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Hybridization is an evolutionary process that can generate diverse outcomes, such as

reinforcing species boundaries, generating new species, or facilitating the introgression

of locally-adapted alleles into new genomic backgrounds. Liolaemus is a highly diverse

clade of South American lizards with ∼260 species and as many as ten new species

are described each year. Previous Liolaemus studies have detected gene flow and

introgression among species using phylogenetic network methods and/or through

comparisons of nuclear and mitochondrial DNA patterns, yet no study has systematically

studied hybrid zones between Liolaemus species. Here, we compared three hybrid

zones between four species in the Liolaemus fitzingerii group of lizards in Central

Argentina where two species, L. melanops and L. xanthoviridis, each hybridize with

two other species (L. shehuen and L. fitzingerii). We sampled three transects that were

each ∼120 km in length and sequenced both mitochondrial and genome-wide SNP

data for 267 individuals. In our analyses of nuclear DNA, we also compared bi-allelic

SNPs to phased alleles (50 bp RAD loci). Population structure analyses confirmed

that boundaries separating species are sharp, and all clines are <65 km wide. Cline

center estimates were consistent between SNPs and phased alleles, but cline width

estimates were significantly different with the SNPs producing wider estimates. The

mitochondrial clines are narrower and shifted 4–20 km southward in comparison to the

nuclear clines in all three hybrid zones, indicating that either each of the species has

sex-biased dispersal (males northward or females southward), the population densities

are unequal, or that the hybrid zones are moving north over time. These comparisons

indicate that some patterns of hybridization are similar across hybrid zones (mtDNA clines

all narrower and shifted to the south), whereas cline width is variable. Hybridization in the

L. fitzingerii group is common and geographically localized; further studies are needed

to investigate whether hybrid zones act as hard species boundaries or promoters of

speciation through processes such as reinforcement. Nonetheless, this study provides

insights into both biotic and abiotic mechanisms helping to maintain species boundaries

within the speciose Liolaemus system.
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1. INTRODUCTION

Hybridization, or interbreeding between distinct populations,
has captivated evolutionary biologists for nearly two centuries
(Darwin, 1862; Harrison, 1993). It can be a means of transferring
adaptive genetic diversity between lineages (Chhatre et al.,
2018; Hanemaaijer et al., 2018), forming hybrid swarms
and potentially collapsing lineages (Pritchard and Edmands,
2013), or conversely, creating new species through hybrid
speciation (e.g., Rieseberg et al., 1995). Hybridization is
indeed common across the tree of life, with documentation
in 10% of animal species and 25% of plant species (Mallet,
2005). Within Tetrapods, hybridization is particularly
common in squamate reptiles—the lizards and snakes
(Jančúchová-Lásková et al., 2015). Given the diverse roles
that hybridization can play in shaping patterns of diversity, it
is important to deepen our understanding of this process in
natural systems.

Hybrid zones can provide detailed information about
the evolutionary and ecological interactions between species,
and replicated hybrid zones offer the additional advantage
of investigating the repeatability of evolutionary processes
(McKinnon and Rundle, 2002). Replicate transects across a single
hybrid zone can offer insights into the extrinsic and intrinsic
factors that govern the dynamics of a hybrid zone (Brelsford
and Irwin, 2009; Zieliński et al., 2019; Westram et al., 2021,
e.g.,). Replicate hybrid zones have mainly been studied in fish,
which typically show a high amount of variability of introgression
rates and genomic divergence between different hybrid zones.
In Xiphophorus swordtail fish, Culumber et al. (2011) found
that linkage disequilibrium and Hardy-Weinberg equilibrium
estimates varied substantially across seven transects. Nolte et al.
(2009) also found little correlation in genomic differentiation
between two hybrid zones of sculpin fish (Cottus). And similarly,
hybridization rates were found to vary considerably across ten
topminnow (Fundulus) replicate hybrid zones (Duvernell and
Schaefer, 2014). These differences identified across replicate
hybrid zones are typically ascribed to distinct environments
that characterize each hybrid zone (Aboim et al., 2010). In this
study, we investigate replicate hybrid zones in a species group
of liolaemid lizards. Here, we use the term “replicate” not in
the statistical sense, but to indicate that one species hybridizes
with more than one other distinct species and thus represents
“evolutionary replicates” given that the process of hybridization
has occurred multiple times in distinct geographic areas.

The genus Liolaemus (family Liolaemidae) is a particularly
diverse clade with ∼260 species and 5–10 new species described
each year (http://www.reptile-database.org/). Some authors have
recently posited that hybridization may be one of the factors
responsible for generating the exceptional diversity within this
clade, particularly when compared to its sister clade Phymaturus
that only has 48 species (Olave et al., 2018, 2020; Morando
et al., 2020). Indeed, several studies have detected or suggested
hybridization in disparate Liolaemus groups including the
lineomaculatus series (Breitman et al., 2011) and leopardinus
clade (Esquerré et al., 2019), the darwinii, kriegi, and petrophilus
complexes (Morando et al., 2004; Feltrin, 2013; Medina et al.,

2014), and the chiliensis and fitzingerii groups (Avila et al., 2006;
Grummer et al., 2018; Araya-Donoso et al., 2019).

In most cases, hybridization is inferred through incongruence
of mitochondrial and nuclear phylogenies and/or morphological
species designations, given the contrasting inheritance modes of
the two genomes (Ballard and Whitlock, 2004). Furthermore,
instances of hybridization are typically localized to areas where
two distinct populations or species come into contact, “hybrid
zones.” It has been suggested that hybridization can play two
important roles within Liolaemus: (1) increasing genetic and
adaptive diversity following population bottlenecks, and (2)
limiting specialization to maintain a generalist phenotype that
is better suited to heterogeneous and unstable habitats, such as
those in southern South America (Morando et al., 2020; Olave
et al., 2020). Although hybridization is suspected to be relatively
common in Liolaemus, detailed examinations of hybrid zones
using thorough transect sampling and genomic data analyses
are lacking.

