemia is
complex, and the magnitude of glycemic vari-
ations depends on multiple factors, namely,
food composition, the action of gastrointesti-
nal hormones and digestive enzymes, insulin
secretion, enhancement or inhibition of he-
patic glucose production, and peripheral glu-
cose uptake. These factors act during food in-
take, together with other factors acting dur-
ing the day to keep an adequate balance be-
tween intake and total caloric consumption
(energy balance) (Figure 1).

The regulation of energy balance is impor-
tant because the volume and composition of
each food varies considerably from day to
day and person to person; the absence of en-
ergy balance could result in the uncoupling of
energy intake and caloric consumption. To
explain this model of energy homeostasis,
Kennedy proposed that signals originated in
fat deposits would act at brain level, decreas-
ing appetite’. When various intestine pep-
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Figure 1.Integration of glycemic and energy homeosta-
sis. Combination of signals and effectors of two systems
participating in the regulation of glycemic and energy
homeostasis.

tides and their receptors at the central ner-
vous system (CNS) were identified, it was
postulated that their release in response to
food intake generated “immediate” satiety
signals at brain level, determining the inter-
ruption of food intake®. The model was com-
pleted when leptin was identified as a long-
term adipocyte signal released in relation to
the size of body fat deposits; together with in-
sulin, leptin acts directly at the CNS, inhibit-
ing food intake®.

To facilitate the understanding of post-
prandial glycemic regulation and energy
homeostasis, we will first describe the signals
and mechanisms involved, then the regulato-
ry center, and finally how both models act.

Ghrelin

Ghrelin is a 28 aminoacid lipophilic pep-
tide with a labile octanoic acid side chain at
the serine residue, mainly expressed in ente-
rochromaffin cells of the gastric mucosa?®.
Ghrelin has also been identified in pancreatic
non-p islet cells™. It would circulate in plasma
bound to HDL-cholesterol particles, with de-
creased concentration peaks after food in-
take, together with increased levels of in-
sulint?,

Ghrelin levels are low in positive energy
balance conditions; they increase in people
on a diet and have a negative correlation with
fasting insulinemia, body weight, body mass
index (BMI), and adipocyte volume??. On the
other hand, ghrelin levels have a positive cor-

relation with age, insulin sensitivity, total
HDL-cholesterol, HDL2 and HDL3. Patients
with gastric bypass present low plasma ghre-
lin levels, accounting for decreased appetite®®.

Ghrelin stimulates the secretion of soma-
totrophin, ACTH, cortisol and prolactin4. Its
effect upon insulin and glucagon varies as a
function of the dose used: a low dose inhibits
insulin secretion and stimulates glucagon se-
cretion in vitro, whereas high doses stimulate
insulin secretion without modifying glucagon
secretion®. However, given the circulating
levels of ghrelin, it would not exert a modula-
tory physiological effect in vivo of the secre-
tion of these hormones®.

Ghrelin metabolic effects are opposite to
those of leptin: it stimulates food intake, po-
tentiates carbohydrate utilization, reduces fat
utilization, increases gastric motility and
stomach acid secretion, and would act as an
adipocity signal favoring weight gain??. These
results suggest that both the effects and the
secretion of ghrelin are opposite to those of
leptin.

Oxyntomodulin {OXM)

Oxyntomodulin is a 37 aminoacid peptide
resulting from the processing of proglucagon
(Figure 2) in intestine L cells'®, which inhibits
the secretion of oxyntic glands in the
stomach?’.

OXM is released in the postprandial peri-
od by distal intestine endocrine cells that pro-
duce peptides such as PYY?® and GLP-1%,
and its circulating levels remain elevated for
several hours after food intake®. OXM levels
are markedly high in people with morbid
obesity and jejuno-ileal bypass? and are asso-
ciated with nervous anorexy and weight
loss?2. Since OXM inhibits appetite at hypo-
thalamic level, it would be part of a negative
feedback mechanism.

OXM bhinds to GLP-1 receptor, but with
lower affinity?. In rats, however, the inhibito-
ry effect of OXM on appetite is reduced by
blocking GLP-1R receptors®.

OXM infusion for 90 min reduces the calo-
rie content of food (-20%); this effect lasts
for 12 h (-11%), without modifying signifi-
cantly calorie intake in the 24 h-period®.
OXM also decreases significantly the concen-
tration of plasma ghrelin (appetite-stimulat-
ing) before food intake, being such inhibition
one of OXM’s satiety mechanisms.
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Figure 2. Proglucagon and processing systems. Different processing of proglucagon molecule in islet a-cells and in-
testine L-cells. Numbers and letters indicate peptidase cleavage sites.

OXM would act in the arcuate nucleus
(AN) of the hypothalamus, where energy
homeostasis signals are monitored and inte-
grated®. It would also act at in the vagus
nerve, transmitting afferent signals to the
brain via ghrelin?.

