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Abstract
In the present work we extend and generalize the formulation of the Shannon
entropy as a measure of correlations in the phase space variables of any dy-
namical system. By means of theoretical arguments we show that the Shan-
non entropy is a quite sensitive approach to detect correlations in the state
variables. The formulation given here includes the analysis of the evolution
of a single variable of the system, for instance a given phase; the phase space
variables of a 2-dimensional model or the action space of a 4-dimensional map
or a 3dof Hamiltonian. We show that the Shannon entropy provides a direct
measure of the volume of the phase space occupied by a given trajectory as
well as a direct measure of the correlations among the successive values of
the phase space variables in any dynamical system, in particular when the
motion is highly chaotic. We use the standard map model at large values
of the perturbation parameter to confront all the analytical estimates with
the numerical simulations. The numerical-experimental results show the ef-
ficiency of the entropy in revealing the fine structure of the phase space, in
particular the existence of small stability domains (islands around periodic
solutions) that affect the diffusion.
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1. Introduction

It is well known that in near-integrable Hamiltonian systems the presence
of stability domains affects the transport process leading to anomalous diffu-
sion. In low-dimensional discrete applications this effect was largely studied,
for instance in [5, 21, 16, 27, 28, 23] and references therein. In general, when
considering large values of the perturbation parameters, the required com-
putational effort to investigate, e.g., the diffusion properties in such systems
could be quite expensive.

Normal diffusion is the natural process in random systems, like for in-
stance the Brownian motion [12]; the variance of any action-like variable
scales linearly with time, the diffusion coefficient being the constant rate of
the variance evolution. The cause of this behavior of the variance is that the
system does not present correlations among the successive values of the state
variables. On the other hand, anomalous diffusion implies a different power
law for the variance and therefore the so-called quasi-linear approximation
for the diffusion coefficient does not apply (see for example [21, 23, 20]).

In this direction a different approach to the transport process was intro-
duced by Zaslavsky and collaborators in the nineties ([30, 31] and references
therein). However, it is not simple to extend this formulation to relatively
short motion times and more complicated dynamical systems.

Following [15, 11], in this work we show that the Shannon entropy turns
out to be a very sensitive dynamical indicator of correlations of the state
variables as well as an alternative measure of the chaotic domains extents
and the diffusion rate. Indeed, in [15, 11] the first application of this tool to
different dynamical systems was presented. Particularly in [11] the Shannon
entropy was proposed to measure phase correlations in any system and it was
applied to the Arnold Hamiltonian [1] in order to investigate the range of ap-
plicability of the so-called reduced stochasticity approximation proposed in
[5]. On the other hand, in [15] the entropy was introduced to measure both
the size of the (action) diffusion region and the diffusion rate, with appli-
cations to multidimensional systems. In any case the computational effort
required to compute the Shannon entropy is comparatively low in comparison
to the usual routine methods, such us the estimation of a diffusion coefficient
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or the computation of the largest Lyapunov exponent (e.g., [5], [19]), or the
determination of the time-correlation function (see [13], [24]).

Herein we review, extend and generalize the formulation presented in
[15, 11]. As a test paradigmatic dynamical system, we use the standard
map, particularly at large values of the perturbation parameter.

2. The Shannon entropy

Various approaches to the entropy in dynamical systems are presented in,
for instance, [17, 3, 5, 19, 2, 18, 29].

Theoretical background on the Shannon entropy can be found in [25].
Applications to time series analysis can be found in [8, 9]. Recent attempts
concerning the use of the Shannon entropy to measure chaotic diffusion and
its time rate is addressed in [15], while in [11] a similar approach to the
one given in this paper was introduced to quantify phase correlations in the
Arnold diffusion processes as formulated in [5]. In this Section, we summarize
and generalize the formulations given in the above mentioned papers.

Let Z defined in [0,1] as:

Z(x) =


−x lnx, x ∈ (0,1]

0 x= 0,
(1)

such that Z(x)≥ 0 and Z ′′ < 0. Consider B ⊂ Rn and let

α = {ai; i= 1, · · · , q} (2)

be a partition of B, for instance a collection of q n-dimensional cells that
cover B. The elements ai are assumed to be both measurable and disjoint.
Therefore, here the partition is just a given set of disjoint elements that cover
the space where we compute the entropy.

Let us consider first n = 1 and assume B = S1 or the unit interval with
opposite sides identified.

