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A brief review about the Newman-Penrose formalism and the asymptotic structure of the spacetime is given. The goal of this review is to
describe the latest developments in these topics and make a summary of the most important articles published by Newman and collaborator:
Additionally, we discuss some aspects of this approach, and we compute the spin coefficients and the Weyl scalars for a general stationar
axisymmetric spacetimes in a tetrad basis different from that defined by the principal null geodesic directions.
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1. Introduction scalars can be set to zero by choosing an appropriate tetrad
aligned with the outgoing tangent vector fields of null radial

The asymptotic structure of spacetime and the Newman@€odesics. _

Penrose (NP) formalism [1] are powerful tools for analyz- [N this article, we propose to mqke a short review about
ing the behavior of isolated systems and compact sources i€ NP approach, giving some applications of this approach
General Relativity (GR). This formalism has found many ap-and explaining the physical interpretation of the most impor-
plications in the last past years in different areas of the GRtant scalars introduced by Newman and Penrose. This arti-
and also in numerical relativity. From the mathematical pointCl€ is organized as follows: In Sec. 2 we give the geomet-
of view, the NP approach is a special case of the tetrad forfiC notion of an asymptotically flat spacetime, and we intro-
malism, where a set of four null vectors is chosen to formduce a set of null vectors to define the complex Weyl scalars,
a basis at each point of the spacetime. Then, several conthe Maxwell scalars, and the twelve spin coefficients used
plex scalars are introduced to describe the dynamic of th# the NP formalism. In the Sec. 3, we reduce all the equa-
gravitational fields at infinity, and the evolution equations oftions and definitions to a particular set of coordinates, usually
these complex scalarise. the Bianchi identities, are written. called Bondi coordinates, and we introduce the notion of the
Furthermore, these vectors are appropriate for studying th¥ass and the Bondi linear momentum. The BMS group and
properties of congruences of null geodesics [2], such CorlgrLI.he transformation between different families of null cuts is
ences naturally arise in the context of the propagation of théhown in Sec. 4, while the physical meaning of the Weyl

gravitational and the electromagnetic radiation [3]. scalars is discussed in Secs. 5. In Sec. 6, we use the NP
approach to analyze a more general stationary axisymmetric

been used in several aspects of analvtical and com ut%_pacetime, where we compute all the NP quantities, and we
b y P %pply the resulting equations to some familiar spacetimes. Fi-

thnal relat_|V|ty: recently, in collaboratlon W'th Kozameh, nally, we conclude this work giving some finals remarks and
this formalism was used to describe the behavior of Compacéomments

sources, such as Black Holes collisions and close binary coa-

lescences, linking the dynamics of the system to the gravita-

tional radiation emitted. Moreover, we find some similarities 2. Asymptotically flat spacetime

and several differences with other approaches like the Post-

Newtonian equations [4]. Furthermore, the NP approach i§he notion of asymptotically flat spacetime is an adequate
used for extracting gravitational waves from numerical sim-tool to analyze the gravitational and electromagnetic radia-
ulation via the computation of one of the five Weyl complex tion coming from an arbitrary compact source. During the
scalars. Although the NP formalism is primarily focused on60s, Bondi, Sachs and collaborators [7-9] used a system of
studying the properties of radiation of isolated systems, thiganonical coordinates to define the mass, momentum and
formulation is a very useful framework for constructing and gravitational radiation. Then, Penrose defines the notion of
investigating exact solutions of the four-dimensional Generahsymptotically flat spaces (or asymptotically simple), using
Relativity. Additionally, there are attempts to generalize thisthe idea of re-scale the metric by an appropriate factor, usu-
approach to higher dimensions [5]. Particularly, the methodlly called conformal factor, which is appropriately chosen to
is very powerful when the spacetime is algebraically speciatlecay to zero at infinity [1L0]. The geometric notion of Pen-
according the Petrov classification [6], since some complexose can be summarized in the following definition

As has been mentioned before, the NP formalism ha
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Definition: A spacetime(.# , g.;) is called asymptotically sol® = g?V,u is a null vector tangent to the generators of
simple, if the curvature tensor goes to zero as we approach = const The remaining vectors are required to satisfy the
to infinity in the future direction of the null geodesics of the following orthogonality conditions

spacetime. These geodesics end up in what is called the fu- I = —m®m. — 1 )
ture null infinity .#+. A future null asymptote is a mani- “ ‘T
fold .# with boundary.¥+ = 0./ together with a smooth 1“mg, = 1%g = n%mg = n%m, = 0, (5)
Lorentzian metrig,;, and a smooth functiof? on.Z satis-
fying the following

1%ly = n%ng = mmg = Mg = 0. (6)