Peptide YY (PYY)

This is a gastrointestinal peptide of 36
aminoacids mainly produced by intestinal L
cells?” which belongs to the pancreatic
polypeptide family together with neuropep-
tide Y (NPY)?. PYY becomes PYY
through the action of dipeptidyl peptidase 1V
(DPP 1V); circulating levels increase by 33%
15 min after food intake and keep elevated
for approximately 90 min. The peak of PYY
is proportional to the amount of calorie in-
take; PYY decreases appetite and conse-
qguently food intake through a negative feed-
back mechanism?2°, The early release of
PYY (15 min) is initially produced by nerve
stimulation and then as a function of the in-
testine nutrient content.

PYY,.s has a 70% homology with NPY
and interacts with NPY receptors of different
subtypes (Y1, 2, 4 and 5)¥. PYY, 4 binds to
receptor Y1, 2 and 5, while PYY 4 is more
selective for Y2 receptor. Y2R is an inhibito-

ry presynaptic receptor highly expressed in
NPY neurons of the AN.

Intraperitoneal injection of PY'Y, 4 inhibits
the daily food intake in a dose-dependent
manner acting on Y2 receptors, as demon-
strated by its inactivity in mice with KO of
that receptor.

In man, PYY perfusion in amounts capable
of reproducing the levels obtained in the
postprandial period, reduce appetite and
food intake by 33% for 24 h, and decrease
significantly fasting and preprandial ghrelin
levels®. Such prolongued effect suggests that,
opposed to other intestinal peptides, PYY .4
is a long-term appetite regulators.

In the AN, PYY,; would diminish the
GABAergic tone through which NPY in-
hibits proopiomelanocortin (POMC) neu-
rons, allowing the expression of their in-
hibitory effect upon appetite®.

There is a negative correlation between
PYY levels and BMI, so that basal and post-
prandial PYY levels are lower in obese peo-
ple. Since PYY is a potent appetite
inhibitor33, decreased PYY levels would
favour obesity. Opposite to what occurs with
other peptides, there is no PY'Y, 4 resistance
in obesity, reason why it has been proposed
for its treatment. On the other hand, PYY
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levels are high in patients with jejuno-ileal
bypass, thus explaining their decreased ap-
petite®,

Cholecystokinin (CCK)

This peptide is produced by cells from the
high portion of the small intestine and at the
same time in nerve terminals of the central
and peripheral nervous system®.

CCK is released to peripheral circulation
after food intake; it stimulates postprandial
secretion of the exocrine pancreas, the con-
traction of the gall bladder, gastric emptying,
and intestine motility*.

CCK also stimulates insulin secretion in vi-
vo and in vitro in different species®, and spe-
cific antagonists of its receptor inhibit post-
prandial insulin secretion®. Since basal in-
sulin secretion is not affected, increased
glycemia should be previous to CCK action.

Circulating CCK levels measured in vivo in
the postprandial period would no affect glu-
cose-induced insulin secretion, which is not
inhibited by blockade of its receptor®®. How-
ever, since it is also expressed in pancreatic
nerve terminals®*, CCK could regulate insulin
secretion through nerve stimulation. Alterna-
tively, it could increase insulin secretion indi-
rectly by stimulating GIP and GLP-1 re-
lease®.

CCK administration to people with type 2
diabetes reduces postprandial hyperglycemia,
thus suggesting increased insulin secretion®.
Although such effect is less marked than that
produced by GLP-1, it has been suggested
that CCK would be a potential agent for the
treatment of type 2 diabetes®.

Glucagon-like Peptide 1 (GLP-1)

GLP-1 is produced and secreted by L cells
in the distal ileum and colon*2. These cells
contain proglucagon and their processing by
preprotein convertase produces GLP-1 and
other bioactive peptides (Figure 2).

Preprotein convertases are intracellular
serine endoproteases*“ and expression of
proconvertases 1 and 2 (PC1 y PC2) is re-
stricted to regulated nervous and endocrine
secretion*. These preproteins play a key role
in the posttranscriptional processing of hor-
mone precursors such as proinsulin, POMC,
and proglucagon*“. Some of them are or-
gan-specific; intestine L cells process
proglucagon to glicentin, OXM, GLP-1 and 2

via PC1, while a-pancreatic cells process
proglucagon to glucagon through PC2% (Fig-
ure 2).

The lack of expression of these enzymes
manifests clinically not only as a deficit in
glucagon and GLP-1 production, but is also
accompanied by severe obesity, altered pro-
cessing of POMC (to ACTH), proinsulin,
hypocortisolemia, hypoglycemia, and deficit
in intestine absorption of sugars and other
nutrients, forcing life-long parenteral feed-
ing“.