Let xi = x(ti) be the successive values of a given phase variable of a given
map (or a Hamiltonian flow), that for simplicity we assume 2-dimensional
(yn,xn) → (yn+1,xn+1), with y ∈ G ⊂ R an action variable defined in a
bounded domain.
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For any finite orbit γ = {(yi,xi)∈G×B,i= 1, . . . ,N} of the map, let γx =
{xi ∈B,i= 1, . . . ,N} ⊂ γ, then a probability density on B can be introduced

ρ(u,γx) = 1
N

N∑
i=1

δ(u−xi), (3)

where δ denotes the delta function. One has∫
B
ρ(u,γx)du = 1,

and the measure µ(ai) is given by

µ(ai(γx)) =
∫
ai

ρ(u,γx)du. (4)

For the partition α the Shannon entropy of γx is defined as

S(γx,α) =
q∑
i=1

Z (µ(ai(γx))) = −
q∑
i=1

µ(ai(γx)) ln(µ(ai(γx))). (5)

Thus defined, the entropy is always bounded. For instance, for the par-
tition (2) it is 0 ≤ S(γx,α) ≤ lnq, for any γx. The minimum value appears
when the xi are restricted to a single element of α, say the j–th element,
which would correspond to a full correlation of the phase values, for example
a one-period fixed point. In such a case it is µ(aj) = 1,µ(ai) = 0,∀i 6= j, lead-
ing to S = 0. On the other hand, the maximum value, S = lnq, is attained
when all the q elements of α have the same measure, µ(aj) = 1/q; the phase
values are uniformly distributed in B. Thus, the two extreme values of the
entropy are 0 and lnq for a partition of q elements. This result is independent
of the dimension of the space where we are computing the entropy.

Therefore as we show below, in a near-integrable system the Shannon
entropy becomes a natural measure of phase correlations and thus would
provide a relevant information on the motion.

Let nl be the number of phase values in the cell al, then from (4) it is
µ(al) = nl/N . Assume that q0 ≤ q is the number of cells visited by the phase
values of a given finite orbit, then from the normalization condition it follows
that ∑q0

l=1nl =N. Therefore, the entropy given by (5) can be re-written as

S(γx,α) = lnN − 1
N

q0∑
l=1

nl lnnl. (6)
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Let γrx = {xi = θri ∈B,i= 1, . . . ,N} where θri are random values, then the
nl follow the Poissonian distribution

Pλ(n) = λn

n! e−λ, λ= N

q0
,

where λ is the mean value and also the variance of Pλ(n). Assume λ� 1
and let nl = λ+ ξl with |ξl| � λ where

q0∑
l=1

ξl = 0, (7)

due to the normalization condition. Then up to (ξl/λ)2 the sum in (6) reduces
to

q0∑
l=1

nl lnnl ≈N lnN −N lnq0 + 1
2λ

q0∑
l=1

ξ2
l , (8)

and therefore the entropy results

S(γrx,α)≈ lnq0−
q0

2N2

q0∑
l=1

ξ2
l . (9)

Writing the Poissonian distribution as

Pλ(n) = eΦ(n), Φ(n) =−λ+n lnλ− lnn!, (10)

using the Stirling’s approximation

lnn!≈ ln
√

2π+
(
n+ 1

2

)
lnn−n,

taking into account that λ� 1 and ξ2 ∼ λ it is straightforward to show

Φ(n(ξ))≈− ln
√

2πλ− ξ2

2λ,

and thus the distribution of the ξk is (central limit theorem)

f(ξ) = 1√
2πλ

e−ξ
2/(2λ).

Therefore in (9),
q0∑
l=1

ξ2
l = q0λ,
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and we finally obtain

Sr(α)≡ S(γrx,α)≈ lnq0−
q0
2N . (11)

Since N denotes the total number of iterates of the map, for random, fully
uncorrelated motion it is |S− lnq0|=O(N−1). Thus for N large enough and
a given finite partition such that q0/N � 1

S(γrx,α)≈ S0 ≡ lnq0, (12)

is a good approximation to the value of the entropy for completely uncor-
related motion, i.e. a direct measure of the number of cells visited by the
phase values of the full trajectory of the map.

If we assume that for any chaotic trajectory γ the approximation (9)
partially holds but now

q0∑
l=1

ξ2
l = q0λR, R 6= 1,

the entropy of γ results

S(γx,α)≈ lnq0−
q0
2NR, (13)

if γ presents rather weak phase correlations, R≈ 1 and for q0/N small enough
S(γx,α)≈ S(γrx,α)≈ S0.

Now we introduce the information as

I(γx,α) = 1− S(γx,α)
lnq0

, (14)

and using (11) and (13) the information becomes

Ir ≡ I(γrx,α)≈ q0
2N lnq0

> 0, I(γx,α)≈ q0R

2N lnq0
=RIr, (15)

where R = 1 applies in case of a Poissonian distribution. The information
I takes into account the deviations of chaotic motion with respect to purely
random motion, where Ir→ 0 as N→∞, i.e. when the system is fully mixed.
Let us recall that for chaotic trajectories it is expected, due to ergodicity, that
the phase values cover completely the unit interval, so q0 = q and then in the
above formulae, just replace q0 by q.
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If we take n = 2, i.e. the phase plane of the 2-dimensional map where
we restrict (y,x) ∈ S×S, the above formulation is applicable but now for a
bi-dimensional partition on the unit square and thus the entropy measures,
besides correlations among the variables, the relative area of the phase space
covered by a given orbit of the map. In this case, except for nearly random
motion, it is q0 < q, since in general stability domains are always present
in phase space and thus some empty elements of the partition would be
expected.