The indices can be raised and lowered using the global metric

oM =MUIT gab Which, in terms of null vectors, can be written as
o On %, gab = ngab withQ >0 Gab = lany + naly — MMy — Memy,. (7)
o At Z+, 0 =0,n, = 0,92 £ 0andj®n,n, — 0 Also, the metric (7) can be expressed in condensed notation
) 1 a — a a - as
From this geometric definition, it is possible to show that, g* = AN, (8)

wherey is the tetrad index, which are raised and lowered us-

1. If ./ satisfy the vacuum Einstein equations neér ing the flat metrie)*” ands,.,., and where\“ , is given by

then.# it is a null boundary. Alsa# consists of two
disjoint parts# + and.# —, each topologically? x R. A= (1% 0% m®,m"), p=1,2,34 9)

2. The Weyl tensolC,;,.? vanishes at# and the peel- and

01 0 0
ing assumption [8] establishes the way it approaches 10 0 0
to zero. Furthermore, the Weyl tensor is conformally nt = 00 0 -1 |° (10)
invariant,i.e. the tensorC ¢ constructed using the 00 -1 0

re-scaled metrig,;, andC,;.* are the same at null in-

. It is important to note that the tetrad has certain freedoms
finity [11].

such as

We begin the study of the null infinity properties, introduc- (a) To perform null rotations abo:
ing a coordinate system in the neighborhoodsf, which

we will label as(u,r,¢,¢) [12]. In this system, the time - 1% (11)
represents a family of null surfacesis the affine parame- u u u

ter along the null geodesics of the constargurfaces, and m®  — m"+ Bl (12)
¢ = e cot(6/2), the complex stereographic angle labeling n® — n®+ Bm®+ Bm® + BBI". (13)

the null geodesics off . We reach. + takingr — oo, . _
thus the null infinity is described by the remaining coordi- (b) A null rotations about,:
nates(u, ¢, ¢). Now, the two-surface metric becomes,

1 — 1%+ Bm®+ Bm®+ BBn?, (14)
ds? — — 4r2;l2(dC7 1) m* — m®+ Bn?, (15)
) ) n® — n% (16)
making the usual choice 6f = »—! as the conformal factor, ) ] )
Eq. (1) gives the induced metric ofi (c) To rotatem® while keeping® andn® fixed:
Aded? m® — e?m®  forareall. (17)
ds? = — ]§2 C. (2)  This freedom introduces the notion of spin weight, a quantity

7n that under (17) transforms as,

Here P(u, ¢, () is a strictly positive function which depends n — e (18)
on the framework choice. ) ) ) ) ’ _

is said to have spin weight [13]. One can also define the
21. The Newman-Penrose formalism spin weighted differential operato@sandd as follows,

_O(P°f)
The Newman-Penrose (NP) formalism [1-10] is a tetrad for- of = P! ac (19)
malism based on a set of four null vectors. Associated with .
the coordinatesu, r, ¢, () one can introduce a tetrad of MO §f = pl+s op _ f)7 (20)
real vectors denoted by andn®, and two complex conju- ¢
gate vectorsn® andm®, where the first co-vector is defined where P is the factor that involves the metric of spacetime
by [13] (2). The operatord ando raise and lower the spin weight by
lo = Vau, (3)  one respectively.
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(d) Finally, since the choice of the coordinate system isSince the spacetime is assumed to be empty in a neighbor-
not unique, so we can make a different choice from thehood of the null infinity, the gravitational field is given by
originalu = const cut,i.e., the Weyl tensor. Using the available tetrad, one defines five

complex scalars in the following way

u— i = T(u, (). (21)
Yo = —Capeal®m’1I°m?; 1 = —Capeal “n1°m?
Under this choice, the tetrad system transforms as 1 b d . p
Py = —i(Oabcdlan °n® — Cabcdlan mm ), (28)
.« or or oToT
*—=T <l + Ema + Ema + T2T2 na> s (22) Pz = C’abcdlanbncmd; Py = fC’abcdn“mbncmd.
oT e .
m® — m® + —n?, (23)  When an electromagnetic field is present we can introduce
Tr the Maxwell tensorfy,, = 9,4, — 0, A,, from where we
n® — T~ 1n® (24)  compute three complex Maxwell scalars given by
These equations give the expansion between two tetrads, and a b a b b
. . ; . . = Fapl*m?, = l
will be of great importance in the following sections. %0 be o1 = ab( n’+mim),
¢o = Fapn®m”. (29)

2.2. Spin coefficient formalism
From the “peeling” assumption introduced by Sachs [8], one

In the Newman-Penrose formalism [1], one introduces twelvecan obtain the asymptotic behavior of the Weyl and Maxwell

complex spin coefficients (SC), five complex functions en-scalars, and the spin coefficients for any asymptotically flat

coding the Weyl tensor, three complex Maxwell scalars, angpacetime. These scalars fall to zero as inverse powers of

ten functions encoding the Ricci tensor in the tetrad basigh the following way [13]