L-cells rapidly release GLP-1 in response to
nutrients, especially fats and carbohydrates*4,
in a biphasic way. The first phase is regulated
in a complex manner: GIP secreted by intesti-
nal K-cells would stimulate acetylcholine re-
lease in celiac plexus terminals®, which inter-
act with type M1 muscarinic receptors®. At-
ropin (non-selective antagonist of muscarinic
receptors) reduces GLP-1 integrated response
during oral glucose load and after food in-
take®?, showing the importance of the vagus
nerve to mediate its secretion. The second
phase of secretion is the consequence of the
direct action of nutrients on intestinal L-cells.
The control of GLP-1 secretion would be com-
plete with a self-regulating negative feedback
mechanism®,

Once GLP-1 is released, it is degraded by
the action of dipeptidyl-dipeptidase 1V
(DPP-1V)3+%, which would also degrade oth-
er peptides, such as hypophyseal peptide
(adenylate-cyclase activator), bradykinin, and
GIP*, The administration of DPP-1V in-
hibitors to people with type 2 diabetes de-
creased significantly HbAlc levels and the
amplitude of postprandial glycemic oscilla-
tions®®.

GLP-1 binds to specific receptors located
at different tissues: islet cells, stomach, and
CNS. In pancreatic B-cells, it couples to a spe-
cific G-protein; when this protein binds to the
hormone, it activates adenylate cyclase, pro-
ducing an increase of adenosine-3’,5’-cyclic
monophosphate (CAMP)% which in turn acti-
vates protein kinase A (PKA)%. Through this
pathway, GLP-1 promotes the phosphorila-
tion of GLUT2 and of K-, and Ca?" chan-
nels%®%, cAPM would also act independently
of PKA, interacting with GEF2 or Epac?2
(cAMP sensor) forming a complex with
Rim2, and activating Rab3 (a component of
the exocytotic cell machinery)®..
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The affinity of cCAMP with PKA (Kd) is
100 nM*®?, being 10 uM with GEF2. Since the
basal concentration of cCAMP in B-cells is in
the micromolar range®, PKA substrates
would be maximally phosphorilated®. There-
fore, the role of PKA and GEF2 would be
different: GEF2 would act only when cAMP
increases in response to a stimulus®.

GLP-1 stimulates insulin secretion and in-
hibits glucagon secretion acting on islet (3-
and a-cell receptors®®. The inhibitory effect
on glucagon secretion is maintained even in
people with diabetes of different etiology®.

The insulinotropic effect of GLP-1 has ex-
trapancreatic components as well. Outside
the islet, GLP-1 acts as a hepatic portal glu-
cose “sensor” which is activated whenever a
glucose gradient is established between the
portal and peripheral region, as it occurs after
food intake. Such hepatic and portal sensor is
the first to contact the ingested glucose, and
would modulate insulin secretion through a
neurohumoral pathway. This hypothesis is
supported by the existence of neurons from
the enteric nervous system in the pancreas
which express K-,rp channels that would send
signals when they get in contact with glu-
cose®. The glucose portal sensor promotes
first-phase insulin secretion, which is absent
in double-KO mice for GLP-1 and GIP re-
ceptors (DIRKO mice)®. In these mice there
is also a marked decrease of second-phase in-
sulin secretion. Such insulinotropic effect is
responsible for approximately 50% of the in-
sulin secreted after food intake and disap-
pears progressively during the development
of type 2 diabetes due to the decrease of
GLP-1 and GIP production and the lower re-
sponse of B-cells, particularly to GIP®e,

The activation of the glucose sensor also
increases glucose utilization by a mechanism
independent of insulin action, requiring the
presence of Glut2 and GLP-1 receptor to
act®’.

GLP-1 inhibits gastric emptying — through
the activation of its receptors in the stomach
and at the hypothalamus — and food intake®,
so that GLP-1 prolongued administration de-
creases body weight*.

The importance of GLP-1 in glycemic
homeostasis was verified using mice with KO
of GLP-1 receptors: these mice did not devel-
op severe diabetes, but they presented defec-
tive insulin secretion during oral glucose tol-

erance test (OGTT)®. On the other hand,
GLP-1 secretion after food intake decreased
in type 2 diabetes®.

Chronic administration of GLP-1 to ro-
dents activates the transcription of genes in-
volved in (B-cell differentiation and function,
and in islet neogenesis: Pdx-1, Glut2, glucoki-
nase and insulin™,

GLP-1 perfusion nomalizes fasting
glycemia in people with type 2 diabetes’ and
decreases glycemic fluctuations after food in-
take®. These effects are due to the combined
effect of enhanced insulin secretion, inhibited
glucagon secretion, and gastric emptying.

The effect of a single GLP-1 injection is
short because of its rapid metabolization,
thus preventing its use in the treatment of
type 2 diabetes. GLP-1 analogues such as ex-
endin-4 and liraglutide administered to peo-
ple with type 2 diabetes could significantly re-
duce HbAlc, representing a valid alternative
for the treatment of this type of diabetes”.