Moreover, consider a multidimensional near-integrable system, for in-
stance a 4-dimensional map (or 3D-Hamiltonian system) and let B ⊂ R2

be the 2-dimensional action space. The entropy formulation is still valid
whenever the action space is restricted to a bounded domain in R2. This is a
natural assumption for most area preserving maps as well as for Hamiltonian
flows. Therefore the action space could be reduced to the unit square and a
suitable partition of q bi-dimensional cells will completely cover it.

For a given chaotic orbit

γ = {(y1(j),y2(j),x1(j),x2(j)) ∈B×S2, j = 1, . . .N},

we reduce (y1,y2) to S2 and take the section S = {(y1,y2) ∈ S2 : x1 = x0
1,x2 =

x0
2}. Therefore γy = {(y1(j),y2(j)), j = 1, . . .Ns} is the projection of γ on S

with Ns � N the intersections of γ with S. Let assume that γy covers a
domain G′ ⊂ S2, i.e. q0 ≤ q, where now the elements of the partition are 2-
dimensional. The entropy given in (13) and the information (15) measure the
extension of the (action) diffusion region on the unit square and the departure
of the density generated by γy on S from the Poissonian distribution, thus
the theoretical discussion given above still holds.

Besides, from (13) the time derivative of the entropy is

Ṡ ≈ 1
q0(t)

δq0
δt
, (16)

where q0(t) denotes the cells visited by the orbit at time t and δq0/δt the
rate at which q0 varies with time. For γI we make the following assumption

δq0 ∝ 〈δy2
j 〉, (17)

where δy2
j denotes either δy2

1, δy2
2 or δy2

1 + δy2
2 and 〈·〉 is the average on G

over the interval (t, t+ δt). The estimate (17) rests on the supposition that
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the variation of the entropy is only due to changes in the number of occupied
cells, i.e. due to variations in the actions. Other sources that may cause
variations in µ(ai), like correlations, are thus neglected here. If γ is a quasi-
periodic orbit, it appears as a fixed point in the (action) unit square and
then 〈δy2

j 〉= 0 and δq0 = 0. Both the entropy and its time derivative vanish.
Thus introducing

S′ ≡ q0(t)
q

Ṡ, (18)

and in the above scenario
S′ = 0. (19)

On the other hand, in case of random motion, for any γ, it is 〈δy2
j 〉 ≈

Dδt, where D is the constant diffusion coefficient and thus from (17) we get
δq0 ∝Dδt, so S′ ∝D. Therefore, in general

S′ ≈ 1
σ
D, (20)

where σ is a normalization constant with dimensions of [y1×y2] that depends
on the maximum and minimum values attained by the actions in G over the
motion time considered. Denoting them by yjmax,yjmin, j = 1,2 respectively,

σ = (y2max−y2min)(y1max−y1min). (21)

The exact expression of the time derivative of S given in (5), involves the
derivatives of µ(ai). In [15] a comparison between the numerical derivative of
the entropy and the full derivative including µ̇(ai) shows that the smoothest
and best approximation of Ṡ is provided by the numerical derivative of S
evaluated at every time interval δt. The estimation of D by means of S′ is
particularly useful when the diffusion is slow, such that q0(t)� q and thus
δq0(t)> 0 for the considered motion time. For applications of this approach
to different multidimensional dynamical systems such as 4D maps or the 2.5
degrees of freedom Arnold Hamiltonian we refer to [15, 11].

Herein we will focus on the capability of the entropy/information in de-
tecting very weak correlations in a highly chaotic system, thus we apply all
the above formulation to the standard map for large values of the perturba-
tion parameter.
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3. The standard map

The standard map (SM hereafter) was introduced by Chirikov in [3, 5] and
it is the paradigmatic model of a multiplet of interacting resonances. This
system was largely studied in the last forty years in order to understand
several properties of twist mappings (see for instance [21, 28, 23, 20] and
references therein) and it is defined as

I ′ = I+K sinϑ, ϑ′ = ϑ+ I ′, (22)

where I ∈ R, ϑ ∈ S1 and K ∈ R is a perturbation parameter.
It is well known that for values of K < Kc ≈ 0.9716354 the motion is

mostly stable, except near the chaotic layers around the main resonances of
the form I/2π = n, (2p+ 1)/2, q/3, n,p,q ∈ Z, q 6= 3k,k ∈ Z. All of them are
identical with a half width of order K1/2, K and K3/2 respectively, and so
on. For K ≈Kc the overlap of the main resonances starts and this particular
value of the perturbation parameter separates the case of local (in the action
variable) chaotic diffusion from that of global unlimited one. For K > 4
the center of the largest resonances (the integer ones) become unstable and
therefore the motion is usually assumed to be almost completely chaotic,
uncorrelated. However, stability intervals are always present, whenever (see
[5])

4π2n2 <K2 < 4π2n2 + 16, n ∈ Z (23)
a one-period (in ϑ) orbits exist, such that

I(t) = I0 + 2πnt, I0 = 2mπ, ϑ= ϑ0, m ∈ Z (24)

is a solution of (22). The above stability interval is rather narrow, ∆K ≈
4/(πn)≈ 8/K→ 0 as n→∞ (see [16]).