These complex functions are the primary quantities used in

this asymptotic formulation of the General Relativity. It is P = YQr° )

well known that this formulation is suitable to describe iso-

lated systems and analyze the gravitational radiation emit- ¢2 = ), s =Ygr 2 +0(r?),

ted by compact sources [4]. In this article, we will focus on 0p-1 1 9 0 -3 4

the general form of the asymptotically flat solutions of the Ya = w T G0 =ger T+ 00T, (30)

Einstein-Maxwell equations. Particularly, in this section, we ¢, = O(r™?), ¢2=0¢%r ' +0(r ?).

will introduce all these quantities, starting with the Ricci ro-

tation coefficientsy,,,, defined by,

=0, =t O,

r

r

o(
0—3 ( —4
o(

Also, the null vectors in the NP formalism can be written as

Yuvp = Aap)\bl/va)\bpn (25) a 0 0
=1 ozt or’
wherepu, v, p = 1,2, 3,4 are tetrad indexes, and where the P 9 P 9 9
Ricci rotation coefficients satisfy, n =no = LU X XL
Ox®  Ou or o¢ ¢’
Vuvp = ~Vvpp- (26) = m® = 0 ¢ 9 c o 31
m=m e = Y T e T ae (1)
Then, the spin coefficients (SC) are defined as combinations .0 0 20 20
of they,,,,,, by the following equations, m=mo T =Was +¢ ac +¢& ac
1
a = 5(’7124 —Y344), A= —Y244, K =131, where
1 _ _
g = 5(’7123 —343), M =723, p=m34, (27) ¢F = ¢l — 0% =2 L O(r™3) with k=¢(,(
1 0,.—1 wl -2 -3
725(7122—7342)7 V= —Y242, O = 7Y133, w=wr"" = [o%%+ +0(r™),
€= %(%21 —Y341), T= 7241, T =32 X = (g™ + 1;(1)5%)(6743)_1 +00r™),

U=0°=("+3"r = (3 +45)(2r) 7 + O(r™?).
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Now, the spin coefficients are given by [12],

k=m=¢e=0, p=p, T=a+p,
p=—rt—o"%% 3+ 0@,

o =0%72+[(0°)%6° — 5 /2l + O(r7P),
a=ar"1 4+ 0(
B=p"+0(
v=7"=¢32r*) "+ O(r?),

p=p'r T+ 072,

A=X0r"t+0(r?),

v =140, (32)

2

Oo(r=2),
O(r=2?)

)

where,

gOC = 7P7 gog = Oa
¢

=0, =-P
_ 1-
aoz—ﬂo— §5lnP,
P _
’YO = ﬁa VO - _267 )
_ . P
w? = 30, R 50? (33)

pl =U" = —8dIn P,
Py — 93 =0%0° — %6 + 6°\° — 0N,

0 — 505 1n P + 92",

(P . P
0_ 52 _ 1O 0

Finally, in the NP formalism the Bianchi identities tell us

about the time evolution of the asymptotic fields,
99 - 3090 = — B8+ o4l + 20433
99— 3005 = — B3 + 20708 + 405
03D~ —aul v 300y o, (a4)
3 - 2005 = o4y

: P
B 2087 =~ 060 + 0004

here the dots represeflf, andd, d are the differential oper-

ators defined by Egs. (37) and (38).

3. Bondi coordinates

As mentioned in Sec. 2.1, itis possible to introduce a general
set of coordinates in the neighborhood f since the con-
formal factor P, in Eq. (7), provides a great freedom when
they are chosen. However, in many practical applications, it
is useful to restrict the transformation imposing the condition

P=Py=1+¢(( (35)

With this choice, the two-surface metric (7) becomes a
sphere. These coordinates are then called Bondi coordinates.
In this section, we will give the main equations of the NP
formalism written in the Bondi system. These particular sys-
tems will correspond to inertial frames in General Relativity.
However, the choice of the Bondi coordinate system is not
unique, the coordinate transformations between two Bondi
systems is called the Bondi-Metzner-Sachs (BMS) transfor-
mations [14]. Now, making the choice of the factor by
imposing Eq. (35), and sincB = 0, one can reduce the
equations introduced in Sec. 2.2 as follows

9 0 = 8%6° — 825° + 5%° — %57,
0 _ =20

b3 =00, (36)
0_ _=0
Yy =—0".