Glucose-Dependent Insulinotropic
Polypeptide (GIP)

GIP is a 42 aminoacid peptide synthetized
by enteroendocrine K-cells of the proximal in-
testine™. Although it was formerly called gas-
tric inhibitory peptide (GIP), its main effect is
insulinotropic; therefore, it was renamed glu-
cose-dependent insulinotropic polypeptide.
GIP belongs to the family of secretins, pre-
senting homology with some of its members:
secretin, glucagon, GLP-1 and 2, VIP, and
GRRH. As most of them, GIP has a synthesis
precursor of higher molecular weight?.

The passing of food to the intestine stimu-
lates the release of GIP, and the magnitude of
the stimulus is proportional to the amount of
food ingested’®; in humans, the stimulatory
effect of fat is higher than that of carbohy-
drates”’. Chronic exercise increases GIP lev-
els in children and adolescents™.

Once released, GIP is rapidly degraded by
DPP-IV to an inactive truncated derivative,
especially in kidney™. Inhibition of DPP-1V
activity decreases glycemia in people with
type 2 diabetes®® and delays the appearance
of diabetes in Zucker rats®.

GIP receptor is a glycoprotein associated
to a G protein which activates adenilate cy-
clase with the subsequent increase of cCAMP,
through which it exerts its insulinotropic ef-
fect®2. The GIP-induced increase in cAMP
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acts through a PKA-dependent and a PKA-
independent pathway. In the latter, GEF2-
Rim2 acts as a CAMP mediator, as it occurs
with GLP-18, It also acts opening voltage-de-
pendent Ca?* channels, thus increasing cy-
tosolic Ca*" and activating phosphatidyl inosi-
tol 3-kinase (P13-K) and MAP kinases®.

GIP stimulates insulin secretion, proin-
sulin®, Pdx-1, GLUT2 and glucokinase gene
expression®, It also stimulates differentiation,
replication, growth and proliferation of pan-
creatic B-cells®, inhibiting their apoptosis®’.

GIP presents functional extrapancreatic re-
ceptors in liver, muscle, adipose tissue, intes-
tine, and sympathetic nervous system (SNS).
Therefore, GIP inhibits hepatic glucose pro-
duction®, glucose uptake by muscle® and glu-
cose transport in adipose tissue®, fatty acid
synthesis® and lipoprotein lipase activity in
adipose tissue®. Local infusion of GIP (intes-
tine) increases GLP-1 and somatostatin se-
cretion®,

The physiological importance of GIP activ-
ity was confirmed using mice with KO of its
receptor gene. These mice develop glucose
intolerance, decreased insulin secretion and
are resistent to the development of obesity
when they are fed a fat-rich diet®®. On the
other hand, KO of GIP receptors in ob/ob
mice causes weight loss, with improved adi-
posity and glucose tolerance®. Based on this
evidence, it has been postulated that people
with increased GIP response are prone to de-
velop obesity and hyperinsulinism®.

People with type 2 diabetes develop GIP re-
sistance; therefore, insulin secretion decreases
in response to oral glucose, which affects pri-
marily second-phase insulin secretion®. In view
of the therapeutic use of GIP in people with
type 2 diabetes and considering its short half-
life, analogues with higher activity than that of
the native molecule have been developed®.

Amylin

Amylin is a 37 aminoacid peptide pro-
duced by B-cells, stored in their secretory
granules together with insulin, and cosecreted
in response to glucose®. In supraphysiologi-
cal levels it promotes the development of in-
sulin resistance®’.

Amylin participates in glucose homeostasis
by two mechanisms, retarding gastric empty-
ing in a dose-response manner®, and sup-
pressing glucagon secretion®.

The deficit of amylin in diabetic patients
results in an accelerated absorption of nutri-
ents and loss of suppression of hepatic post-
prandial glucose production. Amylin’s ana-
logue (pramilentide) reduces hyperglycemia
after oral — but not intravenous - glucose ad-
ministration, showing that its action is exert-
ed at gastrointestinal level*®,

Leptin

Leptin is a glycosilated protein of 16 kDa
and 146 aminoacids produced predominantly
in adipose tissue, although low levels of ex-
pression have also been detected in hypothal-
amus, hypophysis, placenta, skeletal muscle,
stomach epithelium, and breast!.

Leptin circulates bound to a carrier
protein'® and its level increases as a function
of the fat mass. It interacts with specific re-
ceptors® located in the AN, as demonstrated
by the anorexigenic effect achieved by its lo-
cal injection'® and its lack of effectiveness
when the AN is disrupted*®.