Similarly, for two-period trajectories (ϑ1↔ ϑ2) and for the map defined
in the torus when sinϑ1 = −sinϑ2, the stability domain is now defined by
K sinϑ1 = 2qπ−4ϑ1, q ∈ Z, −4 <K cosϑ1 < 0 and allows values of K ≤ 2π.
However, if sinϑ1 = sinϑ2, the stability interval in K is similar to (23) but
slightly thinner. On the other hand, in case of a four-period orbit, these
stability domains arise at K ≈ 2(n+ 1/2)π, n≥ 1 (see for instance [28, 23]).

The solutions given by (24) are quite different if n= 0 or n 6= 0. They are
well known since maybe the first report in [7] and later on in [5]. When
n 6= 0 the action could present large regular excursions and this type of
motion is known as accelerators mode, while for n = 0, (I0,ϑ0) is a fixed
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point of the map (22). Actually, when reducing the map to the torus, i.e.,
I mod 2π, for K in any stability interval (23), two stable fixed points are
always present despite the value of n, located at I = 0,ϑ = π± ϑ0 where
ϑ0 = arcsin(2πn/K) ≈ π/2. These fixed points give rise to small stability
islands in the chaotic sea and therefore, though for large values of K the mo-
tion is almost completely chaotic, the existence of these islands would affect
the dynamics, particularly the diffusion. For instance in [5, 6, 28, 20, 23] it
was shown that the values of the Lyapunov exponent as well as the diffusion
coefficient are largely modified by the accelerator modes leading to a variance
power law with an exponent larger than 1 and close to 2.

Fig. 1 illustrates the periodic solutions, particularly at K/2π = 1.05,1.5.
Contour plots of the conditional entropy (see [10] for details) are presented
for a grid of 2000× 2000 initial conditions after a few iterates, N = 200
of the SM. Light blue color denotes completely chaotic motion while dark
blue represents stable or near-stable motion. The (symmetric) conditional
entropy of nearby orbits, I, is such that I ∼ δ2

0λ
2t2� 1 for stable motion,

with λ the maximum linear rate of linear divergence of quasi-periodic orbits
with δ0� 1 the initial value of the deviation vector. On the other hand, I ∼
δ2

0 exp(2σt) for chaotic motion, where σ is the maximum Lyapunov exponent
of a given trajectory. Thus, this dynamical indicator seems to be quite useful
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Figure 1: Structure of the phase of the SM (I/2π,ϑ/2π) forK/2π= 1.05 (left) andK/2π=
1.5 (right) for a grid of 2000× 2000 initial values of I,ϑ. For each initial condition, the
conditional entropy of nearby orbits (as defined in [10]) was computed after N = 200
iterates, dark colors represent stable motion while light ones highly chaotic.
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Figure 2: Measure of the full chaotic component (in red) and the Lyapunov exponent
(normalized to ln(K/2)+1/K2, in blue) against k =K/2π, as well as Chirikov’s empirical
estimate µ= 1−0.38K−2 (in green).

when considering rather small number of iterates or motion times, since it
is quadratic in the solution of the variational equations. The figure clearly
shows the presence of very small stability domains, their associated stable
and unstable manifolds revealing also correlations among the phase space
variables outside the stability domains that the entropy should reveal. Note
that the left panel in Fig. 1 shows islands around a 1-periodic solution while
islands around a 4-periodic solution are shown in the right panel. In the
latter case, this periodic solution corresponds to a value of the parameter K
after the period doubling of the 4-periodic accelerator mode.

As an example of the above mentioned results, Fig. 2 shows the chaotic
component measure, µ(k),k =K/2π and Lnorm(k), the Lyapunov character-
istic Number L, normalized to the theoretical expected one ln(K/2)+1/K2,
against k (red and blue curves, respectively) as well as Chirikov’s empirical
relation [6], µ = 1− 0.38K−2 that is drawn in green (see below). The con-
sidered range in the parameter is K ∈ [3,30], i.e., k/2π ∈ [0.477,4.78]. The
observed µ(K) dependence atK & 6 (k& 1) represents the reference line µ= 1
which presents a periodic sequence of narrow minima that decreases with k.

11



The most significant sequence corresponds to the 1-periodic and 4-periodic
solutions (at k ≈m,m+ 1/2,m = 1,2, . . .). The smaller minima correspond
to higher-period solutions. The law K−2 for the stability domains in phase
space emerging at K ≈ πm; m = 1,3, . . ., i. e. for the 4-periodic solutions,
was derived in [16].