Also the “eth” operator$, d can be written as
o5 f)

ac
O °f)

a¢

of =P, °

(37)

of =P (38)

In many applications, it is quite convenient to define the so
called Mass Aspect from the Weyl scalag§ [7],

U =Y +03%6° + 0967, (39)

which satisfies the reality conditior = W. Finally the
Bianchi identities in the Bondi system take the form,

U = —0u§ + 0"y + 2945, (40)
U = =0y + 20°93 + 46749, (41)
U = —0¢7 + 30°45 + 66565, (42)
¢) = —06%, (43)
$g = —0¢) + °¢3. (44)

Also, it is possible to write Eq. (40) in terms @f as follows,
¥ = 6%5° + 2¢5¢9. (45)

In the same way, the SC can be written in terms of the shear
0% and the Weyl scalarg?.
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3.1. The Mass and Bondi momentum whereu, {, andr are the standard Bondi-type coordinates.
. o . . Under this coordinate transformation all the relations de-
In a Bondi system, itis possible to define the four-momentumyeloped up to this point are preserved. The fraction linear

vector for an asymptotically flat spacetime as [12], transformations (53) are the only one-to-one mapping of the
1 } sphere to itself. Then, the BMS group is defined by the
Pt = — / widQ, (46) mapping (53) and the following restriction on the transfor-
87v/2 Z mations (51),
) i=K(u+a), (54)
where the vectol® is given by wherea(¢, ¢) is a regular arbitrary function on the sphere.

~ 1 - - - - Now, it is possible to show from Eqg. (54) and (53) that the
o — = Cf(l + ¢, ¢+ ¢, —i(¢ —¢), 1 —=¢¢), (47)  spherical metric transforms as [16],

) 4dédé 4d¢dC
and wherelQ) = 4id¢ A dC/ P2 is the area of the unit sphere. >l K? Pz (55)
Immediately from this definition it follows that the Bondi 0 0
mass can be written as

where the conformal factak™ associated with this transfor-
mation is given by

62 P
=——— [ WdQ. 48 _ j-320
e 5/ (48) K=
The Bondi mass agrees with the usual definition of masgg, = (1 +¢QlaC +b)(a+¢+1b)
with the Schwarzschild mass, and it is positive in a neighbor- + (c¢ + d) (&€ + d)), (56)
hood of .#*. Now, taking the time derivative of (48), and dwh
using Eq. (45), we have and where 8¢ 6
. c? J = éév (57)
M= e (6°6° + 20369)d,  (49) 9¢ a¢
mv2G ) Py =1+, (58)
since the integral is always positive, the r.h.s of the last equa- Py=1+ Cé (59)
tion is negativei.e. o . .
Now, the infinite-parameter subgroup obtained by setting
M<0 if &%+£0. (500 K =1,

Thus M measures the amount of mass loss carried away as ¢=¢ (60)
gravitational radiation. Note that, in the astrophysical sys- i=u+a, (61)
tems of major interest for the gravitational wave observatois known as the supertranslation subgroup. A supertransla-
ries like LIGO, the contribution of the electromagnetic radia-tjon (¢, ¢) moves points on each generator by an amount
tion is several orders of magnitude less than the gravitationqil((g ¢). This function can be expressed in terms of infinite
one,e.g in an astrophysical process such as binary coalessonstants using, for example, a tensorial spin-s harmonic ex-
cence. pansion [17] in the following way,

a=a’+a'Vi((, Q) +aVYa;(¢,¢) + ... (62)
In this expansiong?, anda’ represents the ordinary transla-

tions. For extra details about the Lorentz group and the BMS
transformations the reader could see Refs. [16,18].

4. The BMS group

The set of coordinate transformations &t preserving the

conditions in the Bondi coordinates is called the Bondi-
Metzner-Sachs Group_ (BMS) [8,14,15]. This group is the4.1_ Transformation between systems
same as the asymptotic symmetry group that arises from the

infinitesimal generators.e. from the asymptotic Killing vec- | this subsection, we discuss the transformation laws be-
tors. Now, to construct the BMS group, we start consideringyeen two frames. For that, we assume that the coordinates

the following mapping of these frames are related by Egs. (52), (54), and {88y

. _ the following mapping,
o= T(u,(, (), (51) R _

) 4 =T(u,( (), (63)
F=T"1r, (52) .

- F=T""r, (64)
- a
(= <1 d ad —be =1, (53) é=c¢. (65)
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Now, for this set of coordinate&i, #,¢,¢), one can build 5. Physical interpretation of the asymptotic
a new tetrad system just following the steps of Sec. 2.1, scalars
where the first null vector is chosen &s = V,u. Then,

ittr;/ecrc?r?:j?tliglr?g vgzto\r;ea;tc gorfg\?v tr?uflatt;géh?hoerégocgégﬂh this section, we will discuss the physical interpreta_tion of
PR L some of the complex scalars used in the NP formalism. A

are labeled a§l®, n*, %, m®). Also, one can find the rela-

tion between the null basi@®, n*, m*, m®) obtained from

the coordinatesu, r, ¢,¢) with the previous one given by

Egs. (22-24). These equations can be expressed in the f

lowing way [4],

simpler way to introduce this topic, is to focus on the dom-
inant terms of the peeling expansion, and make a tensorial
0zpin-s harmonic expansion of these functions. The most im-