Hybrid zones form at the interface between two distinct
populations and in some cases are best described as “clines,”
which represent transitions in observed character states between
distinct populations (Barton and Hewitt, 1985). Clines inferred
from different characters that share the same center are said
to be coincident, and those that share the same shape/width
are said to be concordant. Clines and contact zones are often
formed in ecotones where two distinct habitats fuse (Leaché and
Cole, 2007). These contact zones typically occur in one area
between species and therefore offer a single perspective into the
evolutionary process. However, some species complexes have
established themselves into loosely formed “rings” (or perhaps
more aptly, horseshoes) around unsuitable habitat, where species
grade into each other at contact zones, but the forms are
reproductively isolated where the “ring” closes (e.g., Ensatina
salamanders, Moritz et al., 1992; Phylloscopus warblers, Irwin
et al., 2001). In other conceptually related instances, “mosaic”
hybrid zones can be formed when individuals from distinct
species repeatedly come into contact with each other across the
landscape (e.g., Helianthus sunflowers; Rieseberg et al., 1999). In
all of these cases, replicate hybrid zones are formed where one
species participates in hybridization in >1 geographic area.

In hybrid zones, neutral and selected markers will respond to
hybridization in distinct manners. For instance, because nDNA
is biparentally inherited and mtDNA maternally inherited in
vertebrates (Ballard and Whitlock, 2004), sex-biased dispersal
can be seen by comparing nuclear and mitochondrial patterns
in hybrid zones (but see Bonnet et al., 2017 for alternative
explanations). Furthermore, many mitochondrial genes code
for proteins involved in the electron transport chain and ATP
production, making the whole mitochondrial genome subject to
selection via linkage. Thus, a beneficial mitochondrial haplotype
may sweep to fixation in both populations via selection and
gene flow in the hybrid zone. However, some authors have
argued for the neutral evolution of the mitochondrial genome
with respect to phenotype in some systems (e.g., Rohwer et al.,
2001). Assuming that mtDNA is neutrally evolving allows for the
estimation of hybrid zone movement, because neutral markers
geographically lag behind non-neutral markers (McGuire et al.,
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2007).When a hybrid zonemoves due to an invading population,
the neutral mitochondrial haplotypes will be left in the wake of
the invading species (Rohwer et al., 2001). Differing selection
pressures and inheritance patterns of nuclear and mitochondrial
genomes mean that cline shape and geographic center may in fact
be distinct from one another in a given hybrid zone (e.g., Leaché
et al., 2017). Depending on the concordance or discordance
between nuclear and mitochondrial clines, an inference can
be made about hybrid zone movement, the dispersal behavior
of the two sexes, or differential selection between nuclear and
mitochondrial genomes in the hybrid zone.

Here, we investigated hybrid zones in the Liolaemus
fitzingerii species group through genome-wide single nucleotide
polymorphism (SNP) data. The twelve species belonging to
this group are distributed throughout the Patagonian shrub-
steppe of central Argentina (Avila et al., 2006, 2008, 2010).
However, a phylogenetic analysis using genome-wide SNP data
and dense geographic sampling of individuals only found
support for six distinct genetic groups, suggesting that species
diversity in the group could be overestimated (Grummer, 2017).
Nonetheless, the four species studied here are supported by both
morphological and SNP data. Two putative contact zones were
previously discovered through genomic analyses: one between L.
melanops and L. shehuen, and a second between L. xanthoviridis
and L. fitzingerii (Figure 1; Grummer, 2017). These contact zones
are further supported by color polymorphism data and the co-
occurrence of mtDNA sequences (cytochrome B from different
species in single populations (Morando and Avila, personal
communication). Although multiple lines of evidence support
the presence of these hybrid zones, nothing is known regarding
their geographic arrangements and limits and therefore the biotic
and abiotic processesmaintaining them.We studied hybrid zones
in the L. fitzingerii species group using transect sampling to
contrast patterns in both nuclear and mitochondrial genomes
through population structure estimation, phylogenetic inference,
cline analysis, and network analyses. Our aim is to provide an
understanding of evolutionary processes at a fine-scale where the
ranges of species come into contact, providing insights into the
nature of speciation in a system where species boundaries are
porous and blurry.

2. MATERIALS AND METHODS

2.1. Bioethics
All research specimens were collected by hand using methods
approved by the University of Washington Office of Animal
Welfare (IACUC protocol number 4249-01) and in accordance
with provincial permits from the Argentinean Dirección de
Fauna y Flora Silvestre.

2.2. Sampling and DNA Extraction
All voucher specimens and tissues were deposited into the
LJAMM-CNP herpetology collection in the Centro Patagónico
Nacional (IPEEC-CONICET), Puerto Madryn, Chubut,
Argentina. DNA was extracted from tissue (tails tips and liver)
through a salt (NaCl) extraction method (MacManes, 2013).
Prior to library sequencing preparation, we discarded samples

FIGURE 1 | Sampling map with insets showing (A) Argentina and (B) the

provincial borders within Argentina and where the study took place (C).

Transect sampling localities for the Northern hybrid zone are shown as circles,

whereas the “Central” and “Southern” transects are shown as +s and Xs,

respectively (the localities marked with asterisks/stars were analysed in both

Central and Southern transects). Colors on the map reflect population

boundaries as determined by genome-wide SNP data in Grummer (2017) that

largely correspond to the species Liolaemus melanops (blue), L. shehuen

(orange), L. xanthoviridis (green), and L. fitzingerii (yellow).

that had low DNA concentration or had degraded genomic DNA
that lacked high molecular weight DNA.