Despite leptin participates in diverse physio-
logical processes, the main action is related to
energy homeostasis and satiety; leptin provides
information to the hypothalamus about the
amount of energy stored in adipose tissue, ar-
rests appetite, and modifies calorie consump-
tion%. Ob/ob mice, which do not produce ac-
tive leptin, have a 4-fold weight increase when
they have free access to food intake. At clinical
level, children with leptin defficiency modify
their eating behaviour and develop marked
obesity. Leptin administration to ob/ob mice
and children”1% reverts weight gain, suggest-
ing the importance of leptin’s regulatory role
of food intake through satiety. However, leptin
administration does not reduce adiposity in
most cases of human obesity, thus suggesting
the existence of leptin resistance.

Long-term weight loss programs frequently
fail due to rapid weight regain. This has been
partly attributed to the decreased leptin cir-
culating levels consecutive to fat mass loss,
with the subsequent decrease of satiety. In a
small group of people, leptin — in amounts
sufficient to achieve circulating levels of the
peptide similar to those before weight loss —
prevented weight recovery and preserved
lean tissue massi®. In this context, leptin
would act as a critical bond between adipose
tissue and hypothalamic centers regulating
energy homeostasis.
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Adiponectin

Adiponectin is also known as gelatin-bind-
ing protein-28, apM1, AdipoQ, and Acrp30.
It is a 244 aminoacid protein exclusively ex-
pressed in and secreted by white adipose tis-
suell, High circulating levels of the protein
are present in human plasma as a polymer of
18 monomers.

Adiponectin acts as insulin sensitizer; its
plasma concentration decreases in obesity
and in type 2 diabetes!!,

Administration of recombinant adiponectin
to rodents increases glucose uptake and fat
oxidation in muscle, reduces fat acid uptake
and glucose production in liver, and decreases
insulin resistance!'2, In rhesus monkey, de-
creased circulating levels of adiponectin are
associated with the development of insulin re-
sistance and type 2 diabetes!'*.

In mice, thiazolidinediones not only in-
crease insulin sensitivity but also plasma lev-
els and mMRNA production of adiponectin'.
At clinical level, there is a negative correla-
tion between adiponectin and body weight,
and body fat mass and insulin levels'®,

Resistin

Resistin is also known as “adipose-tissue
specific factor”, it is a 114 aminoacid
polypeptide synthetized by adipocytes and
secreted as a dimerized 94 aminoacid
polypeptide!4,

Resistin levels are increased in mice with
genetic obesity or diet-induced obesity, and
decreased after troglitazone administration®®.
In these animals, administration of anti-re-
sistin antibodies improved glycemia and in-
sulin sensitivity, while administration of re-
combinant resistin to normal mice altered glu-
cose tolerance and insulin action. Since these
observations have not been confirmed by oth-
er researchers, the role of resistin in mice is
controversial. Studies performed in human
beings have not confirmed its role as insulin
resistance regulator'?®.

Neuropeptide Y (NPY)

This peptide is produced by neurons lo-
cated in the floor of the third ventricle and
acts directly at the level of the paraventricu-
lar nucleus (PVN) stimulating appetite (Fig-
ure 3). Neurons producing NPY coexpress
NPY and AGRP (Agouti Gen Receptor
Peptide).
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Figure 3. Hypothalamic areas and nuclei: 1. Medial
and lateral preoptic area; 2. Anterior hypothalamic
area; 3. Paraventricular nucleus; 4. Supraoptic nucleus;
5. Dorsal hypothalamic area; 6. Dorsal-medial nucleus;
7. Ventral medial nucleus; 8. Arcuate nucleus; 9.
Suprachiasmatic nucleus; 10. Posterior hypothalamic
area; 11. Mamillary bodies; 12. Lateral hypothalamic
area.

NPY injection at ventricular level stimu-
lates food intake!!®, decreasing energy con-
sumption and inducing the activity of li-
pogenic enzymes in liver and adipose
tissue!'®. Because of these actions, continued
NPY administration rapidly produces
obesity'?.

During depletion of body fat deposits,
there is an increased expression of NPY
gene in the hypothalamus!?, thus reducing
the appetite inhibitory signal of brain lep-
tin/insulin®??2, Leptin inhibits NPY expres-
sion in the AN!% and NPY KO reduces hy-
perphagia and obesity in ob/ob mice!?4,
Most NPY/AGRP neurons have leptin re-
ceptors!® which exert an inhibitory effect
on these neurons'®,

During hyperphagia of insulin-deprived di-
abetes, there is an increase in NPY expres-
sion and secretion*?® which is blocked by in-
sulin administration either i.v. or directly in-
jected in the brain'#, suggesting a negative
feedback mechanism between both hor-
mones.