ortant scalars in our analysis are the following,

N . L L LL ) _ i -
=1 (1= Ema = Lo+ S ) (69) 0 = YRG0 + 1 ()2 (.
ht = Plne 67) U8 = 09° + V(¢ Q) + ¥ (u)Yay; (¢, Q)
L o = o (u)Ys5;(¢, ),
m* =m® — —n?, (68) o o; L=
7: b0 = dq' (w)Y71; (¢, Q), (75)
~a —a L a 7 -~
' =m® — —n, (69) o = A" + o1 (WY O
where
I =_ OwT (70) For any asymptotically flat axially symmetric spacetime, the
T Komar integral [19] gives a precise notion of the angular mo-

hered,,) means applying thd operator keeping as a con-  mentum. The Komar formula uses the Killing vector field to
stant. Now, using the set of equations (66-69), it is possiblgjefine the global angular momentum. Assuming that the axis
to expand the scalars defined in the new system in terms @f symmetry is labeled as z-axis, the non-zero component of

the scalars defined in the original frame. As an example, wehe angular momentum can be written as follows [20],
start withe)q,

n djarbic,
wl = —Labe 1"n l(.mda

Im[y) — 0957 = — 6‘§G J?. (76)

2 3
= |~ 324+ 3 s — |
) _ _ _ Since the real contribution dt-°95°)¢ is zero for any ax-
Finally, assuming the “peeling” and using Eq. (52) we canisymmetric spacetimes. One only need to use the real part of
write, 1Y to define the dipole mass moment as follows,

P = T73[) — 3LyY + 3L%yY — L3¢].  (71)

In the same way, we can find the transformation law for all Re[y9)7 = _6\/[5GDZ. 77)
Weyl scalars, Maxwell scalars, and the spin coefficients (par- c3

ticularly the shear), which can be listed as follows [4],

Weyl scalars: Now, if the spacetime has no global symmetries, the mass

dipole-angular momentum two form will add some extra con-

70 _ =370 0 2,0 473,0 4,0
o =T [Yo — 4Lty + 6L 95 — 4Lg + L), tributions of the free data® and its derivatives. Notably, as

00 = T73[? — 3LpY 4 3Ly — L3, one can see in the literature, there are many definitions of

. ) the angular momentum for isolated systems in general rel-

Y9 =T3S — 2Ly + L2Y], (72)  ativity. A recent living review [21] offers a complete sur-

00 = T‘S[wo L) vey of the_main results in the field Wlth the main motivations_
3 3 4b and technical aspects of each definition, the fact that there is

1;2 _ T_31/)2- no agreement among these alternative approaches reflects the

difficulty of the subject. Although, in a recent work together

Maxwell scalars: with Kozameh [4], we introduced a new definition of dipole

qsg = T*2[¢g —2L¢Y + L2¢g], mass moment-angular momentum tensor using the Winicour-
50 0.0 0 Tamburino linkage [22],
¢ =T""[¢7 — L3, (73)
¢5 =T72¢). 200 — 20995° — B(0%°)]" =
Shear: 1226 . .
60 =T — 8, L — LLJ. (74) -~ =g D' tic L. (78)
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This definition allows to define the center of mass and writemore general stationary axisymmetric metric in the standard
the equation of motion of the center of mass linking thespherical coordinateg, r, 6, ¢) as follows,

time evolution with the emitted gravitational radiation. On
the other hand, as we discuss in Sec. 3, for a Bondi sys-
tem, there is a precise notion of mass and linear momentum.
Now, we can use thé = 0,1 components of the tensorial — r2e?s sin? 0(dyp — wdt)?, (84)
expansion previously introduced, and relatgto the Bondi
4-momentumM, P?), as shown in the following equations,

ds? = e*odi? — e gr? — p2e?12 g2

where the metric functionsy, 1, 12, 113, andw are arbitrary

2:/2G functions of(r, 8). The stationary and axisymmetric charac-
[1/)‘2) 1+ 9%59 + 0’05'0] li—o = ——5—M, (79) ter of (84), is reflected in the fact that the metric coefficients
¢ are independent of the coordinateand the azimuthal angle
- o7i 6G _, imeis i i '
[0 +8%6° + 0%5°] = -~ P". 80) ¥ and also _that the spacetime is invariant under smultqneous
c3 transformations — —t andy — —¢. Now, we are consid-

ering spacetimes which are asymptotically flat in the neigh-

The ¢ > 2 terms of the Lh.s of Egs. (79) or (80), are the ), n44 of infinity, thus to ensure an adequate behaviour of
so called “supermomentum” at null infinity. Now, in the NP . |ina element (84), the metric functiops, 1, fio, i3,

approach, the scalalr, measures the gravitational radiation and the angular velocity must go to zero as — oo. Also
received at null infinity. This scalar is related to the gravita-\ o choose the signatufe-, —, —, ) in agreement with the

tional wave modes as follows, orthonormal conditions introduced in Sec. 2.1.

i One of the main ingredients in the NP formalism is the
\1’4_h+_2h><’ (1) ; @ G @ 7 a
construction of a complex null tetrad*, n*, m®, m®). For

whereh., , h,, are the plus mode, and cross mode of the grav:[hat’ we introduce first an orthogonal tetrad constructed from

- : the timelike foliationt = const, then the normal vector to the
itational wave in the transverse traceless gauge [23], respeg: o rcurface. is aiven b
tively. Thus, the complex functio#®, introduced in Eq. (36), yp t1S9 y

yields the gravitational radiation reaching at null infinity, and

op = hY, gn(_ja? = 1"} are the quadrupolar contributions t* = [e7#,0,0,we "0]. (85)
of the gravitational wave.