2.2.1. Northern Hybrid Zone
During January and December of 2015, we collected 169
individuals from 17 distinct localities in Rio Negro and Chubut
provinces (Figure 1; Supplementary Table 1). Sampling was
performed every∼15–20 km along the transect.

2.2.2. Central and Southern Hybrid Zones
In December 2015, we collected 120 individuals from
13 distinct localities in Chubut province (Figure 1;
Supplementary Table 2). Analyses revealed that what was
assumed to be a single hybrid zone in the southern transect in
fact represented two hybrid zones (see Results), so we therefore
broke up this single transect into a northern (“Central”) and
southern (“Southern”) transect (further detail below).

2.3. DNA Sequence Preparation
2.3.1. Nuclear DNA
We generated a nuclear dataset with the double digestion
restriction site-associated DNA sequencing (ddRADseq)
approach (Peterson et al., 2012). Genomic DNA was digested
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with two enzymes, SbfI (8 bp recognition sequence [5′

CCTGCAGG 3′], “rare cutter”; New England Biolabs, Ipswich,
MA) and MspI (4 bp recognition sequence [5′ CCGG 3′],
“common cutter”; New England Biolabs, Ipswich, MA). Unique
barcoded primers were ligated to all genomic DNA fragments
to enable multiplex sequencing. Genomic DNA fragments
between ∼365 and 465 bp (415–515 bp after ligating barcoded
oligonucleotides) were size-selected with a Blue Pippin DNA
fragment size selector (Sage Science, MA, USA). Samples with
distinct barcodes were pooled in multiples of eight and unique
indexes were applied to each pool using PCR with NEB Phusion
Taq polymerase (New England Biolabs Inc., MA, USA) and
the following thermocycler conditions: 98◦ for 0:30, (98◦ for
0:10, 58◦ for 0:30, 72◦ for 0:30) × 12 cycles, and a final 10:00
extension at 72◦C. The amplified pools were multiplexed (up to
160 individuals per sequencing lane, some runs with individuals
from other studies) and sequenced on Illumina HiSeq 2500 and
4000 machines (Illumina Inc., CA, USA) with 50 bp single-end
reads at the University of California Berkeley’s QB3 Vincent
J. Coates sequencing facility. After de-multiplexing, each read
contained 39 bp of sequenced genomic DNA.

2.3.2. Mitochondrial DNA
We targeted a fragment of the cytochrome B (cytB) gene to
sequence for all individuals and contrast with patterns observed
from the nuclear genome. Two sets of primers were used,
an “external” pair that amplified an ∼800 bp fragment, and
an “internal” pair that amplified a ∼360 bp fragment; primer
sequences are given in Morando et al. (2003). Twenty-three µL
of Tankara EmeraldAmp GT PCR Master Mix (Takara Bio USA,
Inc.; Mountain View, CA, USA) were mixed with 2 µL genomic
DNA, and amplified with the following thermocycler conditions:
95◦C for 5:00, (95◦ for 0:45, 55◦ for 0:30, 72◦ for 1:00) × 35
cycles, with a final 10:00 extension at 72◦C. If individuals did
not amplify for the larger fragment, we attempted to amplify the
smaller fragment with the internal primers. PCR products were
sent to Genewiz (South Plainfield, NJ, USA) where they were
purified and sequenced in both forward and reverse directions.

2.4. DNA Dataset Assemblies
2.4.1. ddRAD Bioinformatics and Dataset Assembly
Raw sequence reads were processed to generate “clusters” (e.g.,
loci) and identify SNPs with the program pyRAD v3.0.66 (Eaton,
2014). After demultiplexing individuals using their unique
adapter and barcode sequences, pyRAD uses VSEARCH (Rognes
et al., 2016) and MUSCLE (Edgar, 2004) to cluster and align
reads into loci. Raw sequence reads were discarded if they had≥4
bp with a Phred quality score <20. Reads were clustered within
individuals and then across individuals with clustering thresholds
of 90, 92, and 95%, and we ultimately chose 92% to minimize
the number of paralogs while not over-splitting homologous loci
given the sequence divergence across populations (Ilut et al.,
2014; de Oca et al., 2017). We used a minimum depth of
coverage of 10 for all loci. We set the paralog filter in pyRAD
to 90%, meaning that up to 90% of individuals at a site can be
heterozygous (e.g., be represented by two alleles with an IUPAC
ambiguity code), as we expect many heterozygous positions to

be due to shared ancestry (e.g., homology) and not due to fixed
paralogs differences. We set the missing data threshold at 25%,
meaning that ≥75% of individuals had data at each locus. All
other parameters in pyRAD were left at their default settings.

2.4.2. Unlinked SNPs vs. Sequence Data
Unlinked SNPs can generate a maximum of four alleles per locus,
but are more commonly bi-allelic with only two alleles. However,
considering all variant and invariant sites together can greatly
increase the number of distinct alleles at a locus. This richer
allelic information might offer higher precision in delimiting
population boundaries and/or inferring admixture proportions
vs. SNPs, so we analyzed both datasets in parallel for comparison.
PyRAD generates a “.alleles” file that contains allelic sequence
data (e.g., two alleles per individual) for all loci that met all
quality and assembly parameters; sequences need not be 39 bp,
as indels can cause loci to be >39 bp. It is from these loci that
biallelic SNPs are extracted. These ≥39 bp RAD loci were then
coded as alleles (e.g., “microhaplotypes”), two per individual. We
generated a custom Python script to parse the “.alleles” file into a
file formatted for the program Structure (Pritchard et al., 2000),
where any non-N difference at a site between alleles constituted a
unique and new allele. This dataset (herein termed “alleles”) was
then analyzed in parallel to the unlinked SNPs dataset to compare
the power of each to identify population boundaries, admixture
proportions, and clines.