The traditional one trajectory method [4, 5, 26, 27] was used for the
calculation of µ. As in the entropy formulation, it consists in computing
the number of cells explored by a single trajectory on a given partition of
the phase plane. The chaotic measure µ was computed for a partition of
2000×2000 elements. The map was iterated up to N = 108 for each K value
in the range [4,30] with a step 0.01 and L was computed simultaneously with
µ for the very same trajectory.

The minimum values of µ for the 1-periodic and 4-periodic solutions (the
minima observed in the plot) are in a good agreement with the semi-analytical
scaling µ= 1−0.38K−2 derived by Chirikov [6] (see also [4, 5] for the maxi-
mum area of the accelerator mode islands.)

Recall that µ(k) provides the very same information than the approxi-
mation S0(k) = lnq0(k)/ lnq for the entropy, i.e. µ(k) = qS0(k)−1.

For now on, for the numerical studies, we consider the reduced standard
map defined in S1×S1 introducing (y,x) such that I = 2πy, ϑ= 2πx, both y
and x being mod 1, so that

y′ = y+k sin2πx, x′ = x+y′, k = K

2π . (25)

We refer to [23] for an exhaustive study of the structure of the phase space
of the SM for k > 1. In (25) for k = n ∈ Z, as mentioned above, the stability
islands around periodic orbits have the phase width [5, 23, 16] ∆x ≈ b/k,
with b = β/π2,β < 1. The phase width ∆x and the action width ∆y are of
the same order of magnitude.

3.1. Phase entropy
At k = n ∈ Z, in the entropy formulation for the phase values, q0 = q,

however some elements of the partition would have a less measure than N/q
due to the presence of the stability domains. Indeed, adopting N/q� 1 it
is expected that outside the islets of stability all the elements have the same
measure as a purely random system. Therefore, we can estimate the change
in the entropy due to this variation in µ(ai).
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Let 0 < r < q be the empty cells (due to a stability island) of a given
partition in the unit interval of q elements. Since for k = n two identical
islands are present in the unit square, then

r = [2∆xq], (26)

where [·] denotes integer part. The area occupied by the islands on the unit
square is 2∆x∆y ≈ 2b2/k2, therefore the total missing iterates in the r cells
is

n− = 2N∆x∆y ≈ 2Nb2
k2 ,

where N is the total number of iterates. Thus from (26) the number of
iterates in each r elements ai, i= 1, · · · , r is1

ni = N

q
− n

−

r
≈ N

q
(1− δ1), 0< δ1 = b

k
< 1. (27)

For the remainder elements of the partition we write

ni ≈
N

q
(1 + δ2), 0< δ2 < 1, i= r+ 1, · · · , q,

then, the normalization condition
q∑
i=1

ni =N

leads to
(q− r)δ2 = rδ1. (28)

Using (6) for the entropy, denoting with

s=
q∑
i=1

ni lnni,

it is straightforward to show that up to second order in δ1, δ2 and with the
help of (28) s reduces to

s≈N lnN −N lnq+ Nr

2(q− r)δ
2
1,

1The entropy does not depend on the order of the elements, thus we can assume that
the first r cells are the ones with less iterates.
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and thus the entropy to

S ≈ lnq− r

2(q− r)δ
2
1. (29)

Then, the information I = 1−S/ lnq, including the random reference level
(15) and by means of (26) becomes

I(k)≈ q

2N lnq + b3

k2(k−2b) lnq ≈
q

2N lnq + β3

π6
1

k2(k−2b) lnq , k = n, (30)

b = β/π2, showing that for q/N small, I(k) ∼ O(k−3) when k lies in the
stability interval (23). Therefore for integer values of k, peaks of decreasing
amplitude are expected in the information since in general, for k = n not too
large and typical values of q,N , β3/(2π6)∼ 5×10−4 (for β ∼ 1) that would
be larger than q/(2N) lnq < 1/λ� 1.

In the above estimates for the amplitudes we have assumed random mo-
tion outside the stability islands, i.e. in the chaotic sea, any phase correla-
tions should be taken into account through the factor R 6= 1 in the reference
level of (30). Although R is unknown and should be determined numerically,
in this phase-entropy formulation, it does not play a significant role in the
peaks of the amplitudes. Thus any additional correlations should be consid-
ered in the amplitudes as for instance the average effect in stickiness of the
island-around-island hierarchy as well as the stickiness due to the effect of
cantori, that could be thought as a slight increment of the total area of the
stability domains introducing an effective section with a parameter beff > b.
Therefore, the estimate given in (30) is a lower bound for the expected values
of the amplitudes (see below).