Finally, we focus on the Maxwell scalars, which give in- Now, on, we can find three spacelike vectors denoted by
formation about the electromagnetic contribution received at

. At this point, we can mention that the electric charge

is the zeroth order in the tensorial expansionsgf and the r* =10,—e"",0,0], (86)
dipole electromagnetic moment corresponds to #he 1 e~ k2
component of] [3,24], 1.e, eg =1[0,0,— 0], (87)
—H3
¢ =Q, (82) et =[0,0,0,———1. (88)
) rsin 6
5% =p' e, (83)

Also, the set of vector&®, r*, ej, e, ) satisfy

wherep’, 1i* are the electric and magnetic dipole moment re-
spectively. gapt“t” = —gapr®r’ = —gapefep = —gapelel, = 1. (89)

. . . . Now, from these vectors we can build a null tetrad making
6. Appllcatlon to stationary axisymmetric the following linear combinations,

spacetimes
Stationary axisymmetric spacetimes are of great importance 1" = %(ta + 1), (90)
in General Relativity, astrophysics, Newtonian gravity, and
also in Post-Newtonian theories. Many sources like stars, no — i(ta —ra) (91)
galaxies, accretion disks, and black holes are modeled under V2 ’
these assumptions of temporal and axial symmetry. These 1 .
global symmetries play a central role in analytic calculations, m* = 5(65 —ieg), (92)
since they are very useful when the field equations are sim-
plified. In this section, we will focus on studying these kinds me = i(eg +ie?), (93)
of spacetimes. Now, following Ref. 25, we can introduce a V2 v
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then, our null tetrad is given by the null vectors, element of this spacetime in spherical coordinates can be
written as
a [e—HoO e M1 we Ho 2 2\ —1
l__\/§7_\/§’0, \/5:|7 (94) d82:<1_2‘iw+?2>dt2_(1_2i‘w+%> d7“2
[e7HO e7H1L (e~ HO 20102 | i 2 2
¢ = , ,0, , 95 — r*(df” + sin” Odp*). 103
w = | 0t (©5) ( ) (103)
_ B L Comparing to Eq. (84), and solving for the metric functions,
e M2 qeTHs ) - . .
m*= 10,0, ———, ] , (96)  Wwe find the following algebraic equations
/2 \/2rsinf 1 M Q2
M e—#z _Z'e—,us Ho = = 111 (1 -2 — + 2) s (104)
ma = 07 Oa - ) . :| ) (97) 2 r r
L 2 /2rsiné 1 MO
o | | m=-gm(1-224 %) aoy)
and lowering the indices using,;, we find the conjugate 2 r 3
tetrad which is given by fo = pis = w = 0. (106)
L = iem’ Lem 0, 0} ’ (98) Finally, replacing in the equations of Sec. A we can write,
V2 V2 ¢o = s =0, (107)
(1 1
ng = | —=et’, ——e#,0,0|, 99 =1 =3 =Py =0, 108
W NG ] (99) o =1 =3 =1s (108)
- c=1T=rk=A=v=m1=0, (109)
(3
mg = | —=rwsinfe’?, 0,
NG and where y
, , be=—5+0 ("), (110)
(3
—ret?, ———rsin 96”31 , (100)
V2 vz ¢1 = —2% +0(r ), (111)
o 1 ) 1 B
Mg = l \ﬁrw sin fet3 0, p= _\/ir +0 (7, 2) ’ (112)
1 i . cot 9
—rel?, —rsinfet? |. 101 a=- ) (113)
2 ] (oD 221
M -3
Finally, we will assume the following potential vector €= 2v/2r2 +0 (T ) ' (114)
As we can see from Egs. (107) to (114), this exact solution is
Ao =[x, —Ar, —Ag, — Ay, (102)  a shear free solution sinee= 0.

wherey, A,, Ay, and A, are also functions ofr, ). Now,  6.2. Chazy-Curzon solution

using the null tetrad, and the potential vectdy, we can

compute all the quantities introduced in the previous section§he Chazy-Curzon solution corresponds to the simplest case
to solve this axially symmetric stationary metric in the NP of the Weyl vacuum solutions. Note that if we start from
formalism. In the appendix A, we will show the general setEQ. (84) and seti; = —po, anduy = pa = o — o, With

of equations, but in the next three subsections, we will re0 = 7o(r,0), we obtain the Weyl metric [26] in spherical
duce the metric given by Eq. (84) to the Reissner-Notastr ~ coordinates