2.4.3. mtDNA Dataset Assembly
Raw sequence data (“.ab1” chromatograms) from both
sequencing directions were made into contigs and hand-
edited in Geneious v10 (Biomatters; Auckland, New Zealand).
Consensus sequences were exported as .fasta sequences and
aligned with Clustal2 (Larkin et al., 2007) in Mesquite v3.2
(Maddison and Maddison, 2017). Liolaemus cuyanus was
included as an outgroup to root phylogenetic trees used in cline
analyses (see below).

2.5. Geographic Cline Analyses
We estimated clines for both nuclear and mitochondrial datasets
to identify the geographic interface between populations, and
to contrast cline patterns between markers with different
inheritance patterns. To generate transect distances along a single
axis between sampling localities of each hybrid zone, we first
calculated pairwise distances between every sampling locality
as the great circle distance with latitude-longitude coordinates
in the R package Fossil (Vavrek and Vavrek, 2012) with the
function “earth.dist.”We note that this method does not consider
topography when calculating distances. We then used classical
multidimensional scaling through principal coordinates analysis
to reduce the pairwise matrix of distances between each locality
into a single distance value for each locality that retained the
original overall pairwise distance structure (as in Gompert et al.,
2010). This ordination represents sampling locations along a
single axis where kilometer (km) 0 was converted to represent
the northern-most sampling site of each transect.
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2.5.1. nDNA Clines
We used Structure v2.3 (Pritchard et al., 2000; Falush et al., 2007)
and the Evanno method (Evanno et al., 2005) to identify the
number of populations (k) in each hybrid zone. Analyses on the
Northern hybrid zone dataset were run for 250,000 generations
following a 75,000 generation burn-in period with five replicates
of each k value of 1–5. Because of a higher number of loci (see
Results below), the Central + Southern hybrid zones dataset was
run for 300,000 generations with 100,000 burn-in generations,
also with five replicate runs of k 1–5.

After identifying the optimal k value, we used Structure
to determine the admixture proportions (Q) of all individuals
and therefore of each sampling locality. Q estimates from
five replicate Structure runs were combined through CLUMPP
(Jakobsson and Rosenberg, 2007) and were then used to
generate geographic clines. For the combined Central + Southern
hybrid zones, the Evanno et al. (2005) method selected k
= 3 (Supplementary Figure 1A), where a central population
intergrades with two distinct populations, one to the north and
another to the south. This larger Central + Southern hybrid zone
was therefore split into two separate hybrid zones, where the
northern hybrid zone was designated as localities A–I and the
southern hybrid zone as localities F-M (Figure 1). The northern
half of our bigger southern transect will be referred to as the
“Central” hybrid zone, and the southern portion of the southern
transect will be referred to as the “Southern” hybrid zone.

With the use of theQ proportions and geographic locations as
described above, we estimated geographic maximum likelihood
clines, including cline centers and cline widths, in the R package
Hzar (Derryberry et al., 2014). Cline models were tested with
minimum and maximum values fixed to the observed data,
without allowing exponential tails on both sides of the cline. The
cline fit analysis was run for 200,000 generations and a burn-
in of 40,000 generations, from which the maximum likelihood
parameter estimates of the cline were generated. The best-fit cline
model (along with 95% confidence interval) was then plotted as a
function of geographic distance along the transect.

2.5.2. mtDNA Clines
Because mtDNA is haploid and non-recombining, haplotype
frequencies were calculated in terms of the relative proportions
of the distinct parental haplotypes found at each sample location.
We used both tree-based and network-based approaches to
determine haplotype frequencies at each sampling locality. For
the tree-based approach, we used jModelTest v2.1.7 (Guindon
and Gascuel, 2003; Darriba et al., 2012) to determine the optimal
DNA substitution model (HKY + Ŵ for all datasets), which was
then used to estimate maximum likelihood trees in RAxML v8.2
(Stamatakis, 2014) with 100 bootstrap iterations. For each hybrid
zone, we calculated haplotype frequencies as the proportion of
individuals in each locality that belonged to the “northern” clade,
resulting in haplotype frequencies ranging from 0 to 1.

Our second approach was analogous to the tree-based
approach, but instead was network-based. We inferred
minimum-spanning networks (Bandelt et al., 1999) using
the program PopART (http://popart.otago.ac.nz), and divided
the network into two groups on the edge (branch) with the

highest number of sequence substitutions. As in the tree-based
approach, we determined haplotype frequencies by calculating
the proportion of individuals from each locality that were in
each of the two major groups. Cline analysis was performed with
these frequencies using the same methodology as in the nDNA
cline estimates.

Because we were interested in contrasting evolutionary
patterns in the mitochondrial vs. nuclear genomes, we
quantitatively tested how different the cline estimates were
for these two datasets. To do so, we constrained the cline
estimate of the nuclear data to have either the cline center
or cline width that was inferred from the mtDNA, and then
estimated the log likelihood of the constrained clines (for
both alleles and unlinked SNPs datasets). With the maximum
likelihood estimate and number of free parameters in the model,
we were able to estimate AIC scores for each cline (with the
“hzar.AIC.hzar.cline” function). A difference in AIC score >2
between unconstrained and constrained cline estimates indicated
a significant difference between the two genomes.