NPY receptors are coupled to a G protein
and therefore their action is exerted by in-
creasing CAMP and stimulating PKA activi-
tyl2,
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Melanocortins

These are peptides derived from the hypo-
thalamic processing of POMC, such as [3-
MSH? CRH® and TRH®. Melanocortins
would act through brain MC3 and MC4 re-
ceptorst®, Whereas the agonists of these re-
ceptors inhibit appetite, the antagonists stim-
ulate it"3. Mice with KO of MC4 receptors
are hyperphagic and very obese'*, showing
that these receptors exert a tonic signal that
limits food intake and body fat mass expan-
sion. These results have also been described
in man?3®,

Insulin

This hormone is produced by pancreatic (3-
cells from a precursor within the secretory
granule by the action of proprotein conver-
tases activated by acidification of the granule
interior®, Both the regulatory mechanism of
insulin secretion and its metabolic effects
have been widely described in other re-
viewst*¢1¥7: therefore we will only mention the
most prominent aspects.

Insulin is a polypeptide formed by two
aminoacid chains (chains A and B); both in-
sulin synthesis and secretion are stimulated

Y Insulin racaphor

e

by glucose and aminoacids, but not by drugs
such as sulfonilureas, which only stimulate in-
sulin secretion*®. Therefore, while postpran-
dial serum insulin levels increase, they are
low between meals.

As already mentioned, glucose-induced in-
sulin secretion is higher when glucose is ad-
ministered orally rather than i.v.,, due to the
release of hormones or incretins by the
bowel*,

Gastrointestinal hormones stimulate in-
sulin secretion acting directly at pancreatic (3-
cell level or indirectly through a glucose por-
tal sensor: GLP-1* and GIP® are the main
responsible for intestinal incretin effect. Con-
versely, other hormones such as leptin and
catecholamines inhibit insulin secretion.

The interaction of insulin with specific re-
ceptors promotes a cascade of phosphoryla-
tion and dephospharilation processes, start-
ing with the phosphorylation of the receptor’s
B-chain and followed by the insulin receptor
substrate (IRS)®, Activation of this cascade
produces a series of effects, as shown in Fig-
ure 4. All these effects convert insulin into an
anabolic hormone which promotes removal
of glucose and other metabolic substrates
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Figure 4. Intracellular insulin mediators. Interaction of insulin with its receptor, cascade of intracellular signals, and
metabolic effects of insulin.
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Figure 5. Relation among first peak of insulin secre-
tion, insulin sensitivity and diabetes. Hyperbolic curve
showing the relation between insulin sensitivity and in-
sulin secretion. (Adapted from Weyer et al. 1999). Note
that diabetes manifests with significantly decreased in-
sulin secretion, with a slight change in insulin sensitivity.

from plasma and their metabolization/ de-
posit in liver, muscle and adipose tissue, as
well as cell growth. Therefore, insulin is the
main responsible for decreased postprandial
glycemial*.

Insulin secretion in response to glucose
and other metabolites is biphasic, a charac-
teristic which should be maintained to war-
rant insulin effective action*2.

On the other hand, B-cells couple precisely
the amount of insulin released in response to
a stimulus to the threshold response (sensitiv-
ity) of peripheral tissues to the hormone!*3
(Figure 5). In this way, a decreased response
of peripheral tissues to insulin would pro-
mote a greater release of the hormone to
keep glycemia within normal range. This
would suggest that glucose homeostasis will
be normal if B-cells can release a sufficient
amount of insulin: failure of such an adapta-
tive capacity would cause the decrease of glu-
cose tolerance and finally diabetes#.

The response of peripheral tissues to in-
sulin is modulated by different hormones:
adiponectin, GLP-1 and GIP increase such
response, while leptin, resistin, corticoids and
somatotrofin decrease it*:!%®, Since some of
these hormones are produced in adipose tis-
sue, plasma insulin and leptin concentrations
are proportional to adiposity*®. On the other
hand, both hormones interact with specific
receptors located in the AN, reducing food
intake and body weight in a dose-dependent
manner'® (Table I).

Regulatory Center of Appetite and
Energy Balance

The hypothalamus is the main center regu-
lating food intake and body weight, with the
ventromedial nucleus (VMN) as the satiety
center and the lateral nucleus (LN) as the
hunger center!*. However, the concept of
specific brain centers for the control of food
intake and body weight has been replaced by
“discrete neuronal pathways responding in an
integrated way to stimuli related to changes
in fuel stores”4,

Translation of Adipocyte Signals Into
Neuronal Responses

The AN is located in the floor of the third
ventricle and its neurons coexpress NPY and
AGRPY There are also other neurons in the
AN containing POMC and CART (Cocaine-
and Amphetamine-Regulated Transcript)!#’
which exert an opposite action to that of
NPY and AGRP on appetite, suggesting that
circuits originated in this brain area play a
key role on energy homeostasis.

Leptin acts through the AN as shown by the
anorexigenic effect achieved by its local injec-
tion!™ and its lack of effectiveness in case of
lesion on the AN, Most NPY/AGRP and
POMC/CART neurons have leptin recep-
tors'® and both cellular types are regulated by
leptin in different ways: NPY/AGRP are in-
hibited and POMC/CART are stimulated!?1!7,
thus explaining their anorexigenic effect.