Chazy-Cur_zon, and _Kerr spacetimes_, by solying an algebraic ds? =e2H0dt? — ¢20=210 (g2 4 12792)
system of five equations for the metric functions of (84), and
we will write all the complex scalars on the basis given by — r2e720 gin? fdp?, (115)
Egs. (94-97). where the Chazy-Curzon spacetime is obtained by setting,
M
6.1. Reissner-Nordstdbm spacetime Ho==7"
2 12
The Reissner-Nordgim metric is a static solution of the [ = o = _Msigle n %7
Einstein-Maxwell equations. This solution corresponds to 2r r
the gravitational field of a charged, non-rotating, spherically _ M
symmetric body of masa/ and electric charg€). The line He =
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Now, the Weyl scalars can be written in the following way, Solving for ug, i1, po, 13, andw, we find

M? (sin§)” - 1. (2Mr(a®sin®0 — a® — 12) + (a® + r2)p?
¢0:T+O(T 6)7 u0:1n< ( YR 2 (2 o ) )7
r 2 2 Mra?sin® 6 + (a® +12)p
M3 sin 6 cos @ ' A2
=———————+0(r" L (P
i 2r5 +O ()., p=g5 In (A) ,
M
e =——5+0(7"), 1 (5
r H2 = ) In 2 )
_ M3sinfcosf O (r—5
V3= 2 +0(r™°), 1 2 Mra?sin® 6 + (a® + r2)p?
2 Hs =5 1n 22 ’
~ M?(sin0) O (46
Ve = 275 +O (). 2Mra
w= - —.
Finally, the spin coefficients are given by, 2 Mra?sin® 0 + (a2 4 r2)p?
M2 (sin )2 Finally, the Weyl scalars are given by,
oo = VLT 6o,
" " 3 J2%sin%0 L0 (r_ﬁ)
2 0= 5 255 )
o ! o
T ¢—§JSIH0+O(*5)
T—W+O(r—4) T2 "l
N 473 ’ M »
2 . wQ - _73 + O (T ) B
V2M?2 sin 6 cos 6 4 r
h=———— e+ 0 (r "), o
ar Yy =~ TS0 O) (s
3 2 7t ’
V2 cot 9
T 4 +0(r7%), " 3J281n29+0(—6)
= - r s
MV2 3 T2
= Y2 0@ ).
‘ 4r2 =) and the asymptotic solution of the spin coefficients are the

Since Chazy-Curzon is a vacuum non-charged solution of théollowing,
Weyl metric, it is clear that the Maxwell scalars will be zero.

2 J?sin? 6
. U=£%+O(f4)v
6.3. Kerr spacetime 4  M:?r
1

. . . —2
As a last example, we choose the Kerr metric which describes P = Vor +0(r ?),
the geometry of a spacetime in the vicinity of a rotating mass

M with angular momentuny. This metric corresponds to o V2 J?sinf cos§ 0 (r %)
a vacuum non-charged solution of the Einstein equations. In 4 M?2p3 ’
usual coordinates, the Kerr line element can be written as, B V2 J (Jcos9 _ 6z‘M2) sin () Lo ( _4)
, OMrN 5 2,0 oo T M3 T
ds®=(1——5— | dt” — —=dr® — p°df
P A V2 cot 6 _3
oa=— +0(r7?),
4Mrasin® 6 dtd 4 7
7 v V2 M s
e=———5+0 (7‘ ) .
2Mra? 4 r
—(r?+a?+ “——sin?0 ) sin® 0 dp?,  (116) o
P2 Note that the angular momentum of the Kerr solution is given

by the imaginary part of{ as we mention in Sec. (5). Addi-
tionally, the Kerr spacetime has not gravitational wave since
the Bondi free data is equal to zei®, ¢° = 0.

where p, A, and ¢ have been introduced for brevity, these
functions are given by

P2 =124+ a%cos? 6,

A =% —2Mr+d?, 7. Final remarks
o= J In this article we give a brief review of the Newman-Penrose
M’ formalism and the asymptotic structure of the spacetime.
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This review has highlighted the importance of the complexmetric metric. For that, we introduce a complex null tetrad
scalar functions introduced in the NP approach to describand we compute the Weyl scalars and spin coefficients, then
the dynamics of compact sources and its gravitational radiawe reduce this general spacetime to some familiar exact so-
tions. We show how to compute the physical variables fromutions.

the fields received at null infinity, and we deduce the transfor-

mation laws for systems defined by different families of null Acknowledgements

cuts. Finally, as an example, we use the asymptotic formula-

tion of the general relativity in a general stationary axisym-GDQ wants to thank the financial support of VIE-UIS and
|  the postdoctoral research program RC N001-1518-2016.