3. RESULTS

After we removed individuals with poor genomic DNA or
sequence data quality and filtered loci based on the parameters
above, the nuclear datasets consisted of 151 individuals (2,814–
15,963 loci) in the Northern hybrid zone, 73 individuals in the
Central and 61 in the Southern hybrid zones (586–13,835 loci).
After combining across individuals, the datasets consisted of
1,295 and 2,436 loci in the Northern and Central + Southern
hybrid zones, respectively. We removed individuals from a
single locality in the Northern hybrid zone because our analyses
showed it to be geographically outside (to the east) of the hybrid
zone. We also removed a single locality from analysis from
the Central hybrid zone because this locality was represented
by a single individual. Samples per locality ranged from 3 to
13 in the Northern hybrid zone with an average of 7.8, a
range of 3–15 with an average of 9.1 in the Central hybrid
zone, and a range of 3–11 with an average of 7.6 individuals
in the Southern transect localities (Supplementary Tables 1, 2).
In the mitochondrial dataset (832 base pairs), the Northern
transect was represented by 146 individuals, whereas the Central
and Southern transects had 75 and 59 individuals, respectively
(Supplementary Tables 3, 4). Individuals in both transects
displayed a high level of morphological variation across both
age and localities (Figure 2). The 16 localities in the Northern
transect had an average sample size of 8.75 and ranged from 2 to
13 individuals; the average number of mitochondrial samples per
locality in the Central and Southern transects ranged from 2 to
15 (x = 9.38) and 2 to 13 (x = 8.00), respectively.

3.1. Population Identification
The numbers of unlinked biallelic SNPs used in the Northern
and Central + Southern transects were 1,295 (mean number of
loci per individual = 1,140) and 2,436 (mean number of loci
per individual = 2,173), respectively. Coding the nuclear loci
into alleles, which retains all of the SNP variation at each locus,
resulted in an average of 6.6, 4.7, and 4.5 alleles per locus, with
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FIGURE 2 | Ventral and dorsal photos of males from localities sampled in the Northern (i) and Central + Southern (ii) hybrid zones. Letters and numbers indicate

transect sampling points in Figure 4. Photos were not available for individuals from localities M–P in the northern transect.

maximum number of alleles of 32, 28, and 28 for Northern,
Central, and Southern transects, respectively (Figure 3).

3.1.1. Northern Hybrid Zone
The Evanno et al. (2005) method favored two populations
(k = 2) with the unlinked SNPs and alleles datasets alike
(Supplementary Figure 2). The interface between the two

populations is sharp and occurs on the eastern edge of the
Somuncura Plateau (Figure 4A).

3.1.2. Central and Southern Hybrid Zones
Estimates of the optimal k value via the Evanno et al. (2005)
method were in conflict: the unlinked SNPs dataset favored
four populations, whereas the alleles dataset supported three
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FIGURE 3 | Violin plots showing the number of alleles per locus when the

sequence data were coded into alleles (vs. unlinked SNPs) for Northern,

Central, and Southern hybrid zones. Density is shown by width of the “violin,”

whereas box plots inside depict the mean (white dot), first and third quartiles

(black boxes), and 1.5× the inter-quartile range (vertical lines).

(Supplementary Figure 1). Visualizing the results of k = 4
revealed that the fourth inferred population is almost completely
confined to individuals in the northern-most sampling locality
(“1”; Figure 4; Supplementary Figure 3). The k = 4 result
doesn’t make biological sense and is in conflict with the results
from the alleles dataset, so we therefore focused on the k = 3
results for the larger Central + Southern transect. Visualizing
the k = 3 result revealed a “sandwich” hybrid zone in which
individuals from the center of the transect (roughly equivalent
to the described species Liolaemus xanthoviridis) hybridize with
two distinct populations—one to the north (L. melanops) and
one to the south (L. fitzingerii; Figures 4B,C). Furthermore, the
northern population in the Central hybrid zone is the same
“species,” L. melanops, that constitutes the northern populations
of the Northern transect (Figure 1; Supplementary Figure 4).

3.2. Clines
3.2.1. Northern Hybrid Zone
Cline width estimates were 30.13 and 35.27 km for the alleles
and unlinked SNPs datasets, respectively (Table 1). Estimates
of cline centers from the two nuclear datasets were ∼0.5 km
different from one another in the northern hybrid zone (Table 1).
The inferred admixture (Q) proportions were more extreme for
the alleles dataset, providing admixture estimates closer to 1 or
0 at the opposite ends of the transect (Figure 5A). In terms
of calculating haplotype frequencies from the mitochondrial
data, the phylogeny, and network were in 100% agreement
(Supplementary Figure 5). When mitochondrial and nuclear
clines are compared, the mitochondrial cline is shifted ∼7 km to
the south of the nDNA clines and is ∼13 km narrower at 20.64
km (Table 1; Figure 5). When the nuclear data were inferred
under the constraint of the mitochondrial cline center or width
estimates, the position of the center, but not the width, was
inferred to be significantly different (Table 2).

3.2.2. Central and Southern Hybrid Zones
Central. As in the Northern hybrid zone, admixture proportions
inferred with the alleles dataset were more extreme than the

FIGURE 4 | STRUCTURE results and hybrid zone locations for the Northern

(A), Central (B), and Southern (C) hybrid zones. Latitude and longitude are

shown, and the elevational gradient is the same in all maps. Note that

populations 5–8 are used in both Central (B) and Southern (C) transects.

unlinked SNPs dataset (Figure 5B). The cline center inferred
from the nDNA is ∼40 km to the south of the northern-
most sampling locality, and ∼45 km wide (Table 1). As in the
Northern hybrid zone, the haplotype frequencies calculated from

Frontiers in Ecology and Evolution | www.frontiersin.org 7 May 2021 | Volume 9 | Article 624109

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Grummer et al. Replicated Liolaemus Hybrid Zones

TABLE 1 | Cline analysis results from Hzar for Northern, Central, and Southern hybrid zones.