In [11] and just for illustrative purposes, few numerical experiments con-
cerning the time evolution of the Shannon entropy in the SM were presented,
with K = 0.1,1,5,10 and a small ensemble of np = 100 random initial con-
ditions with (x,y) ≈ 10−5 and N = 106 iterates. Recall that if we consider
np nearby initial conditions, N → npN . In all these experiments only phase
correlations were investigated and it was shown that just for K = 10 the mo-
tion does not present significant correlations. Certainly, this particular value
of K (k ≈ 1.59) lies outside of any significant stability domain given in (23)
as well as those arising at K ≈ 2(n+ 1/2)π.

Fig. 3 (left panel) presents the final values of I(k) given by (14) against
k for a partition of q = 5000 cells of the unit interval when considering the
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Figure 3: Left panel: I(k) (in logarithmic scale) after N = 106 iterates for 2500 values
of k for the SM of small ensembles including np = 1000 random initial conditions around
(p0,x0) = (10−4,10−4) for a partition of q = 5000 elements. The expected theoretical
value for random motion outside the stability domains (R = 1) is drawn in red. It is
I ≈ q/(2npN lnq)≈ 2.94×10−7. Right panel: the same graph zoomed at 0.89≤ k ≤ 2.15.

entropy of the phase values xj for an ensemble of size 10−4 of np = 1000
initial conditions centered in (p0,x0) = (10−4,10−4) after N = 106 iterates of
the SM, with 0< k ≤ 5 and ∆k = 0.002. The values of N,np, q are such that
they satisfy the condition Nnp/q� 1 accordingly to the assumptions behind
(11).

The results show that the phase entropy/information is highly sensitive to
variations in the measure of the elements of the partition. It is important to
underline that, under the above assumptions, the information is not sensitive
to the partition itself, but to the measure of the elements of the partition.
Therefore, the information strongly depends on the probability distribution
but not on the partition.

For small k, I decreases nearly exponentially with k (recall the loga-
rithmic scale) up to k ≈ 0.159 (K = 1), anyway for k ≤ 0.637(K ≤ 4) the
information takes large values in comparison to the one for random motion,
Ir = q/(2npN lnq) ≈ 2.94× 10−7, revealing the presence of comparatively
large stability domains. Meanwhile, for k ≈ 0.9, I(k) approaches its mini-
mum and then the wide peak around k = 1 should correspond to the largest
stability islands due to the n = 1 accelerator modes and maybe any other
periodic orbit of the standard map defined on the torus. The peak at k ≈ 1.5
corresponds, as expected, to a 4-periodic orbit.

In Fig. 3 (right panel) we observe that the width of the peak around
k = 1 is ∆k ≈ 0.1 which is smaller than the theoretical expected one ∆kT ≈
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2/(π2k)≈ 0.2. But at k ≈ 1.1 another peak of width ∆k ≈ 0.1 is clearly dis-
tinguished and it certainly would correspond to a higher periodic solution.
Also comparable local maxima are observed for 0.9< k < 1 that should cor-
respond to periodic solutions of higher periods. Note that around k = 2 a
similar structure is observed, three similar narrow peaks are present, sepa-
rated by sharp minima, showing again the existence of high-periodic stability
islands.

The observed shape of I(k) is due to the evolution of the islands in phase
space. For instance, in the range 1.9≤ k ≤ 2.1 there are two values of k for
which I(k) decreases to zero. The first one corresponds to the 1:3 resonance
of a 2-periodic trajectory (located near (1/4,1/2) and (3/4,1/2)). The second
value of k corresponds to the 1:3 resonance of a 2-island of period 1 (located
near (1/4,0) and (3/4,0)). On the other hand, the value of k for which the
2-periodic orbit undergoes the period-doubling bifurcation coincides with the
birth of the 1-periodic orbits, and this explains the two larger peaks observed
in the range 1.89 < k < 2.05 (see for instance [23] and references therein for
more details).

Fig. 4 presents the phase space structure of the SM (a similar contour plot
than in Fig. 1) for k = 1,1.15,2,2.018. We clearly observe that the size of the
islands changes significantly in the interval 1 ≤ k ≤ 1.15 and 2 ≤ k ≤ 2.018
as the information reveals (compare with Fig. 1 for k = 1.05). Certainly,
many high-periodic solutions exist in these small intervals as the figure shows,
the darkest structures in the figures at right panel corresponds to periodic
solutions of period 2, while those in the figures at the left to solutions of
period 1 (see [14, 23] for more details and classification of periodic solutions).
Therefore we note that not only the main islands affect the diffusion but also
many other small ones. As the islands evolve with k the stickiness effect
changes due to the existence of a cantori surrounding the islands and the
so-called island-around-island hierarchy (see for instance [21, 22]).

All periodic solutions at k = n,n+ 1/2, that substantially modify the
nearly uniform distribution of iterates in the q cells, are clearly detected by
the entropy, as well as their actual width in k as Fig. 3 shows. Note that I(k)
is essentially different from the random motion value only where we expect
the presence of stability domains; and as k increases, these domains become
thinner and I(k) takes smaller values, as expected. Recall that most of these
structures, with less details, can also be observed in Fig. 2.