The AN also has insulin receptors!; de-
creased insulin and leptin levels inhibit

Table I. Peptides involved in the control of energy home-
ostasis.

Orexigen Anorexigen
AGRP a-MSH
Ghrelin CART
Noradrenaline CCK
NPY GIP
Orexin A and B GLP1

Insulin
Leptin
OXM
PYY
Serotonine

Peptides were grouped according to their effect upon
appetite.
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POMC and CART® expression in the AN,
whereas their administration prevents it. On
the other hand, a 5% increase of body weight
in rats causes a 3-fold increase in POMC mR-
NA in the AN® In conclusion, insulin and
leptin messages are transformed into neu-
ronal responses in the AN, confirming that
energy homeostasis involves integrated and
redundant pathways rather than a discrete
group of interconnected neurons®.,

Model of Second-Order Signals

The hyopothalamus is formed by the par-
aventricular nucleus (PVN), the zona incerta,
the perifornical region (PFR) and the LN,
and is richly innervated by neurons from
NPY/AGRP and POMC/CART cells'®?, Stim-
ulation of the PVN inhibits food intake,
whereas stimulation of the lateral nucleus
(LN) stimulates it**°. On the other hand, a
PVN lesion causes hyperphagia and obesity,
while a LN lesion causes anorexy and weight
loss®®. Hypocretins 1 and 2 or orexins A and
B are two peptides exclusively expressed at
the LN which stimulate appetite!®.

Various neurons of the PVN, PFR and LN
project to the AN generating a bidirectional
information flux. Therefore, these nuclei
would actively modify the information re-
ceived, rather than being passive receptors of
information from the AN.

Mechanism of Action of the Regulatory
System of Energy Homeostasis. Satiety
Signals and Control of Food Intake

The frequency and amount of food must be
regulated to achieve energy homeostasis. The
major determinant of food size is the begin-
ning of satiety, generated by neurohumoral
stimuli promoting intake interruption. The
beginning of meals is modified by external
and internal factors (emotions, time of the
day, availability and palatability), resulting in
a biological process less controlled than sati-
ety154.

During the course of a meal, satiety sig-
nals are transmitted by afferent fibers from
the vagus nerve and the spine coming from
the high part of the gastrointestinal tract®®
to the nucleus of the solitary tract. This cau-
dal area of the brain stem integrates sensory
information coming from the gastrointesti-
nal tract and gustatory information from the
mouth?®se.

Satiety signals coming to the solitary tract
nucleus originate during food intake by me-
chanical or chemical stimuli of the stomach and
small bowel, metabolites produced by the liv-
er®™, and hormones released by neroendocrine
secretory cells of the intestine in response to
nutrients'®®. Therefore, the control of the end
of intake involves brain areas independent of
the hypothalamus influence. The leptin poten-
tiation of the activatory effect of CCK on neu-
rons from the solitary tract nucleus shows that
the signals involved in energy homeostasis
modulate the response of these neurons to sati-
ety signals'®®. Therefore, the nucleus of the soli-
tary tract or other areas of the brain stem as
the AN, contain leptin-responsive neurons
which through ascending projections towards
key sites of the brain-stem contribute to adapt
food intake to changes in body fat content.

Monoaminergic Neurotransmitters and
Food Intake

Noradrenaline is synthetized at the dorsal
nucleus of the vagus nerve and the locus
ceruleus; these areas project downstream to-
wards the stem and to the rostral hypothala-
mus and the brain cortex. In some of these
neurons, including those projecting to the
PVN, noradrenaline colocalizes with NPY.
As it occurs with NPY, noradrenaline inject-
ed in the PVN increases food intake, and re-
peated injections may cause a significant in-
crease in body weight?®,

Ob/ob mice present high noradrenaline
levels in the PNV, indicating that leptin
would inhibit noradrenaline release at the
terminals in this brain area. Therefore, in-
creased noradrenaline content in the PVN as
well as in other hypothalamic areas would
contribute to hyperphagia induced by a leptin
deficit.

Dopamine

Pharmacologic!®? or gene®® depletion of
dopamine synthesis markedly modify food in-
take. Apparently, such decrease would con-
tribute to the hyperphagia consecutive to lep-
tin deficit®,

Serotonin

Drugs such as dexfluoramine and sibu-
tramine increase the signal of serotonin recep-
tor and decrease appetite, while antagonists
produce the opposite effect!®. Serotonin is in-
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volved in this effect and the fact that mice
with KO of serotonin receptor increase food
intake and body weight confirms the inhibito-
ry effect of appetite on this monoamine?e,

Food Composition, Gastric Emptying,
Digestive Enzymes and
Postprandial Glycemia

Postprandial glycemic excursion depends
on food composition, velocity of gastric emp-
tying, food digestion in the intestinal lumen
and removal of blood glucose: glucose is me-
tabolized by insulin-dependent (liver, muscle,
adipocytes) and independent (blood cells and
nervous) tissues.