Dataset Northern Central Southern

Center Width Center Width Center Width

Alleles 36.87 (32.14–41.62) 33.75 (20.03–53.03) 42.86 (32.90–53.16) 53.44 (27.45–93.60) 120.84 (109.28–135.01) 45.99 (19.58–101.68)

Unlinked SNPs 37.59 (31.18–44.35) 42.84 (21.77–77.17) 41.34 (27.46–55.09) 63.43 (27.44–124.20) 122.10 (108.45–145.54) 58.68 (20.21–143.68)

mtDNA 43.96 (40.59–48.21) 20.64 (14.54–35.20) 59.57 (52.84–67.74) 21.37 (16.35–54.25) 123.08 (116.50–146.81) 1.19 (5.26–86.58)

Mean estimates are shown along with the 95% credible intervals in parentheses. The cline center results represent distance from the northern-most sampling locality, and all numbers

represent kilometers.

FIGURE 5 | Hzar maximum likelihood cline estimates and 95% credible intervals estimated from both nDNA and mtDNA datasets for the (A) Northern, (B) Central,

and (C) Southern hybrid zones. The x-axis represents distances from the northern-most sampling locality.

TABLE 2 | AIC scores for genetic clines from Hzar analyses.

Northern Central Southern

nDNA mtDNA Center mtDNA Width nDNA mtDNA Center mtDNA Width nDNA mtDNA Center mtDNA Width

Alleles 12.480 18.932 12.784 5.943 13.663 10.257 8.372 7.236 296.191

Unlinked SNPs 11.438 14.003 12.495 5.210 10.696 7.525 8.222 6.939 11.890

The nDNA value represents the AIC score when estimating the maximum likelihood (ML) cline for the nDNA, whereas the “mtDNA Center” and “mtDNA Width” columns represent AIC

scores when forcing the ML estimate of the mtDNA center or width on the nDNA ML cline estimates, respectively. Bold values indicate AIC scores >2 points different in comparison to

the freely estimated nDNA clines.

the mtDNA data were identical between phylogeny and network
approaches (Supplementary Figure 6). The nDNA clines are in
stark contrast to the mtDNA cline, whose center is ∼20 km to
the south and less than half as wide as the nDNA clines (21.37
km). When the nDNA was constrained to fit the mtDNA cline
center and width, the clines estimated from both data types
were significantly different from each other in both of these
characteristics (Table 2).

Southern. Cline center estimates were only 0.43 km different
between alleles and unlinked SNP datasets. However, the alleles
cline width estimate was ∼10 km narrower (27.42 vs. 37.14
km; Table 1). In comparison to the mitochondrial genealogies
inferred for the other two hybrid zones, the phylogeny of
the Southern transect individuals did not contain two strongly
supported clades (Supplementary Figure 7). However, two
distinct groups were inferred in the network that corresponded
to a division created by the longest branch in the phylogeny.
In contrast to the other two transects, the clines estimated in

the Southern transect were in the very southern portion of the
transect (Figure 5C). The mtDNA cline center was ∼4 km to
the south and much narrower (1.19 km) when compared to the
nDNA clines (Table 1; Figure 5C). Constraining the nDNA cline
center to themtDNA estimate strangely led to an improvement in
model score, however, the nDNA cline widths were significantly
wider than the mtDNA cline width (Table 2).

4. DISCUSSION

Our studymarks the first in-depth study of hybrid zone dynamics
within Liolaemus, a clade where hybridization is widespread
and potentially fundamental to its evolutionary history. The
arrangement of three geographically sequential hybrid zones in
the L. fitzingerii species group, a group in which hybridization
appears to be common, is unusual and provides a valuable system
for analyzing hybridization in a replicated fashion. In the north,
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L. melanops hybridizes with L. shehuen and L. xanthoviridis, and
in the south, L. xanthoviridis hybridizes with both L. melanops
and L. fitzingerii. Analyses revealed similarities shared across
all three hybrid zones: mitochondrial clines are (1) steeper
compared to nuclear clines, (2) displaced to the south of the
nuclear clines, and (3) significantly different from nuclear clines
in terms of cline center and/or width. Our results indicate that
hybridization is common in the L. fitzingerii species group and
the hybrid zones are well-defined. Although hybridization is
common and is a potential mechanism for generating extensive
phenotypic variation in the L. fitzingerii species group (Figure 2),
we did not test whether hybridization enhances speciation
(through a mechanism, such as reinforcement) as some authors
have hypothesized because it is outside the scope of this paper
(e.g., Olave et al., 2018; Morando et al., 2020).

4.1. Hybridization and Species Boundaries
in Liolaemus
In spite of considerable progress over the past few decades, much
remains to be understood about phylogeography and systematics
of southern hemisphere taxa (Beheregaray, 2008). Knowledge
on the taxonomic and phylogenetic diversity of Patagonian
lizards specifically is incomplete, leaving room for many future
studies (Brito, 2010; Diniz-Filho et al., 2013). These uncertainties
manifest taxonomically and result in many species “groups” and
“complexes” whose geographic distributions, and species limits,
are not clearly defined. The results here indicate that hybrid zones
are clearly defined in the L. fitzingerii group, and that in spite
of many instances of interspecific hybridization, species are clear
entities outside of contact zones.