As mentioned above, the estimation of the amplitudes of the peaks (30)
does not take into account phase correlations that would induce further vari-
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Figure 4: Phase space of the SM for k= 1.15 (top left), k= 1 (top right), k= 2.018 (bottom
left), k = 2 (bottom right), see text for details.

ations in the distribution of the iterates. Only small changes in µ(ai) due to
the presence of one-period stability islands were considered, and thus (30)
would underestimate the amplitudes, particularly for large values of k, when
the area of the islands is quite small and thus phase correlations would be
mostly responsible for small deviations of ni from the Poissonian distribution.

Fig. 5 shows the best fit of

A(k) = q

2N lnq + β3

π6
1

k2(k−2β/π2) lnq , k = n ∈ Z,

with β = 0.63 (in blue), where we observe that effectively the amplitudes of
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Figure 5: Similar to Fig. 3 for k ∈ (1,5), where we include A(k), the estimate given in (30)
for the amplitudes of the peaks with β = 0.63 (in blue), and a similar fit but for β = 0.73
for the peaks at k = n+1/2 (in green), see text for details.

the peaks decrease (in mean) as ∼ k−3.
At first sight, the estimate (30) does not apply for periodic solutions

arising at semi-integer values of k since a 4-period trajectory leads to stability
domains of smaller size and larger in number (see Fig. 1). However, a fit of
the very same law given in (30) leads to β = 0.73 (in green) and thus also a
dependence with k−3 would apply to the four-periodic solutions. This value
of β, about 16% larger than the one for the fit of the peaks corresponding
to integers values of k, would be assumed to be the mentioned coefficient
beff > b. This result is fully consistent with the estimates given [16] where
it was shown that the area of the stability islands corresponding to periodic
solutions at semi-integer values of k also scale like k−2; the power law I ∼ k−3

is precisely due to the estimation that the area of the stability domains is
∼ k−2.

We have performed many other experiments including different partitions,
q ranging in the interval 103 ≤ q ≤ 104 as well as the total number of iterates
102 ≤ np ≤ 104 keeping constant N = 106, and in all cases it is the reference
level for random motion that only changes, I(k) for k = n is almost invariant
under a change in the size of the partition and number of iterates, provided
that λ= npN/q� 1 as for instance (30) reveals.
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3.2. Phase space entropy
Let us consider now the entropy computed over the phase space. Since

in this case we introduce a two-dimensional partition in the unit square, now
the number of empty cells due to the presence of stability islands is

r = [2∆x∆yq]≈ 2b2q/k2, (31)

and thus the elements of the partition visited by a chaotic trajectory is

q0 = q− r ≈ q
(

1− 2b2
k2

)
, (32)

then the entropy given in (11), at first order in b2/k2 reduces to

S ≈ lnq0−
q0R

2N ≈ lnq− qR

2N −
(

1− qR

2N

) 2b2
k2 , (33)

and thus the information defined as I = 1−S/ lnq becomes

I ≈ qR

2N lnq +
(

1− qR

2N

) 2β2

π4k2 lnq , (34)

where R = 1 applies for random motion (and of course, β = 0). Thus the
information computed on the phase space corresponding to periodic solutions
at k= n goes as I ∼O(k2), in the very same way as q0. Note that for β ≈ 0.68
(see below), the full chaotic measure

µ(k) = q0(k)
q
≈ 1− 0.375

(2πk)2

is very close to Chirikov’s estimation [6] (see Fig. 2).
Similarly as it occurs in the phase entropy expression (30), the second

term in the right hand side of (34) is in general larger than the first one and
thus peaks in the phase space information should be expected at k = n.

As before, recall that we are assuming nearly random motion outside the
stability domains. Any analysis of correlations will be addressed numerically
as follows. Accordingly to (33) for R = 1 and the entropy (5), we compute

Ia = 1− lnq0
lnq + q0

2N lnq , I = 1− S

lnq . (35)

Clearly, outside any stability domain, q0 ≈ q and in case of random motion,
both relations reduce to Ia ≈I ≈ q/(2N lnq), the same expression as in (15).
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Figure 6: I (in black) and Ia (in yellow), both in logarithmic scale, computed afterN = 106

iterates for 2500 values of k in the SM for small ensembles including np = 250 random
initial conditions around (p0,x0) = (10−4,10−4) for a partition of q= 1000×1000 elements.
The reference level for fully random motion over the whole phase plane, q/(2Nnp lnq) ≈
1.45× 10−4 is given in red (left panel). Similar to the figure on the left only for I with
0.89≤ k ≤ 2.15 (right panel).