Jenkins was the first to describe variability
in glycemic excursion following the intake of
the same amount of carbohydrates, giving
rise to the concept of glycemic index?®’.
Therefore, the nature and composition of
food ingested modify the amplitude of post-
prandial glycemic excursion.

The velocity of gastric emptying modifies
glycemia, as can be seen in gastrectomized
people!*. Although it has been described that
hyperglycemia retards gastric emptying in
people with and without diabetes®®, its effect
would be minimal in the range of glycemic
variations observed in clinical practice.

Digestibility of food at intestinal level may
be reduced in the presence of inhibitors such
as pectin and phytates, while other substrates
such as tanine reduce the action of enzymes
like pancreatic amylase, thus decreasing the
amplitude of glycemic excursion!*, The inhi-
bition of pancreatic a-amilase and intestinal
o-glucosidase reduce glucose flow to blood,
and could thus decrease the magnitude of
postprandial hyperglycemia®®.

In the period between meals, glycemia re-
mains within normal range because the liver
produces and releases glucose as a function
of the demand of peripheral tissues. Food in-
take causes a different situation, since intesti-
nal absorption provides a new source of glu-
cose: the liver supresses its productiont’,
keeps around 33% of portal glucose'’, and
the rest is used by peripheral tissues.

The glucose absorbed and the gastroin-
testinal hormones released to the intestine
(mainly GLP-1 and GIP - see previous de-
scription) in response to food intake, stimu-
late the biphasic secretion of insulin and in-
hibit glucagon secretion by 20-309%6'72.

The combination of hyperglycemia, hyper-
insulinemia and decreased glucagon secretion
causes a 75% decrease in hepatic glucose pro-
duction”™ and 25% stimulation in the uptake
of glucose by splanchnic tissue (intestine and
liver). In liver, glucose is stored as glycogen®*..

Glucose consumption by muscle tissue is
about 25-56%'" of the glucose entering the gen-
eral circulation by the suprahepatic vein, from
which 50% is oxidized, 35% is stored and 15%
is metabolized and releases as lactate’™. Adi-
pose tissue and non-insulin-dependent tissues
use the remaining glucose: one third is oxidized
and the other two thirds are stored as glycogen
and triglycerides'’*. These data show that the
amount of glucose taken up by liver and muscle
through insulin action is similar to that ab-
sorbed, preventing postprandial glycemic fluc-
tuations far above the physiological values.

In people with type 2 diabetes, the effect of
incretins is altered®: GLP-1 secretion is
markedly decreased in the postprandial period®
and although GIP secretion is almost normal, its
effect is decreased (resistence to the in-
sulinotropic action of GIP)'"*. The lack of re-
sponse to GIP results in decreased second phase
insulin secretion. Since such alteration is also
present in first degree relatives of people with
diabetes, it was initially suggested that it was ge-
netically determined®. However, it has been re-
cently reported that the defect manifests not on-
ly in people with type 2 diabetes but also with
phenotypes of different etiology, such as type 1
diabetes, LADA, post pancreatitis diabetes,
lean type 2 diabetes and MODY 3%77 and it
would be subsequent to a GIP post-receptor de-
fect induced by diabetes dysmetabolism.

One of the characteristics of people with
impaired glucose tolerance (IGT) or diabetes
is the early and progressive loss of first-phase
insulin secretion42144178 resylting in a de-
creased inhibitory effect of insulin upon
glucagon secretion!*!1® and decreased free
fatty acids release!®®°. These promote in-
sulin resistance, with the consequent excess
hepatic glucose production and release,
reaching 2-fold values as compared to people
without diabetes!’”. Glucagon suppresion
may inhibit hepatic glucose production and
reduce the amplitude of postprandial gycemic
excursion!® even in people with type 2 dia-
betes and impaired insulin secretion.

In conclusion, the data analyzed show that
the control of energy homeostasis and postpran-
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dial blood glucose levels is multifactorial, with
the participation of exogenous and endogenous
factors, as shown in Figure 6. The former in-
clude the quantity and quality of food intake
while the latter involve the balance of glucose
intestinal absorption (postprandial period), glu-
cose production and release by the liver and its
consumption by peripheral tissues. Adequate
secretion and peripheral metabolic effects of in-
sulin play a key role in the control of both
processes. Insulin secretion is controlled by the
level of circulating substrates as well as by gas-
trointestinal hormones. The mechanism for the
immediate control of blood glucose levels is
modulated by energy homeostasis, with the par-
ticipation of the above mentioned hormones
and others produced at the classical endocrine
system and adipose tissue, whose actions inte-
grate at the central nervous system. The alter-
ation of such delicate mechanism of control
causes diseases such as diabetes, thus, identifica-
tion of the multiple components of this mecha-
nism and comprehension of its normal function
would facilitate the selection of effective strate-
gies for diabetes prevention and treatment.
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