Appendix
A. Complex scalars and Spin Coefficients for a more general stationary axisymmetric spacetimes
In the following appendix, we present a set of equations derived from the line element (84). These equations correspond to the

Weyl and Maxwell scalars, and the spin coefficients computed from the tetrad basis introduced in Sec. 6. Now, starting with
the Weyl scalars we can write,

sin’6 _, dw\? e2m 9 e 2 (duy 0 Ous 0
_ 2 Y 2p0—2pe+2ps [ T - = _ _ 0 ops 9 _
Yo 4 ¢ (89) 2r 87"(#2 #3) 4 ( or or (kg = p2) + or or (11 M3)>

e 2m /9 Oug 02 e"2k2 (9 opg 0 o)
- (m(MQ—ul)m+W(ug—u3)) - (89(M2—M0+M3)89+39(H1 = p2 — p3) 39>

e"2H2 [ 92 1o} isinf [(Ow O 0%w
| = _ —_ _ _ _ —po— H1— p2+p3
472 (892 (/1'1 IU’O) + cot 989 (/1’0 Ml)) + 4 (80 or (MZ 3,“/3 + 2,“/0) 6067’) €
isinf &u 8 2 Ow
[— - —Ho— H1— p2+p3

b = rsi;2 9%%672%*#1*#%2#3 % <g°:aar(m 95 — 30 — 3 + 322‘:) o Ho—2 1+
e L R T
o Sine %‘;’e— Ho—Zpatis 4 is;fe (aae(?wl to + 3 p3 — uz)% + g?;) e HomBmetis
—i—# <1889(3M0+M1) 5 (12 Mo)%-ﬁ-aﬁ@/ﬁo%—us) 889 400t9§ (M3—M2)> (A.2)

r? sin? 0 o\ 1[0 \° 9 e~2m 9 o
- __ _ i —2po—2p2+2pus i _ Y2
v 12 <7 (aﬁ”) + r2 (80w) € + 12 oOr (12 = pa + o) or

e"2m 0 opg 0 O3 1cos 6 Ow
+ D (10&”(M0_M1)87~+8vﬂ(u3_2u2 M1+M0)a ) 5 or

e~ Mo~ H1—H2+Hs

“2m [ 92 20 2 e~z o
5 (arz(ug 1040 + p2) + 5= (o = ) = TQ> + 55 75 (1 + ps — p2 + 10 o) — -

12 122 99 90
e (o200 B 5y ) ) 553 (G20 s o
‘*‘% (aa;(uo —2pus + p1) + 2) + isi4n9 (gr (p3 — p2) % + % (2p3 — pro — 1) ?;:) e~ HoT mi—H2tps
#ggﬁwwl_“ﬁ“ﬂ (A3)
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rsin? @ Ow dw 2 0 3icos b &u

a= o TR — g gl 3 e T e e TR e
+ #822 (3 + 3 o) + 2881:0 (;( —3p + pe — 3/13)%;} 22;2}) e~ Ho—2 paths
(g G 0) et () 43 5 o = ) )
+ i S8in9 (; (3po + 31 — p2 — 9 p3) gr 3(;2% - 1r0 c;(:) e 2Ho=2Zptus
Coir(e) ;r (3 — po) e 22710 H,
Py = —Sir; b (%)26_2“0_2“2“”3 + e‘z‘“ (57, (p3 — p1— po )37!? + % (1 — p2 + o) By

e "2k o 6
T2 ( (1 — p3 — p2) =~ 90 39 (pu3— ,Uo-l-uz)m‘*‘@(m — o)
—2Zm 2 0 cot (6) 0 2
LS8 (st e =2 = ) + S 2 G — e

1sin @ 8< S 42 )8 8( )&u_@Qw_gaw
1 \ g W2 = 8ks T 2to) Gatag (= 1o) 5= 5a5, ~ 7 a0

v o

) e~ Mo~ Hi1— patps

Finally, we show the three Maxwell field scalars and the twelve spin coefficients defined in the NP approach,

‘I)O:_i (6A9 8AT>6—#1—M2 1 <8A 8)() e_uo_ﬂ_i_zcscﬁaAs{J -3,

ar 90 0 0 2r  or
_( O0Ay  OX\ o1, Gesc0O0A, o s
e ( or ar>e Tt
_ 1 (94e XY —pop2 L (OAr  O0Ag _nup Besc00Ag s
b2 = ( a0 aa)e o0 or )¢ 2 o ’

V2 [ 0w _, 0 _
oc=\= e <zs1n¢989@ o "2+“3+§(u27p3)e “1>,

p=u=% (;(uz+u3)+ >e .

S T

F=—7= —Z/—f (isin@ﬁ%e‘“o_“ﬁ% — % (o + 1) 6_“2>7
a=—F3= W%M%efwf”ﬁm’ + \4/7367“2 <88'L;3 + Cot@)

\/5 . Ow —Ho—p2t+p3 —p1 8#0
v=e=——¢ (zsmﬁaee +2e 37’)
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