Actually, by means of (33) we can write

Id ≡
2N lnq
q

(I −Ia)≈ (R−1)
(

1− b2q

Nk2 lnq

)
,

that for the typical values of the parameters (q/N� 1, b≈ β/π2 . 0.1) yields

Id ≈R−1,

almost independent of k. Thus Id measures the deviation of the iterates
distribution from the Poissonian one, and for random motion Id = 0.

Fig. 6 (left panel) shows that I and Ia take nearly the same values all
over the interval 0< k ≤ 5. The global picture is similar to the one provided
by Fig. 3. Indeed, for small values of k both attain large values, close to
1, far away from the value for random motion. At k ∼= n,n+ 1/2, we ob-
serve the expected peaks where the periodic solutions appear. However, I
is somewhat larger than Ia at these values, revealing the existence of addi-
tional correlations (R > 1). The right panel corresponds to I in the interval
0.89 ≤ k ≤ 2.15, the same as in Fig. 3 (left panel), and we observe that en-
tropy/information computed using either the phase variable or the phase
space variables, yields a very similar characterization of the structure of the
phase space of the SM.
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In the interval 1 ≤ k ≤ 5, using (34) with β = 0.68 as the best fitting
value (very close to the value 0.63 adopted for fitting the phase entropy), we
compute the amplitudes of the peaks. This is shown in Fig. 7 (left panel)
where one finds that the expected amplitudes follow the derived law ∼ k−2,
assuming completely random motion (R= 1). Correlations among the phases
are thus responsible for larger values of I at the peaks. This is particularly
evident at the location of the accelerator modes. As mentioned, a direct
measure of these correlations is provided by Id ≈R−1 and it is shown in the
right panel of Fig. 7. Clearly, inside any stability domain, the correlations
among the phase space variables are relevant and R rises up to 1.6. On the
other hand, outside the islands one has Id≈ 0, showing that R≈ 1. However,
similarly to Figs. 5,3 (right panel) several local maxima are observed away
from k = n,n+ 1/2 in the interval 1≤ k ≤ 2, revealing the presence of weak
correlations that correspond to higher-period solutions.

As in the phase entropy formulation, several experiments have been done
with different partitions and number of iterates; the results have turned out
to be almost invariant under change in q and np.
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Figure 7: (Left) Similar to Fig. 6 but for 1≤ k ≤ 5 and the fit given by (34) with β = 0.68.
(Right) Id ≈R−1 with 1< k ≤ 5.

4. Discussion

We have shown that the Shannon entropy is a rather effective technique
to reveal the fine structure of the phase space of any dynamical system, just
considering a single variable (a phase) or two of them (action and phase).
In this paper we have focussed on the standard map; applications to dif-
ferent systems of higher dimensionality are given in [15, 11]. The primary
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motivation for our work was to measure phase correlations so that to as-
sess the range of applicability of the “reduced stochasticity approximation”,
introduced in [5] in a study of the Arnold Hamiltonian.

The new analytical estimates given along this paper agree quite well with
the numerical results in case of the standard map for large values of the
perturbation parameter. As we have already mentioned, our aim was to
test all the potentiality of this novel tool, not to revisit the dynamics of the
standard map. An exhaustive study of this paradigmatic system at large
values of k was already presented in [23].

Here we have focussed on the rate at which q0 changes with time; in the
given framework, we do not relate the information defined by the Shannon
entropy with the time derivative of the Shannon entropy. Applications of
the Shannon entropy’s time derivative to estimate the diffusion rate can be
found in [15].

The entropy/information for the phase values scales as ∼ k−3, while the
phase space entropy does as ∼ k−2 at the periodic solutions due to fact that
the area of the small stability islands also scales as ∼ k−2. However, it is
simple to show that in case of phase stability widths ∼ kp, and assuming
that the action width is of the same order, the information scales as ∼ k−3p

and ∼ k−2p respectively, inside any small stability domain. This result would
help to investigate any system in order to get an estimate of the size of the
stability domains. Certainly this could also be revealed by the full chaotic
measure, µ(k), but as we have already shown, the approximate entropy, S0(k)
is in fact µ(k) in logarithmic scale. However, the entropy/information shows
up much more details of the phase space structure, such as correlations that
µ(k) does not, since the entropy is very sensitive to the distribution density
of iterates.

More interesting is, perhaps, that all the dynamical aspects of the stan-
dard map have been revealed using a single theoretical concept, the entropy.
Indeed, the values of k, where the periodic solutions arise, were obtained
using the Shannon entropy. By means of the conditional entropy of nearby
orbits (that rests on the continuous Shannon entropy concept), a detailed
picture of the phase space of the standard map has been revealed for these
particular values of the parameter k. Actually, this was already shown in
[15] but in a quite different scenario, when investigating the relatively slow
diffusion in action space of a 4-dimensional symplectic map.

Summarizing, we strongly suggest to adopt the Shannon entropy/information
as an additional tool to unveil the global and fine structure of the phase space
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of any system as well as to get a measure of the diffusion extent and rate.
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