Character clines in hybrid zones can vary substantially in
shape—broad vs. narrow—and different shapes can provide
insights into the evolutionary processes maintaining hybrid
zones. A recent meta-analysis of animal hybrid zones (McEntee
et al., 2020) provides some context for interpreting the mtDNA
and nuclear cline widths estimated in the L. fitzingerii group.
Across a variety of taxa, hybrid zone cline widths range from
10 m to >3,000 km (McEntee et al., 2020). In lizards (n =

95 cline estimates in McEntee et al., 2020), the reported range
is ∼30–190 km with a left-skewed distribution—20% of the
values are <1 km and 90% are <60 km. The hybrid zones in
the L. fitzingerii group were estimated to be ∼35–65 km wide
with nuclear data, or ∼1–20 km wide with mitochondrial data
(Figure 5). Accordingly, the cline widths in the L. fitzingerii
group appear to be “typical” in relation to other lizard species.
We would expect much more variance in cline estimates across
hybrid zones if a cline was maintained solely by selection, as
opposed to a balance between dispersal and selection (Barton
and Hewitt, 1985). The observation that both cline width and
shape do not vary substantially between hybrid zones indicates
that dispersal of parental genotypes into the contact zone is offset
by selection against heterozygotes. In the L. fitzingerii species
group, the strengths of selection and gene flow seem to be within
the same order of magnitude, and similar to those seen in other
squamate species (Mallet et al., 1990; McEntee et al., 2020).

4.2. Nuclear vs. Mitochondrial Clines
Geographic cline analyses revealed that the mitochondrial cline
center is displaced to the south of the nuclear cline in all
three hybrid zones. Furthermore, nuclear and mitochondrial
clines were significantly different from each other in cline
center and/or width in all three hybrid zones. Observing
significantly different clines between nuclear and mtDNA is
not necessarily unexpected, given that a variety of biotic
and evolutionary processes can generate discordance between
nuclear and mitochondrial DNA (Bonnet et al., 2017). These
two genomes have different modes of inheritance (unipartental
vs. biparental), recombination (mtDNA lacks recombination),
and are subject to different selection pressures (Ballard and
Whitlock, 2004). Additionally, the amount of gene flow between
populations within a species and demographic factors affecting
levels of allele “surfing” can mitigate introgression at contact
zones and further complicate characterizations of hybrid zone
dynamics (Petit and Excoffier, 2009).

Discordance between nuclear and mitochondrial genomes
and their estimated clines can be generated by two classes of
processes affecting the mitochondrial genome: selective (e.g.,
positive selection for the introgressing mitochondrial genome or
negative pleiotropic selection on many nuclear loci) and neutral
processes involving sex-related asymmetries, such as interspecific
mate preference (females of taxon a preferring males of taxon
b while no such preference occurs in females of taxon b),
sex-biased dispersal, or differences in hybrid survival by sex
(Funk and Omland, 2003; Bonnet et al., 2017). In Liolaemus
lizards, males leave their natal ground to establish home ranges,
whereas females disperse shorter distances (Kacoliris et al., 2009),
arguing that sex-biased dispersal could result in a southerly
shifted mtDNA via northward migration of juvenile males
from the southern population into the northern population.
Additionally, a southerly shifted mtDNA cline could also result
from a southward migration of females from the northern
population into the southern population; these two hypotheses
are not mutually exclusive. Thus, although sex-biased dispersal,
asymmetric mating preferences, or differential survival rates of
hybrid offspring can lead to mito-nuclear discordance (Bonnet
et al., 2017), we are unable to determine the relative strengths of
these processes here.

A second reason for the discordant mt- and nDNA clines is
that these hybrid zones could be moving. Many empirical studies
have documented moving hybrid zones over time (reviewed in
Buggs, 2007). Hybrid zones can move when selection against
hybrids is genetically countered by dispersal of parental forms
into the hybrid zone (tension zone model; Barton and Hewitt,
1985), or when a change in the external environment causes
selection along a gradient to generate fitness differences (May
et al., 1975). When an environmental gradient moves (e.g.,
as the result of a change in climate), geographic ranges and
hybrid zones can shift with it (e.g., Leaché et al., 2017). As
geographic ranges shift, asymmetric introgression from the
expanding species into the stationary one will cause neutral
markers to geographically trail behind non-neutral markers
(McGuire et al., 2007). In particular, asymmetric introgression
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of the mitochondrial genome and its discordance with nuclear
markers has been used to deduce a moving hybrid zone (Rohwer
et al., 2001). Although hybrid zone movement over time can be
inferred from discordant mt- and nDNA clines sampled from
a single time-point, the most convincing cases of hybrid zone
movement come from studies with replicated sampling efforts
over time (e.g., Carling and Zuckerberg, 2011; Taylor et al., 2014;
Leaché et al., 2017). A lagging cline inferred from the putatively
neutral mtDNA that is following the leading edge of an expanding
population further suggests northward range expansion of L.
shehuen, L. xanthoviridis, and L. fitzingerii.

Concluding that a hybrid zone moves because a trailing
mtDNA cline has been observed assumes that the mitochondrial
gene(s) under study is/are neutrally evolving in these species,
which might not be true. Indirect selection on mtDNA through
differential selection of the heterogametic sex (e.g., Haldane’s
Rule) or direct selection via cyto-nuclear incompatibilities would
also impair the effective movement of mtDNA across the hybrid
zone (Dasmahapatra et al., 2002). This leads to a third reason
for mt-nDNA cline discordance, which is differential selection
on the two genomes (Bonnet et al., 2017). If strong enough
positive selection was working on any site in the mitochondrial
genome, that mitochondrial haplotype could sweep through the
population (due to linkage) and the cline would not lag behind
as expected for a neutral marker. Although we did not explicitly
test for selection, it is unlikely to affect our results because
loci under selection would likely be in the minority of our
dataset. Nonetheless, we agree with Dasmahapatra et al. (2002)
in that “asymmetry of introgression, or lack of introgression of
molecular markers, is relatively unconvincing evidence either for
or against hybrid zone movement.”

We performed our population structure and cline analyses
on two nuclear datasets, one where a single SNP was randomly
selected from each RAD locus, and another that used all invariant
and variant sites present at each locus recoded into alleles
(“alleles”). The alleles dataset provided many more alleles per
locus than the unlinked SNPs dataset, with 6.6, 4.7, and 4.5
alleles per locus for the alleles dataset in the Northern, Central,
and Southern transects, respectively, whereas the unlinked SNPs
datasets contained only bi-allelic loci. Although Structure plots
between the two datasets were qualitatively similar (results not
shown), admixture proportions (Q) weremore “intermediate” for
the unlinked SNPs dataset, meaning that the Q values weren’t
as extreme as in the alleles dataset. This can be seen in the
cline estimates (Figure 5), where the frequency of the northern
genotype for the alleles dataset reached closer to 0.0 and 1.0.
A similar pattern is seen in the cline width estimates (Table 1),
where the widths estimated for two of the three transects from the
alleles dataset were narrower by∼5–10 km. These narrower cline
estimates, and more extreme Q estimates, are almost certainly
due to the increased information content associated with higher
allelic richness in the alleles dataset. It is not possible to determine
which dataset produced more accurate cline parameters without
conducting a thorough simulation study where the true cline
parameters are known. However, we suspect that the “alleles” data
has the advantage over the bi-allelic SNP analysis because it uses
all of the variation present in the data.

4.3. Replicated Hybrid Zones
In this study, two species—L. melanops and L. xanthoviridis—
are each involved in two hybrid zones. First, L. melanops
hybridizes with L. shehuen in the Northern hybrid zone as well
as with L. xanthoviridis in the Central hybrid zone (Figure 1).
In the Northern hybrid zone, the interface of L. melanops
and L. shehuen occurs on the eastern edge of the Somuncura
Plateau, a geological feature that is ∼25 million years old
(Kay et al., 2007) and reaches an elevation of ∼1,600 m. That
this geologic feature is at the interface of two populations is
perhaps not surprising, however, L. shehuen individuals are
found both below (to the east) and on top of this plateau.
The elevation imposed by this plateau does seem to form
a western barrier for L. melanops, which is found in lower
elevation Patagonian shrub-steppe habitats to the east and
south of the plateau. In fact, elevation explains 32% of the
variance in admixture proportions (Q) between these two
species (Supplementary Figure 8). Assuming equal dispersal
capabilities of L. melanops individuals throughout the range of
this species, the narrower cline width in the north (∼32 vs.
45 km) qualitatively implies stronger selection in the Northern
hybrid zone. This evidence implies that exogenous selection (e.g.,
environmental differences) is a potential mechanismmaintaining
L. melanops and L. shehuen as distinct species. The boundary
between L. melanops and L. xanthoviridis corresponds with the
Chubut River, which is a large river and seasonally >100 m wide
in this area. Although the divergence between these two species
appears to be allopatric, our genetic data show that the Chubut
River is in fact a porous boundary.

Second, in a similarly replicated fashion, Liolaemus
xanthoviridis hybridizes in two separate areas: to the north
with L. melanops and to the south with L. fitzingerii. The nDNA
cline width in the north with L. melanops is ∼45 km, whereas it
is ∼32 km wide in the hybrid zone with L. fitzingerii. Assuming
these hybrid zones are best modeled as tension zones that are a
balance of dispersal and selection, narrower clines could be the
result of two non-mutually exclusive causes: reduced dispersal
abilities, or stronger selection. In Liolaemus generally, we do not
have good estimates of dispersal (but see Frutos and Belver, 2007
and Camargo et al., 2013 for some estimates), especially when
trying to compare differing dispersal abilities between species in
the L. fitzingerii group. In terms of selection, the narrower cline
seen in the Southern hybrid zone does not seem to be the result
of sexual selection via interspecific mating and a higher disparity
in body sizes because both taxa are large-bodied (male max SVL
= 94 vs. 102 mm for L. xanthoviridis and L. fitzingerii; Etheridge,
2000). The narrower cline in this hybrid zone, however, might be
due to exogenous (environmental) causes. Liolaemus fitzingerii is
found in loosely formed sand dunes dominated by the mesquite
bush Prosopis denudans, whereas L. xanthoviridis occurs in the
hardpan Patagonian shrub-steppe habitat.

5. CONCLUSIONS

In this study, we were able to compare multiple hybrid zones
across Liolaemus lizards in central Argentina. Hybridization
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appears to be common in the L. fitzingerii group, and the
hybrid zones are narrow and geographically localized. Liolaemus
melanops hybridizes with two species, and the hybrid zone in
the north (with L. shehuen) is significantly narrower than in the
south (with L. xanthoviridis), likely due to the environmental
gradient (i.e., change in elevation and vegetation) posed by the
Somuncura Plateau. Nonetheless, other hybrid zones in this
group have formed in the absence of any obvious physical
barriers, suggesting that other ecological or intrinsic factors may
be playing a role in maintaining species as distinct entities. The
discordance between mitochondrial and nuclear cline estimates
suggests sex-biased dispersal, divergent selection across genomes,
or movement of these hybrid zones over time. Re-sampling these
hybrid zones in the future may help tease apart these alternative
hypotheses. Lastly, although hybridization has generated novel
genotypes and morphological variation in hybrid zones, it is
unclear whether hybridization has reinforced species boundaries
or promoted speciation within the L. fitzingerii group. This
research has provided a fine-scale understanding of hybrid
zone dynamics within the Liolaemus fitzingerii group, with
implications not only for other Liolaemus species and Patagonian
taxa more broadly, but for hybrid zone systems globally.
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